

NEW ALGORITHMS FOR SOLVING SINGLE-ITEM REVERSE AUCTION

Dang Thanh Tung(1), Baltazár Frankovič(1), Con Sheahan(2), Ivana Budinská(1)

(1) Institute of informatics, Slovak Academy of Sciences, Dubravska 9, Bratislava 84507, Slovakia
(2) Dept. Of Manufacturing & Operations Eng., University of Limerick, Limerick, Ireland.

Email: utrrtung@savba.sk

Abstract: This paper deals with the “reverse auction” problem with an assumption sellers
are willing to offer quantity discounts to the buyer. The objective of the buyer is to find
such an allocation of quantities that one should buy from each seller, in order to pay as
little as possible for the given amount of any product. Two algorithms are presented to
solve the introduced problem. The first algorithm is able to find the global optimal
solution, although only for some classes of cases. The second algorithm has pseudo-linear
complexity and it achieves sub-optimal solutions within predictable range of the optimal
one. Copyright © 2005 IFAC

Keywords: Agents, heuristic search, optimization, auction.

1. INTRODUCTION

This paper deals with the problem called “reverse
auction”, in which one buyer and many sellers
participate in trading. The objective of the buyer is to
buy a certain amount of products with as low cost as
possible from the candidate sellers. On the other
hand, sellers are competitive with each other and
therefore they might try to offer various kinds of
advantages. One of the most used methods is to offer
the discount unit price for buying larger amount of
products. The offer that each seller sends to the buyer
usually includes these discount prices and
corresponding conditions – i.e. the minimal amount
that the buyer should buy, in order to get this
discount price. From a number of such offers, the
buyer makes a choice and distributes the amount of
products that he/she wants to buy from each seller so
that the total payment would be minimal.
The buyer decides for his/her own benefits, so the
amounts of products or the unit prices that he/she is
willing to pay do not have to be equal for all sellers.
The problem solving could be drastically simplified
if the buyer does not discriminate the sellers and
agrees to buy the same amount or to pay the same
unit price to each seller.

Due to the fact that the offer of each seller is usually
a discrete function and the amount of products the
buyer can buy is an integer value, solving the
introduced optimization problem is usually based on
using heuristic search methods. In this paper, two
algorithms will be presented to solve the above
problems with some specified simplifications.

2. LITERATURE OVERVIEW

The reverse auction problem has been dealt in many
papers, e.g. (Gonen & Lehmann, 2000), (Sandholm,
et. al, 2002), (Sandholm and Suri, 2002). Many real
cases are realized, for example, in
http://reverse.interauct.com.sg/. However, (Sandholm
et al. 2002) showed that in certain variants even
finding a feasible solution is NP-complete. For a
special case, when the price function is linear,
(Sandholm and Suri, 2002) proposed a polynomial
algorithm to solve. [Dang & Jennings, 2002] is
closest to this work, in which an algorithm with
O(n2) was presented to find sub-optimal solution
within predictable range. The coefficient of
prediction seems too high; essentially it increases
exponentially when the problem solving is multi-item

trading. For that reason, the focus is to propose a new
algorithm that is able to find a solution in polynomial
time but with better estimated coefficient (closer to
the really optimal solution). Before starting the
discussion, some assumptions should be presented, in
order to simplify the solving problem.
Assumption 1: The unit price does not increase when
the bought quantity increases.
Assumption 2: The total payment does not decrease
when the bought quantity increases.
These assumptions are based on the reality, because
sellers usually tend to decrease a unit price when
someone buys larger amount of product. In addition,
sellers do not want to loose, thus, the total payment
should not decrease, even though the bought amount
increases.

3. SINGLE ITEM FOR TRADING

The problem solving could be described as follows:
given n sellers {Si}i=1,.,n and one buyer B; the
objective is that the buyer is to buy Q (Q∈N) units of
one product with as low cost as possible. Each offer
provided by seller Si includes k pairs {ai

j, pi
j}j=1,..,k,

which express the price per one unit and the minimal
amount to be bought in order to apply this price. For
all offers the following condition is valid:

∀i: ai
1=0 and ai

k≤Q. (1)
Let us denote pi(q) as a unit price that seller Si offers
if the bought quantity is equal to q; then, based on
Assumption 1,

∀i, if q’>q’’ then pi(q’) ≤ pi(q’’). (2)
Applying this condition to the given case we get:

∀i,j: pi(ai
j)>pi(ai

j+1). (3)
Additionally, on the basis of Assumption 2, the
following condition is derived:

∀i, if q’>q’’ then q’pi(q’) ≥q’’pi(q’’). (4)
Let {q1,…,qn} be a vector of quantities that the buyer
buys from each seller; then

∑ =

n

i iq
1

=Q. (5)
The total payment F is equal to

F= ∑ =

n

i iii qpq
1

)(. (6)
The main goal is to find such a vector of quantities
which minimizes the F value from (6) subject to
condition (5).

