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Abstract: This paper deals with the “reverse auction” problem with an assumption sellers 
are willing to offer quantity discounts to the buyer. The objective of the buyer is to find 
such an allocation of quantities that one should buy from each seller, in order to pay as 
little as possible for the given amount of any product. Two algorithms are presented to 
solve the introduced problem. The first algorithm is able to find the global optimal 
solution, although only for some classes of cases. The second algorithm has pseudo-linear 
complexity and it achieves sub-optimal solutions within predictable range of the optimal 
one. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
This paper deals with the problem called “reverse 
auction”, in which one buyer and many sellers 
participate in trading. The objective of the buyer is to 
buy a certain amount of products with as low cost as 
possible from the candidate sellers. On the other 
hand, sellers are competitive with each other and 
therefore they might try to offer various kinds of 
advantages. One of the most used methods is to offer 
the discount unit price for buying larger amount of 
products. The offer that each seller sends to the buyer 
usually includes these discount prices and 
corresponding conditions – i.e. the minimal amount 
that the buyer should buy, in order to get this 
discount price. From a number of such offers, the 
buyer makes a choice and distributes the amount of 
products that he/she wants to buy from each seller so 
that the total payment would be minimal.   
The buyer decides for his/her own benefits, so the 
amounts of products or the unit prices that he/she is 
willing to pay do not have to be equal for all sellers. 
The problem solving could be drastically simplified 
if the buyer does not discriminate the sellers and 
agrees to buy the same amount or to pay the same 
unit price to each seller.  

Due to the fact that the offer of each seller is usually 
a discrete function and the amount of products the 
buyer can buy is an integer value, solving the 
introduced optimization problem is usually based on 
using heuristic search methods. In this paper, two 
algorithms will be presented to solve the above 
problems with some specified simplifications. 
 
 

2. LITERATURE OVERVIEW 
 
The reverse auction problem has been dealt in many 
papers, e.g. (Gonen & Lehmann, 2000), (Sandholm, 
et. al, 2002), (Sandholm and Suri, 2002). Many real 
cases are realized, for example, in 
http://reverse.interauct.com.sg/. However, (Sandholm 
et al. 2002) showed that in certain variants even 
finding a feasible solution is NP-complete. For a 
special case, when the price function is linear, 
(Sandholm and Suri, 2002) proposed a polynomial 
algorithm to solve. [Dang & Jennings, 2002] is 
closest to this work, in which an algorithm with 
O(n2) was presented to find sub-optimal solution 
within predictable range. The coefficient of 
prediction seems too high; essentially it increases 
exponentially when the problem solving is multi-item 



     

trading. For that reason, the focus is to propose a new 
algorithm that is able to find a solution in polynomial 
time but with better estimated coefficient (closer to 
the really optimal solution). Before starting the 
discussion, some assumptions should be presented, in 
order to simplify the solving problem. 
Assumption 1: The unit price does not increase when 
the bought quantity increases. 
Assumption 2: The total payment does not decrease 
when the bought quantity increases. 
These assumptions are based on the reality, because 
sellers usually tend to decrease a unit price when 
someone buys larger amount of product. In addition, 
sellers do not want to loose, thus, the total payment 
should not decrease, even though the bought amount 
increases.  
 
 

3. SINGLE ITEM FOR TRADING 
 
The problem solving could be described as follows: 
given n sellers {Si}i=1,.,n and one buyer B; the 
objective is that the buyer is to buy Q (Q∈N) units of 
one product with as low cost as possible. Each offer 
provided by seller Si includes k pairs {ai

j, pi
j}j=1,..,k, 

which express the price per one unit and the minimal 
amount to be bought in order to apply this price. For 
all offers the following condition is valid:  

∀i: ai
1=0 and ai

k≤Q. (1) 
Let us denote pi(q) as a unit price that seller Si offers 
if the bought quantity is equal to q; then, based on 
Assumption 1,  

∀i, if q’>q’’ then pi(q’) ≤ pi(q’’). (2) 
Applying this condition to the given case we get: 

∀i,j: pi(ai
j)>pi(ai

j+1). (3) 
Additionally, on the basis of Assumption 2, the 
following condition is derived: 

∀i, if q’>q’’ then q’pi(q’) ≥q’’pi(q’’). (4) 
Let {q1,…,qn} be a vector of quantities that the buyer 
buys from each seller; then 

∑ =

n

i iq
1

=Q. (5) 
The total payment F is equal to 

F= ∑ =

n

i iii qpq
1

)( . (6) 
The main goal is to find such a vector of quantities 
which minimizes the F value from (6) subject to 
condition (5). 
 
