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Abstract: The problem of stabilizing an inverted pendulum on a cart while enabling
manual control of the cart velocity is treated. Introduction of an input saturation
nonlinearity makes the problem challenging in the sense that the system may
be driven to a state where recovery is not possible. A controller based on the
controllability set of the inverted pendulum, which ensures stability and tracking
of constant reference velocities for the cart is developed. The controller also offers
a trade-off between performance and robustness. Copyright (c) 2005 IFAC
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1. INTRODUCTION

In many control applications, a system is con-
trolled by a combination of manual and automatic
control. Typical examples are aircrafts, where sta-
bility augmentation systems are used to assist the
pilot. The combination of manual and automatic
control is particularly crucial for unstable systems
with actuator constraints, because the system can
be driven to such a state unintentionally by man-
ual control. The problem is similar to the one
encountered when controlling unstable aircrafts
such as the Saab Gripen, where in some flight
conditions the unstable mode is so fast that a pilot
cannot stabilize the system. The aircraft dynamics
is however more complex and the actuator rate is
saturated, see (Rundqwist et al., 1997; Patcher
and Miller, 1998). The pendulum problem can
however serve as a simple prototype for an inter-
esting class of real problems.

The essence of the problem can be captured in
the following formulation. Consider an unstable
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system with actuator saturation. Find a control
strategy that stabilizes the system and provides
facilities for manual control. The strategy should
be such that the system can be controlled manu-
ally without driving it unstable.

There is an extensive literature on stabilizing a
dynamical system subject to input or state con-
straints. For linear systems, the problem is well
understood. For stable systems there are strong
results stating that there always exist a con-
troller that stabilizes the system globally. The
result was proven for a chain of integrators in
(Teel, 1992) and for the general case in (Sussmann
et al., 1994). For unstable systems, the situation
is more involved. A key concept for control of
unstable systems is the notion of Controllability
Sets, which contain all points of the state space
such that there exists a feasible control trajectory
that brings the system to the origin. The problem
is closely associated with that of minimum time
optimal control. It can be shown that the con-
trollability set of a linear exponentially unstable
system is bounded in the directions of the unstable
modes. Consequently, only semi-global stability
may be achieved. An elegant result for calculation
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Fig. 1. A schematic picture of the inverted pendu-
lum on cart.

of controllability sets for exponentially unstable
systems as well as a method of semi-global stabi-
lization are given in (Hu et al., 2001).

For non-linear systems, the situation is different.
Fewer results are available on stabilization with
bounded controls, (Teel, 1996) being a notable ex-
ception. The problem of calculating controllability
sets is significantly harder for non-linear systems.

Another branch of the theory deals with the prob-
lem of anti-windup. In this setting, a local perfor-
mance controller is designed without taking the
saturation nonlinearity into account. The problem
is then to find an anti-windup modification of the
controller that leaves the behavior of the local
controller unaffected when there is no saturation,
and limits the effects of saturation if it occurs,
see for example (Ronnbéck, 1993). In (Teel and
Kapoor, 1997), the problem was given a rigorous
definition and solved for the case of stable linear
systems. In (Teel, 1999) the anti-windup problem
for exponentially unstable linear systems is ad-
dressed.

In this paper, the inverted pendulum, representing
a non-linear unstable system is studied. The aim
of the controller is to enable velocity tracking of
the pivot point of the pendulum while ensuring
stability. The controllability set of the system is
explicitly characterized, and a controller based on
this set is proposed. The paper is an extension of
(Akesson and Astrém, 2001), where a linearized
pendulum system was studied.

2. EQUATIONS OF MOTION

Consider the inverted pendulum on a cart in figure
1. Let the position of the cart be x, and the
angle of the pendulum 6. Let [ denote the distance
from the pivot point to the center of mass of the
pendulum, m, the mass of the pendulum and
Jp its moment of inertia w.r.t. the pivot point.
Further, let m. denote the mass of the cart, F the
force acting on the cart and g the acceleration due
to gravity. The equations of motion of the inverted
pendulum may be written

Jpé —mplZ cos —mpglsingd =0

—mplf cos O + (me + my)i — mylh2sin§ = F.