4. REDUCTION OF SOLUTION SPACE

First, some proofs are presented with the purpose to
explain the principle of the later-proposed
algorithms.
Let us consider a case with two sellers {S1, S2}. q1
and q2 denote the quantities bought from each
seller,respectively; q1 + q2 = Q and q1 ∈[α1, α2]; q2 ∈
[β1, β2], where

α2 ≥ Q and β2 ≥ Q. (7)
That means both sellers are able to provide the
required amount. Without loss of generality we
assume that p1(Q)≥ p2(Q). From (2) it is easy to get

∀q1, q2: p1(q1)≥ p2(Q) and p2(q2)≥p2(Q) (8)
This leads to the following result:

F = q1p1(q1)+q2p2(q2) ≥Qp2(Q). (9)
Equality occurs when q1=0 and q2=Q. That means the
total payment is minimal when q1=0 and q2=Q.
Similarly, with case p1(Q)< p2(Q). Based on this
proof the following lemma is derived for general case
with many sellers:
Lemma 1: Given any demand Q∈N. If all sellers are
able to provide this demand, then the payment is
minimal when only one seller is selected to buy. �

Consequence 1: Denote amin= min{ai
k}i=1,..,n. The

maximal number of sellers who contribute to the
desired demand Q with minimal total payment is
[2Q/amin]+1.
Consequence 2: There is maximally one value qi,
which is lower than amin/2.
Proof: follows from Lemma 1.
Consequences 1 and 2 are used to restrict the set of
seller’s configurations that the solver has to explore.
In case when each seller offers one unit price, the
solution is achieved very quickly.
Theorem 1: Let us assume that the quantities creating
the optimal solution {qi}i=1,..,n satisfy the following
conditions:

∀i: qi ∈[i
xi

l , i
xi

h] (10)

where ∀i, xi∈[0,k], i
xi

l =ai
j and i

xi
h =ai

j+1-1 are
borders of any interval in which the unit price
provided by Si is constant. Then, the optimal solution
could be achieved in O(n*logn).
Proof: First, we deduce the value of the optimal
solution which minimizes the F value. To simplify,
we denote unit prices offered by sellers as {p1}i=1,..,n
(∀i, pi=

i
xi

p). Let us sort out unit prices from lowest
to the highest. Let us assume that after sorting

p1≤p2≤…≤pn (11)
Let us consider any solution {qi}i=1,..,n. Sequentially,
let us perform the following operation:
simultaneously increasing q1 and decreasing qn by 1
leads to another solution, but clearly with not higher
F value. Repeat this process until q1 = 1

1xh or qn =
n
xn

l . If q1 reaches its top border earlier than qn
reaches its low border, repeat the same operation
with q2 and qn; in the opposite case, continue this
process with q1 and qn-1, until one of them reaches its
border, etc. Finally, this procedure converts to the
solution { 1

1xh , 2
2xh ,…,qr,…, 1

1

−
−

n
xn

l , n
xn

l } where at
most only one member qr is not a border value. It is
easy to prove that the final solution has the lowest F
value among all possible configurations, in which the
quantities {qi}i=1,..,n satisfy the conditions presented in
(10). The member qr divides the final solution into
two parts; the left part consists of (r-1) top boundary
values of intervals in which the unit price is lower
than or equal to pr; and the right part consists of (n-r)
low boundary values of intervals in which the unit
price is higher than or equal to pr. The value r is

called breakpoint of the solution. In order to get the
solution, it suffices to identify the value of
breakpoint r.
Define the function

f(z)= ∑
=

z

i

i
xi

h
1

+ ∑
+=

n

zi

i
xi

l
1

where z∈ [0,n]. (12)

Because qr ∈ [r
xr

l , r
xr

h], it follows:

f(r-1)≤ ∑
−

=

1

1

r

i

i
x i

h + qr + ∑
+=

n

ri

i
x i

l
1

= Q≤ f(r) (13)