 

4. REDUCTION OF SOLUTION SPACE 
 
First, some proofs are presented with the purpose to 
explain the principle of the later-proposed 
algorithms.  
Let us consider a case with two sellers {S1, S2}. q1 
and q2 denote the quantities bought from each 
seller,respectively; q1 + q2 = Q and q1 ∈[α1, α2]; q2 ∈ 
[β1, β2], where 

α2 ≥ Q  and β2 ≥ Q. (7) 
That means both  sellers are able to provide the 
required amount. Without loss of generality we 
assume that p1(Q)≥ p2(Q). From (2) it is easy to get 

∀q1, q2: p1(q1)≥ p2(Q) and p2(q2)≥p2(Q) (8) 
This leads to the following result:  

F = q1p1(q1)+q2p2(q2) ≥Qp2(Q). (9) 
Equality occurs when q1=0 and q2=Q. That means the 
total payment is minimal when q1=0 and q2=Q. 
Similarly, with case p1(Q)< p2(Q). Based on this 
proof the following lemma is derived for general case 
with many sellers: 
Lemma 1: Given any demand Q∈N. If all sellers are 
able to provide this demand, then the payment is 
minimal when only one seller is selected to buy. � 

Consequence 1: Denote amin= min{ai
k}i=1,..,n. The 

maximal number of sellers who contribute to the 
desired demand Q with minimal total payment is 
[2Q/amin]+1. 
Consequence 2: There is maximally one value qi, 
which is lower than amin/2. 
Proof: follows from Lemma 1.  
Consequences 1 and 2 are used to restrict the set of 
seller’s configurations that the solver has to explore.  
In case when each seller offers one unit price, the 
solution is achieved very quickly. 
Theorem 1: Let us assume that the quantities creating 
the optimal solution {qi}i=1,..,n satisfy the following 
conditions: 

∀i: qi ∈[ i
xi

l , i
xi

h ] (10) 

where ∀i, xi∈[0,k], i
xi

l =ai
j and i

xi
h =ai

j+1-1 are 
borders of any interval in which the unit price 
provided by Si is constant. Then, the optimal solution 
could be achieved in O(n*logn).  
Proof: First, we deduce the value of the optimal 
solution which minimizes the F value. To simplify, 
we denote unit prices offered by sellers as {p1}i=1,..,n 
(∀i, pi=

i
xi

p ). Let us sort out unit prices from lowest 
to the highest. Let us assume that after sorting 

p1≤p2≤…≤pn (11) 
Let us consider any solution {qi}i=1,..,n. Sequentially, 
let us perform the following operation: 
simultaneously increasing q1 and decreasing qn by 1 
leads to another solution, but clearly with not higher 
F value. Repeat this process until q1 = 1

1xh  or qn = 
n
xn

l . If q1 reaches its top border earlier than qn 
reaches its low border, repeat the same operation 
with q2 and qn; in the opposite case, continue this 
process with q1 and qn-1, until one of them reaches its 
border, etc. Finally, this procedure converts to the 
solution { 1

1xh , 2
2xh  ,…,qr,…, 1

1

−
−

n
xn

l , n
xn

l } where at 
most only one member qr is not a border value. It is 
easy to prove that the final solution has the lowest F 
value among all possible configurations, in which the 
quantities {qi}i=1,..,n satisfy the conditions presented in 
(10).  The member qr divides the final solution into 
two parts; the left part consists of (r-1) top boundary 
values of intervals in which the unit price is lower 
than or equal to pr; and the right part consists of (n-r) 
low boundary values of intervals in which the unit 
price is higher than or equal to pr. The value r is 



     

called breakpoint of the solution. In order to get the 
solution, it suffices to identify the value of 
breakpoint r. 
Define the function  

f(z)= ∑
=

z

i

i
xi

h
1

+ ∑
+=

n

zi

i
xi

l
1

where z∈ [0,n]. (12) 

Because qr ∈ [ r
xr

l , r
xr

h ], it follows:  

f(r-1)≤ ∑
−

=

1

1

r

i

i
x i

h + qr + ∑
+=

n

ri

i
x i

l
1

= Q≤ f(r) (13) 