(1)

By introducing the input transformation

1
F= T [v(medy 4+ myJ), + m2l° sin® 0)

—mf,ng sin 0 cos 0 + mep192 sin 0

where JZ’, is the moment of inertia of the pendulum
with respect to its center of mass, the control
input to the system is transformed to the ac-
celeration of the cart, v, rather than the acting
force F. Notice that the transformation can be
done globally in the state space since J, < mpl2.
Introducing the normalizations

Tr1 = 0 To = Jp 9 xr3 = mpl T
mpgl Jpg
l (2)
U = Y T= g t
g Ip

the dynamics of the system may be written

i]l =X
&9 =sinf + ucosb (3)
.’tg =u.

Notice that the state x has been excluded, because
the aim of the control system is to enable velocity
control of the cart.

The equilibria of the pendulum are x; = 0 and
x1 = 7 which represents a saddle (unstable) and
a center (stable) respectively. Linearization of the
model (3) with respect to the unstable equilibrium
point 2 = (0,0,0) is given by

010 0
i={100lz+ |1]w (4)
000 1

3. CONTROLLABILITY SET ANALYSIS

The controllability set plays an important role for
design of controllers for unstable systems subject
to input saturation, because stability is lost if the
state leaves this set. A point in the state space
belongs to the controllability set if there exists
a feasible control signal such that the state of the
system is brought to the origin. The set of all such
points constitutes the controllability set.

In the following it will be assumed that the control
input of the system (3) is subject to the following
standard saturation

Uy U > Ug
saty,(u) =< v —ug <u <y (5)
—uy U < —Ug.

The controllability set of the planar pendulum

was studied in (Brufani, 1997), where the con-

trollability set for |z;| < 7 was calculated. For

completeness, this derivation is given below, as
well as its extension to the case when |z1| < 7.
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Fig. 2. Boundaries of the controllability regions for
|z| < 7/2 in full lines and for |z;| < a = 2.35
in dashed lines. The circles show the unstable
equilibria and the arrows show the direction
of the vector field. In this case uy = 3.

We first notice that a for a constant acceleration
uo there is an equilibrium at Y = arctanwu and
xJ = 0. When the acceleration has the constant
value ug, the equation of motion of the pendulum
can be integrated to give

1 .
—x3 = —cosx +upsinzy + C
1 — cos 1 cos £0 + sin zq sin 29
2 1 1 1 1 C

572 = +C(6)
2 COS X

0

cos(x1 +x
— ( p 1) +C
COS Tj

The controllability set is essentially given by (6).
To explore the details we will consider two cases.

3.1 Case 1: |z| < 7/2

This case correspond to the situation where the
pendulum is never allowed to pass the horizontal
plane through the pivot. In this case, the bound-
aries of the controllability set is given by the
trajectories through the unstable equilibria (29, 0)
and (—z9,0). Linearization around the equilibria
shows that they are saddles. The trajectories are
the stable solutions of (6) through the equilibria.
This gives C = £1/cosz! and the expressions
271 — Cos(xlo_ x? , I <z < a:(1]
cos Ty 2
f :—/2@1) =
9 1 — cos(z1 — Y)

0 )
CcOos Il

i
x?émﬁg

for the upper boundary of the controllability re-
gion. Because of symmetry, the lower boundary is
the mirror of the upper boundary, hence

f;/z(xl):_f:/g(_xl)- (7)

Figure 2 shows the controllability region for this
case with ugp = 3 in solid curves.

3.2 Case 2 |z| <m

It follows from the analysis in (Astriﬁm and Fu-
ruta, 2000) that if the acceleration is larger than
4/3 it is possible to have a controllability set which
allows the pendulum to go below the horizontal
plane through the pivot. Assume that the angle is
restricted to —a < 21 < «. This requires that the
acceleration of the pendulum is sufficiently large
to swing up a pendulum at rest from the angle a.
The energy analysis in (Astrém and Furuta, 2000)
gives the following relation between a and ug.

2
+) (8)
VvVitug—1

It is somewhat counterintuitive that the smallest
acceleration ug = 4/3 is obtained for the largest
@, i.e. @ = 7. Smaller values of « requires larger
acceleration.

« = T — arctan ug + arccos (

To find the controllability set we first observe
that the boundary of controllability region goes
through the point 7y = £, zo = 0. In the case
of a > 0, the acceleration is positive for |z| > 7/2
and negative for |z| < 7/2. Using the energy
equation (6) and matching the parameter C' to
the boundary conditions we obtain the following
expression for the upper boundary x5 = (1)
of the controllability region.