(13) points out that to find the value r, which divides
the final solution into two parts, it suffices to
compare the values f(z) and f(z-1) with Q, until
inequalities (13) are satisfied. Because f(z) is an
increasing function in the interval [0,n], it is possible
to find the value r, which satisfies inequalities (13)
with ≅ O(logn). On the other hand, sorting unit prices
{pi}i=1,..,n requires O(n*logn) operations. That fact
leads to the conclusion that an optimal solution with
known unit prices (or domain of quantities) requires
O(n*logn) operations. The theorem is proved.
Theorem 1 shows a uniform approach to achieve the
optimal solution with O(n*logn); however, on the
assumption that each seller offers only one unit price.
In order to achieve the optimal solution, all
configurations of unit prices (or quantities domains
satisfying (10)) must be explored. Although the
number of possible configurations is very large,
many of them could be omitted by using the
following lemmas.
Lemma 2: Let us assume that quantities {qi}i=1,..,n
satisfy the condition in (10). A solution (not
necessarily the optimal one) exists if and only if:

∑ =

n

i
i
x i

l
1

 ≤Q≤∑ =

n

i
i
x i

h
1

 (14)
Proof: =>) if any solution exists, then

∑ =

n

i
i
xi

l
1

 ≤∑ =

n

i iq
1

=Q≤∑ =

n

i
i
xi

h
1

.

<=) if the conditions in (14) are valid. Set ∀i: qi =
i
xi

l and define the variable f= ∑ =

n

i iq
1

. Sequentially

do the cycle i=1, qi=qi+1, update the value f, and
continue until qi=

i
xi

h . Increase i=i+1 and repeat the
above cycle, until i=n. It is clear that the value f
increases by 1 after each operation, from starting
∑ =

n

i
i
x i

l
1

 up to ∑ =

n

i
i
x i

h
1

. As a result, there must be a

case when f=Q, i.e. there must be {qi}i=1,..,n such that
∑ =

n

i iq
1

=Q. The lemma is proved.

To simplify, in following Lemmas 3 and 4 we
assume that quantities {qi}i=1,..,n satisfy the conditions
in (10) and (14). In addition, {pi}i=1,..,n denote the unit
prices offered by sellers, i.e. ∀i, pi=

i
xi

p ; and the
approach presented in the proof of Theorem 1 is used
to construct a final solution. These lemmas show the
needed conditions guaranteeing the optimality of the
achieved solution.
Lemma 3: If the achieved solution is the optimal one,
then one of the following conditions is valid:
1. ∑ =

n

i
i
xi

l
1

=Q (15)

or

∑ =

n

i
i
xi

h
1

=Q

and j
x j

h =aj
k where pj = min{pi}i=1,..,n

(16)

2. ∑ =

n

i
i
xi

l
1

≤Q≤∑ =

n

i
i
xi

l
1

- j
x j

l + j
x j

h (17)

where pj=min{pi}i=1,..,n, or

∑ =

n

i
i
xi

h
1

≥Q≥ ∑ =

n

i
i
xi

h
1

- t
xt

h + t
xt

l

and j
x j

h =aj
k

(18)

where pt = max{pi}i=1,..,n, pj= min{pi}i=1,..,n,
3. j

x j
h =aj

k (maximal possible amount that Sj can

provide), where pj=min{pi}i=1,..,n.
Proof: The approach presented in the proof of
Theorem 1 could lead to one of the following
situations:
1. f(0)=Q or f(n) =Q, i.e. ∀i, qi = i

xi
l or qi = i

xi
h .

Consequently, either(15) or (16) will be valid.
2. f(0)<Q≤f(1), that means the solution consists of
one quantity j

x j
h ≥qj>

j
x j

l where pj=min{pi}i=1,..,n and

all low borders of the rest of quantities, i.e. qi|i≠j =
i
xi

l . In this case, equation (17) will be valid.
Similarly it is provable that equation (18) will be
valid in case when f(n-1)≤Q<f(n).
The proof of the second part of (16) and (18) is based
on the same approach as presented below.
3. f(r-1)<Q≤f(r), where n-1≥r≥2. Since f(1)<Q, there
must be at least one qj which has top border value,
i.e. qj = j

x j
h , where pj=min{pi}i=1,..,n and another qs

which is larger than its low border value, i.e.
s
xs

h ≥qs>
s
xs

l (ps could be the second lowest unit price
following pj). If qj<aj

k(the maximal possible amount
provided by seller Sj), then qj increases and
simultaneously qs decreases by 1, i.e. qj=qj+1 and
qs=qs-1, the unit price ps does not change (due to
new qs≥

s
xs

l), but the unit price offered by seller Sj is
now lower, i.e. pj

’<pj. The payment for seller Sj
increases by not more than pj

’; on the other hand, the
payment for seller Ss decreases by ps, where ps≥pj>
pj

’. As a result, the new solution will have lower total
payment than the original one. That contradicts the
given assumption which says the achieved solution is
the optimal one. The lemma is proved.