(13) points out that to find the value r, which divides 
the final solution into two parts, it suffices to 
compare the values f(z) and f(z-1) with Q, until 
inequalities (13) are satisfied. Because f(z) is an 
increasing function in the interval [0,n], it is possible 
to find the value r, which satisfies inequalities (13) 
with ≅ O(logn). On the other hand, sorting unit prices 
{pi}i=1,..,n requires O(n*logn) operations. That fact 
leads to the conclusion that an optimal solution with 
known unit prices (or domain of quantities) requires 
O(n*logn) operations. The theorem is proved.  
Theorem 1 shows a uniform approach to achieve the 
optimal solution with O(n*logn); however, on the 
assumption that each seller offers only one unit price. 
In order to achieve the optimal solution, all 
configurations of unit prices (or quantities domains 
satisfying (10)) must be explored. Although the 
number of possible configurations is very large, 
many of them could be omitted by using the 
following lemmas. 
Lemma 2: Let us assume that quantities {qi}i=1,..,n 
satisfy the condition in (10). A solution (not 
necessarily the optimal one) exists if and only if: 

∑ =

n

i
i
x i

l
1

 ≤Q≤∑ =

n

i
i
x i

h
1

 (14) 
Proof: =>) if any solution exists, then  

∑ =

n

i
i
xi

l
1

 ≤∑ =

n

i iq
1

=Q≤∑ =

n

i
i
xi

h
1

. 

<=) if the conditions in (14) are valid. Set ∀i: qi = 
i
xi

l  and define the variable f= ∑ =

n

i iq
1

. Sequentially 

do the cycle i=1, qi=qi+1, update the value f, and 
continue until qi=

i
xi

h . Increase i=i+1 and repeat the 
above cycle, until i=n. It is clear that the value f 
increases by 1 after each operation, from starting 
∑ =

n

i
i
x i

l
1

 up to ∑ =

n

i
i
x i

h
1

. As a result, there must be a 

case when f=Q, i.e. there must be {qi}i=1,..,n such that 
∑ =

n

i iq
1

=Q. The lemma is proved.  

To simplify, in following Lemmas 3 and 4 we 
assume that quantities {qi}i=1,..,n satisfy the conditions 
in (10) and (14). In addition, {pi}i=1,..,n denote the unit 
prices offered by sellers, i.e. ∀i, pi=

i
xi

p ; and the 
approach presented in the proof of Theorem 1 is used 
to construct a final solution. These lemmas show the 
needed conditions guaranteeing the optimality of the 
achieved solution. 
Lemma 3: If the achieved solution is the optimal one, 
then one of the following conditions is valid: 
1. ∑ =

n

i
i
xi

l
1

=Q (15) 

or 

∑ =

n

i
i
xi

h
1

=Q 

and j
x j

h =aj
k where pj = min{pi}i=1,..,n 

(16) 

 
2. ∑ =

n

i
i
xi

l
1

≤Q≤∑ =

n

i
i
xi

l
1

- j
x j

l + j
x j

h  (17) 

where pj=min{pi}i=1,..,n, or 

∑ =

n

i
i
xi

h
1

≥Q≥ ∑ =

n

i
i
xi

h
1

- t
xt

h + t
xt

l  

and j
x j

h =aj
k 

(18) 

where pt = max{pi}i=1,..,n, pj= min{pi}i=1,..,n, 
3. j

x j
h =aj

k (maximal possible amount that Sj can 

provide), where pj=min{pi}i=1,..,n.  
Proof: The approach presented in the proof of 
Theorem 1 could lead to one of the following 
situations:  
1. f(0)=Q or f(n) =Q, i.e. ∀i, qi = i

xi
l  or qi = i

xi
h . 

Consequently, either(15) or (16) will be valid. 
2. f(0)<Q≤f(1), that means the solution consists of 
one quantity j

x j
h ≥qj>

j
x j

l  where pj=min{pi}i=1,..,n and 

all low borders of the rest of quantities, i.e. qi|i≠j = 
i
xi

l . In this case, equation (17) will be valid. 
Similarly it is provable that equation (18) will be 
valid in case when f(n-1)≤Q<f(n).  
The proof of the second part of (16) and (18) is based 
on the same approach as presented below. 
3. f(r-1)<Q≤f(r), where n-1≥r≥2. Since f(1)<Q, there 
must be at least one qj which has top border value, 
i.e. qj = j