0
\/fos(xlﬂlucl T <ni<a

0
cos Ty

_ 0
() = \/_Qmﬁu@ LT
Cos ] 2 2
0
\/_meﬂwg oo < T
cosxy 2
(9)
where
0
cos(a+x
Cl -9 ( - 1)
cos 7
cos (m/2 — 29 cos (m/2 + 29
(=22 al) peos(a/24a)
cos 7 cos 7
cos (—m/2 + ¥ cos (—m/2 — 9
Oy =2 T2 jeos(om/2-a)
cos ] cos ]

The lower boundary of the controllability region,
f5 (1), is defined as in equation (7). In Figure 2,
the controllability region in the case of 1y = 3 and
« given by (8) is shown in dashed curves. Figure 3
shows controllability regions for |x1| < 7. Notice
that the region grows for larger values of wug.
The size of the controllability set depends on the
saturation limit, ug, and on the permissible range
of x1. The entire state space is the controllability
set if there are no restrictions on ;.

4. A STABILIZING CONTROLLER

As a first step towards the design of a controller
enabling tracking of reference commands for the



Fig. 3. Boundaries of the controllability regions
for |z1] < 7 and wuy = 4/3 (solid), up = 3
(dashed) and uy = 6 (dash-dotted).

cart velocity, a stabilizing controller for the pen-
dulum states x; and x> will be developed. It
is clear from the previous analysis that such a
controller may only stabilize the system in (a
subset of) the controllable region, which is a prior:
known.

In the following, the case of |z1| < 7/2 will be
considered. A simple but effective way to design
such a controller is to use a linear design method
based on the linearized model (4), resulting in a
linear control law

u = saty, (—lhz1 — laxa), (10)

which locally stabilizes also the non-linear system
(3). It is not clear that such a controller also
achieves semi-global stabilization. Using an LQ
design, however, it is possible to prove semi-global
stability, given that the controller fulfills the fol-
lowing two sufficient conditions: Firstly, the region
of the state space where the controller operates
linearly must be entirely contained in the control-
lability set. Secondly, the solution of the algebraic
Riccati equation, P, should produce a Lyapunov
function candidate, V (z) = 27 Px, such that there
is a sufficiently large region defined by V(z) < ¢
in which V(z) < 0. From the Lyapunov stability
theorem it follows that {z : TPz < c¢|z — 0}.
The first condition is to make sure that close
to the boundaries of the controllability set, the
controller is saturated. In this situation, trajecto-
ries will approach the center of the controllability
set and the linear region. The second condition
is to ensure that all trajectories starting outside
of the ellipse defined by 2”7 Pz < ¢ will actually
enter it. It is not difficult to find a controller
that fulfills the requirements. A typical situation
is shown in Figure 4. As can be seen, an ellipse
defined by 27 Px < ¢ (bold) can be fitted inside
the region in which V <0 (dash-dotted bold).
Further, the controller operates in linear mode in
the region defined by the non-bold dash-dotted
lines. It hence follows that all trajectories starting
inside of the controllability region (dashed bold)

Fig. 4. The region of attraction of the linear
saturated controller.

will inevitably enter the ellipse. Semi-global sta-
bility follows. By tuning the weights in the LQR-
design, it is possible to shape the local behavior
of the controller, and also obtain an ellipse that
is better aligned with the controllability region.
However, stability and the region of attraction of
the controller will be unaffected as long as the two
requirements stated above are fulfilled.

5. TRACKING

In this section we will design a controller that
permits manual control of the cart velocity while
stabilizing the pendulum. Consider the control
law

u = satuo(fllxl — 12$2 + m), (11)
where m represents the tracking term which will
be defined below. First assume that m is constant.
The equilibria of the perturbed system are then
given by the equation

tanx, = sat(—lyz1 +m).

The curve representing the saturation is shifted
horizontally when the manual control is changed.
The number of equilibria then depends on m. In
Figure 5, there are three equilibria marked by cir-
cles. The middle equilibrium is (controlled) stable
and the others are unstable. For large positive or
negative values of m there is only one equilibrium
which is unstable. A necessary condition for semi-
global stability is that the system has three equi-
libria for a constant m. To maintain stability it
is necessary that the manual control actions are
limited. From the point of view of performance
it is desirable that the limits on the authority of
manual control are as wide as possible. From the
previous analysis, it is clear that a constant angle
29, corresponds to a constant acceleration u°. To
enable fast tracking, i.e. large acceleration towards
the reference velocity, it is thus desirable to allow
for large values of m. By selecting the tracking
term m as

m = satq(ls(r — xz3)) (12)
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Fig. 5. Equilibria for the system subject to satu-
rated control and constant reference tracking
term m.