x j
h , where pj=min{pi}i=1,..,n and another qs 

which is larger than its low border value, i.e. 
s
xs

h ≥qs>
s
xs

l (ps could be the second lowest unit price 
following pj). If qj<aj

k(the maximal possible amount 
provided by seller Sj), then qj increases and 
simultaneously qs decreases by 1, i.e. qj=qj+1 and 
qs=qs-1,  the  unit price ps does not change (due to 
new qs≥

s
xs

l ), but the unit price offered by seller Sj is 
now lower, i.e. pj

’<pj. The payment for seller Sj 
increases by not more than pj

’; on the other hand, the 
payment for seller Ss decreases by ps, where ps≥pj> 
pj

’. As a result, the new solution will have lower total 
payment than the original one. That contradicts the 
given assumption which says the achieved solution is 
the optimal one. The lemma is proved.  

Lemma 4: ∀i∈[1,n], xi∈[1,k], we then  
i
xi

∆ = i
xi

l i
xi

p -( i
xi

l -1) i
xi

p 1−  (19) 
If the achieved solution is the optimal one, then 

pmin ≥ max{ i
xi

∆ }i=1,..,n (20) 
where pmin is defined as the minimal unit price of all 
sellers, whose top border i

xi
h  is not the maximal 

amount (or the unit price is not the lowest one) that 
this seller can offer: 

pmin= min{pi|
i
xi

h <ai
k} (21) 



     

To prove this lemma, the following proposition is 
needed.  
Proposition 1: Consider any seller Si, the bought 
quantity is qi corresponding to unit price p(qi). If the 
quantity increases by 1 unit, the payment for this 
seller does not increase more than p(qi+1).  
Proof: The additional payment when the quantity 
increases by 1 unit is  

∆=(qi+1)p(qi+1) - qip(qi) (22) 
From (2) and (4), p(qi+1)≤ p(qi). As a result,  

∆= p(qi+1)+qi[p(qi+1) - p(qi)] ≤ p(qi+1). (23) 
The proposition is valid.  
Proof of Lemma 4: Without loss of generality, assume 
that p1≤p2≤…≤pn. The final solution has the form 
{ 1

1xh , 2
2xh  ,…,qr,…, 1

1

−
−

n
xn

l , n
x n

l }, where there is 
maximally one qr which is not a border value, i.e.  

r
x r

l <qr< r
x r

h  and ∀i∈[1,r-1]: qi= i
x i

h ; ∀i∈[r+1,n]: 
qi= i

x i
l . By applying the same approach as in the proof 

of Lemma 3, Point 3, it is possible to prove that: 
1. if qr> r

xr
l , then ∀i=1,..,r-1: i

xi
h =ai

k; 

2. if qr= r
xr

l , then ∀i=1,..,r-2: i
xi

h =ai
k; 

If case 1 occurs, two situations have to be considered: 
(1.a) r

x r
h <ar

k, and (1.b) r
x r

h =ar
k.  

(1.a): it is clear that pr=pmin; then we will show that  
∀i=r+1,..,n: pr≥ i

xi
∆  (24) 

Let us take away one unit from any qi|i=r+1,..,n and add 
one 1 unit to qr. According to Proposition 1, the 
additional payment for seller Sr is not more than the 
unit price that Sr offers for quantity (qr+1), so it is not 
more than pr. On the other hand, the reduction of the 
payment for seller Si is equal to i

xi
∆ . Due to the 

assumption that the achieved solution is the optimal 
one, the total payment for new configuration must not 
be lower than the original one. Consequently, 
∀i∈[r+1,n]: i

xi
∆ ≤pr, or (24) is valid. Applying 

Proposition 1 to a situation when qi= i
x i

l -1, the 
following result is achieved: 

∀i, i
xi

∆ ≤ i
xi

p . (25) 
Since p1≤p2≤ …≤pr, we get: 

∀i=1,..,r: i
x i

∆ ≤pr (26) 
By combining (24) and (26), (20) is achieved.  
 (1.b): in this case pmin = pr+1. By using the same 
approach as above (increasing qr+1 and decreasing any 
qi|i=r+2,..,n by 1), (20) will be achieved. 
Case 2 is similar to case 1.b, so the proof is omitted.  
Lemmas 3 and 4 are useful for checking the 
optimality of the achieved solution, before the solving 
process is started. Considerable time needed for 
solving can thus be reduced. 
 
 

5. AN ALGORITHM FOR SOLVING 
 
In this section the algorithm to solve the introduced 
problem is described. It is built on the basis of the 
lemmas presented in Section 4. 

Algorithm for finding the optimal solution – Branch-
and-Bound with Restriction (BBR) 
Denote: p0 =min{pi}i=1,..,n, pmin=min{pi|

i
xi

h <ai
k}, 

amin=min{ai
k}i=1,..,n, num_low_value = the number of 

interval where i
xi

h ≤amin/2, level is the number of the 
first selected seller (to avoid  redundant search), 

L= ∑ =

n

i
i
xl1

, H=∑ =

n

i
i
xi

h
1

, Fopt=min{F}, 

∀i∈[1,n], Ωi ={[li
j,hi

j]}j=1,..,k, i.e. a set of intervals in 
which value qi could be. 

1. initially, L=0,H=0, p0=∞, pmin=∞, Fopt=∞, 
num_low_value=0, level =1,  

2. i=level,  
3. if Ωi≠{∅}, take any interval [ i

xi
l , i

xi
h ] from Ωi 

and remove it from Ωi, otherwise i=i+1, if i<n, 
4. update num_low_value; if num_low_value>1, 

then i=i-1 and return to 3,  
5. update L and H, p0 and pmin, 
6. check the validation of (14) 

a. if L≤Q≤H  go to 8,  
b. if H<Q  i=i+1 and return to 3,  
c. if L>Q  i=i–1and return to 3, 

7. check the conditions from Lemmas 3 and 4 
a. if all conditions are satisfied  go to 8, 
b. if not, i=i–1 and return to 3, 

8. apply the approach presented in Theorem 1 to 
find the final solution; update value F, 

9. if i>level, i=i -1 and return to 3, 
10. if i=level and Ωi ={∅}, then level = level+1, and 

return to 2, until level=n. 

As described in the algorithm’s label, the proposed 
algorithm is built in the branch-and-bound principle. 
Before realizing the final phase – finding values of 
quantities with given domains, a number of 
conditions are checked. The purpose is to avoid 
exploring useless cases. After any solution 
satisfying all necessary conditions presented in 
Lemmas 3 and 4 is achieved, the solver returns to 
the previous state and takes another unselected one 
to continue.  

 
 

6. PERFORMANCE ANALYSIS 
 
The algorithm presented above can be used to find 
the optimal solution. Despite many efforts to reduce 
the search space, the number of configurations to be 
examined is large. The kernel of the algorithm is Step 
8, which is solvable in O(n*logn). Consequences 1 
and 2 allow omitting a lot of small intervals from 
seller’s offers. Lemmas 3 and 4 are used to verify the 
optimality conditions of final solutions before 
realizing Step 8. Many candidate configurations are 
reduced because of the conditions derived in Lemma 
3 and 4. On the other hand, the complexity of the 
algorithm is not reduced to linear or pseudo-linear as 
wished. When the number of interval in seller’s 
offers is large, the solving process is lengthy due to a 
large number of configurations. For that reason, 



     

some restrictions have to be added in order to 
achieve the sub-optimal solution in acceptable time. 
The above algorithm will be compared with some 
other algorithms which can be used to find the 
optimal solution too.   
 
 

7. α-PRICE SOLUTION 
 
One of the ways how to make the solving process 
faster is to reduce the dimension of sets Ωi|i=1,..,n , i.e. 
the sets of intervals in which the values qi|i=1,..,n could 
be. Let us denote Ωi

α={[li
j,hi

j]}j=s,..,k, where pi
s≤α, i.e. 

a set of intervals in which the unit price pi is not 
higher than the constant α. The minimal practical 
value that the constant α could have min{pi

k}. The 
achieved solution is called α-price solution, 
concerning the fact that unit price provided by every 
seller is not higher than α. Based on this discussion, 
the following modified algorithm is presented. 
Algorithm for finding α-price solution - Branch-and-
Bound with Restriction 2 (BBR-2): 

1. initially, set α= min{pi
k}, θ is any constant, 

2. calculate all sets Ωi
α|i=1,..,n 

3. call BBR to solve, but all original sets Ωi|i=1,..,n are 
replaced by Ωi

α|i=1,..,n 
4. if any solution is achieved  STOP; otherwise, 

α=α+θ and return to 2. 
The difference between BBR and BBR-2 is that 
smaller sets Ωi