where 7 is the reference value of the cart velocity
state x3, it is possible to capture the trade-off
between stability and performance. The feedback
gain [3 is conveniently calculated using LQR-
design, that gives the desired local behavior. The
choice of the saturation limit a is guided by

Lemma 1. Consider

= Jat @) = b(fos (@) +d) —uo + b
a” (1) = ~l(fy(21) = d) —uo — has
(13)
where a*(z1) and a~(x1) are the positive and

negative saturation limits of (12) and 0 < d <
dmaz- Then the region bounded by f:/Q(ajl) —
d and f;/z(xl) + d is positively invariant, i.e.,
trajectories starting in this region will remain in
it regardless of the reference value 7.

Proof: The proof is a straight forward application
of Nagumos theorem, stating that for a closed set
S € R", S is positively invariant for the system
i = f(z), if and only if the field f(x) points to the
interior of S for all z € 0S. See (Blanchini, 1999)
for details.

The controller (11) with saturation limits defined

by (13), operates in saturated mode whenever

T2 > f;/z(fﬁl) —d or i) < f;;/Z(xl) +d. It then

follows from a phase plane argument that trajec-

tories starting at the boundary curves 7 (z1)—d
pi/2

and f,;/z (z1) + d will approach the interior of the
region. The same argument can be applied for

the vertical line segments bounding the region at
r1 = :|:7T/2

Remark 1. To avoid an overly conservative de-
sign, the saturation limit a should depend on the
angle .

Remark 2. The value of d is used to control the
size of the invariant region, yielding a safety
margin for robustness. However, the region does
not exist if d is too large.

Remark 3. The boundary functions f;r/Q (z1) and
f;/Q(xl) used in (13) can be approximated by
simpler expressions, as long as the condition of

Nagumos theorem are fulfilled.

Fig. 6. Phase portrait of the system (3) subject to
tracking control.

Fig. 7. Trajectories for a step reference change for
the proposed controller (11) (solid) and the
time-optimal solution (dashed).

Figures 6 and 7 show the phase portrait and the
corresponding state trajectories when a step refer-
ence sequence is applied. Figure 6 shows that the
state remains in the specified invariant set. Notice
that the linear region marked by dashed lines is
small compared to the invariant region. A strategy
that avoids saturation is thus very conservative.
The tracking behavior of x3 in Figure 7 is rea-
sonable as shown by a comparison with minimum
time trajectories. The time optimal trajectories
give a faster response for large set point changes,
but lacks the robustness of the proposed feedback
controller.

6. EXTENSIONS

The analysis above is valid for the system (3),
where limited acceleration of the pivot was as-
sumed. The true problem, however, is to device a
controller for the system (1), assuming input sat-
uration on F, i.e. limited force. This problem can
be solved using insight gained from the analysis
in the previous sections.

The controllability set of (1) subject to the input
nonlinearity (5) can be found numerically through



Fig. 8. Phase portrait of the system (1) subject to
tracking control.
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Fig. 9. Trajectories for a step reference change for
the proposed controller (solid) and the time-
optimal solution (dashed).

simulation. The set is indicated in Figure 8 in
bold curves. Using this set, the controller (11)
with saturation limits (13) can be employed. As
previously, the controller renders the region de-
fined by the boundary functions f:/2 and fw_/2
and the parameter d invariant. Notice that the
invariance argument holds also for approximations
of the boundary functions, see Remark 3.

Figure 8 shows a typical phase portrait. The
pendulum states do not leave the invariance region
marked by dash dotted curves. Figure 9 shows
the step response of the system. The minimum
time solution is shown in dashed curves. Notice
the different time scales in Figures 7 and 9, which
is due to scaling. The following numerical values of
the parameters of the system (1) were used in the
simulations: m, = 0.3 kg, [ = 0.5 m, m. = 0.2 kg,
g =9.81m/s® and J, = m,l?.

7. CONCLUSIONS

An explicit characterization of the controllability
set for an inverted pendulum on a cart subject to
limited acceleration of the pivot has been given.
A controller enabling tracking of constant pivot

velocity references while stabilizing the pendulum
has been proposed. A single parameter, d, is used
to trade performance and robustness of the con-
troller. The controller has also been generalized to
the case of the actual pendulum system subject to
limited force acting on the cart.
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