α|i=1,..,n are used to construct the final 
solution. The achieved solution is sub-optimal; 
however, its quality could be assessed by the 
following theorems. 
Theorem 2: Let Fopt and Fα denote the total payment 
of the optimal solution and the solution achieved by 
applying BBR-2 with constant α; then  

Fα/ Fopt ≤α/min{pi
k|i=1,..,n} (27) 

 Proof: ∀i, pi≤α, due to the assumption of finding α-
price solution. Consequently, Fα ≤αQ. On the other 
hand, ∀i, pi ≥ min{pi

k|i=1,..,n}, and then  
Fopt≥Q*min{pi

k|i=1,..,n} =>  
Fopt/min{pi

k|i=1,..,n}≥Q≥ Fα/α. It is easy to derive (27). 
The theorem is proved.  
Theorem 3: BBR-2 is solvable in O(n*logk)+ 
O(n*logn). 
Proof: ∀i, pi

j increases when j moves from 1 to k; 
thus, let us identify maximal coefficient s, so that 
pi

s≤α<pi
s-1 is achievable in O(logk). Calculating all 

sets Ωi
α|i=1,..,n requires maximally O(n*logk) 

operations. The existence of any α-price solution is 
checked by using (14), namely by checking the 
condition  

∑ =

n

i
i
si

a
1

≤Q≤∑ =

n

i
i
ka

1
, where ∀i, Ωi≠{∅} (28) 

where si is the lowest index, which satisfies i
si

p ≤α. 
This operation is solvable in O(n). When any solution 
is achieved, the algorithm stops; in addition, 
according to Theorem 1, Step 4 is solvable in 

O(n*logn); therefore the BBR-2 algorithm achieves 
any α-price solution in O(n*logk)+ O(n*logn).  
 
 

8. SIMULATION RESULTS AND DISCUSSION 
 
Both described algorithms have been implemented in 
C++ and verified in many examples with real data. 
All experiments have been tested in the same PC 
with processor P3, 766 MHz. To verify the 
performance of the described algorithms, the A* 
search algorithm [Kumar et al., 1994] is chosen to 
compare with BBR. A* is selected because it can be 
used to find the optimal solution. Another algorithm 
presented in [Dang & Jennings, 2002] with the 
purpose to find sub-optimal solution is selected to 
compare with BBR-2. This algorithm is based on the 
principle similar to the best-first search algorithm 
[Kumar et al., 1994], so we will denote it as BFS. 
In experiments, the number of sellers is set by 50, 
and the number of intervals in each offer is from 20 
to 40, (k∈[20,40]). Each seller can offer maximally 
from 104 up to 4*104 units (ai

k is randomly selected 
from [104, 4*104]) and the demand Q∈[104,5*105]. 
The simulation results are shown in Table 1.  
In Table1, Q represents the desired demand; next two 
columns show the performance of BBR and A* 
algorithm in seconds. Fopt is the total payment of the 
optimal solution (the really lowest payment); 
λ=max{Fsub/Fopt} is the coefficient used to predict the 
area where the optimal solution could be, based on 
the results achieved by applying each proposed 
algorithm. Fα denotes the results of BBR-2. Columns 
Fsub/Fopt (%) and Fα/Fopt (%) express the ratio 
between the sub-optimal and the optimal solution in 
percentage. Running time of both the algorithms 
BBR-2 and BFS are shown in the columns “running 
time” and they are given in milliseconds. 
The achieved results point out that BBR is applicable 
for situations when a small number of sellers can 
satisfy the desired demand. Using the derived 
theoretical results reduces the solution space several 
times; BBR is about 10 times faster than A* 

algorithm, however, it is not sufficient for more 
complicated situations. For larger cases, in which the 
solver has to explore configurations consisting of 
more than 10 from 50 existing sellers, in order, BBR 
seems not to be a practical approach to get the 
desired demand.  
On the other hand, BBR-2 and BFS achieved of 
average quality solutions, but required only little time 
for realization. The sub-optimal solutions achieve 
about 102% of the really optimal one. In many 
experiments BBR-2 achieved better results than BFS, 
mainly in such cases when seller’s offers have 
significantly different distribution of unit prices and 
lengths of intervals. When seller’s offers are close 
one to another (i.e. the distribution of unit prices and 
the dimension of intervals are relatively equal in each 
offer), both algorithms achieved equivalent results. 
BFS is somewhat faster, because it always takes the 
best branch to continue the search. On the other 



     

hand, it has to be mentioned that BBR-2 requires a 
lot of time to generate sets {Ωi}i=1,..,n and it explores 
many redundant configurations that were not 
solutions in previous cycles. To avoid redundant 
exploring, each examined configuration could be 
indicated, but this requires considerable memory for 
storage. BBR-2 is clearly better than BFS regarding 
the prediction of the range of the optimal solution. 
BFS predicts that the optimal solution might have F 
value in the range of: [Fsub/50, Fopt], (50 is the 
number of sellers); to compare, BBR-2 predicts more 
precisely the range of the optimal solutions’ value. 
BBR-2 prediction is between [Fsub/1,1, Fsub] bounds. 
From practical point of view, applying BBR-2 gives 
a better chance to assess the total payment that the 
buyer minimally can pay; it is an important factor in 
decision making during negotiation when the time 
for calculating is limited. 
To compare BBR-2 and BFS, a number of 
experiments were made. The achieved results 
confirmed that both algorithms are comparable as to 
the achieved solution. However, BBR-2 is better 
when sellers have different supplies with different 
distribution of unit prices. In Table 2 some selected 
results are given, which show the differences 
between both algorithms applied for the above 
mentioned cases. The coefficient of prediction that 
BBR-2 can achieve is much better than BFS. That 
means the actually optimal solution is very close to 
the solution achieved by applying BBR-2. 
 

Table 2: comparison between BBR-2 and BFS 
 

BBR 2 BFS 
Q 

(104) Fα/Fopt 
(%) λ 

run 
time 
(ms) 

Fsub/Fopt 
(%) λ 

run 
time 
(ms) 

2,776 100,00 1,03 65 101,42 50 20 
3,689 100,11 1,03 71 100,65 50 14 
4,592 100,18 1,03 51 100,52 50 14 
5,489 100,07 1,03 84 100,14 50 19 
6,821 100,00 1,00 34 101,04 50 23 
7,278 100,40 1,03 108 100,34 50 18 

 
Although the real number of suppliers might not be 
as high as assumed in simulated experiments, but 
applying BBR and BBR-2 allows predicting the 
minimal cost of the goods what the manufactory 
should pay. That result allows minimizing the 
production cost of products, and increases the 
manufactory’s concurrent abilities.  

9. CONCLUSSION 
 
In this paper, two algorithms (BBR and BBR-2) have 
been presented to solve the “reverse auction” 
problem with single item for trading. In the BBR 
algorithm, the solution space is reduced many times 
by using consequences of a number of derived 
theoretical results. The global solution is achievable 
for some classes of cases in acceptable time. For 
more complicated cases, the heuristic BBR-2 
algorithm is proposed. It is a simpler version of BBR 
when only a part of seller’s offers is considered for 
calculation. The BBR-2 algorithm has pseudo-linear 
complexity and it is realizable for large cases with 
many sellers and the desired demand. In addition, it 
has much better predicted range of the optimal 
solution’s value than the BFS algorithm.  
The objective for our future research is to extend the 
BBR and BBR-2 algorithm to solve the “reverse 
auction” problem with multi-item trading.   
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Table 1: Simulation results and comparison between BBR and A*, BBR-2 and BFS. 
 

BBR 2 BFS Q 
(104) 

BBR - 
running 
time (s) 

A* - running 
time (s) 

Fopt 
(monetary 

unit) Fα/Fopt (%) λ Running 
time (ms) Fsub/Fopt (%) λ running 

time (ms) 
1,5 0,6 0,8 112500 101,33% 1,06 118 100,98% 50 18 
2 0,217   0,46 143800 100,14% 1,00 16 100,14% 50 10 

2,5 7,16 12,45 184500 100,49% 1,06 103 100,16% 50 15 
3 6,38 16,71 214800 100,56% 1,00 30 100,56% 50 8 
4 26,89 56,87 286400 100,56% 1,00 23 100,56% 50 6 
5 132,51 2156,9 360000 100,00% 1,03 80 100,00% 50 14 
6 547,95 4577,4 431200 100,19% 1,00 62 100,19% 50 11 
8 1882,1 13543,8 574400 100,28% 1,06 105 100,28% 50 10 
10 14413,5 232561,8 720000 100,00% 1,06 142 100,00% 50 29 