Lemma 4: ∀i∈[1,n], xi∈[1,k], we then
i
xi

∆ = i
xi

l i
xi

p -(i
xi

l -1) i
xi

p 1− (19)
If the achieved solution is the optimal one, then

pmin ≥ max{ i
xi

∆ }i=1,..,n (20)
where pmin is defined as the minimal unit price of all
sellers, whose top border i

xi
h is not the maximal

amount (or the unit price is not the lowest one) that
this seller can offer:

pmin= min{pi|
i
xi

h <ai
k} (21)

To prove this lemma, the following proposition is
needed.
Proposition 1: Consider any seller Si, the bought
quantity is qi corresponding to unit price p(qi). If the
quantity increases by 1 unit, the payment for this
seller does not increase more than p(qi+1).
Proof: The additional payment when the quantity
increases by 1 unit is

∆=(qi+1)p(qi+1) - qip(qi) (22)
From (2) and (4), p(qi+1)≤ p(qi). As a result,

∆= p(qi+1)+qi[p(qi+1) - p(qi)] ≤ p(qi+1). (23)
The proposition is valid.
Proof of Lemma 4: Without loss of generality, assume
that p1≤p2≤…≤pn. The final solution has the form
{ 1

1xh , 2
2xh ,…,qr,…, 1

1

−
−

n
xn

l , n
x n

l }, where there is
maximally one qr which is not a border value, i.e.

r
x r

l <qr< r
x r

h and ∀i∈[1,r-1]: qi= i
x i

h ; ∀i∈[r+1,n]:
qi= i

x i
l . By applying the same approach as in the proof

of Lemma 3, Point 3, it is possible to prove that:
1. if qr> r

xr
l , then ∀i=1,..,r-1: i

xi
h =ai

k;

2. if qr= r
xr

l , then ∀i=1,..,r-2: i
xi

h =ai
k;

If case 1 occurs, two situations have to be considered:
(1.a) r

x r
h <ar

k, and (1.b) r
x r

h =ar
k.

(1.a): it is clear that pr=pmin; then we will show that
∀i=r+1,..,n: pr≥ i

xi
∆ (24)

Let us take away one unit from any qi|i=r+1,..,n and add
one 1 unit to qr. According to Proposition 1, the
additional payment for seller Sr is not more than the
unit price that Sr offers for quantity (qr+1), so it is not
more than pr. On the other hand, the reduction of the
payment for seller Si is equal to i

xi
∆ . Due to the

assumption that the achieved solution is the optimal
one, the total payment for new configuration must not
be lower than the original one. Consequently,
∀i∈[r+1,n]: i

xi
∆ ≤pr, or (24) is valid. Applying

Proposition 1 to a situation when qi= i
x i

l -1, the
following result is achieved:

∀i, i
xi

∆ ≤ i
xi

p . (25)
Since p1≤p2≤ …≤pr, we get:

∀i=1,..,r: i
x i

∆ ≤pr (26)
By combining (24) and (26), (20) is achieved.
 (1.b): in this case pmin = pr+1. By using the same
approach as above (increasing qr+1 and decreasing any
qi|i=r+2,..,n by 1), (20) will be achieved.
Case 2 is similar to case 1.b, so the proof is omitted.
Lemmas 3 and 4 are useful for checking the
optimality of the achieved solution, before the solving
process is started. Considerable time needed for
solving can thus be reduced.

5. AN ALGORITHM FOR SOLVING

In this section the algorithm to solve the introduced
problem is described. It is built on the basis of the
lemmas presented in Section 4.

Algorithm for finding the optimal solution – Branch-
and-Bound with Restriction (BBR)
Denote: p0 =min{pi}i=1,..,n, pmin=min{pi|

i
xi

h <ai
k},

amin=min{ai
k}i=1,..,n, num_low_value = the number of

interval where i
xi

h ≤amin/2, level is the number of the
first selected seller (to avoid redundant search),

L= ∑ =

n

i
i
xl1

, H=∑ =

n

i
i
xi

h
1

, Fopt=min{F},

∀i∈[1,n], Ωi ={[li
j,hi

j]}j=1,..,k, i.e. a set of intervals in
which value qi could be.

1. initially, L=0,H=0, p0=∞, pmin=∞, Fopt=∞,
num_low_value=0, level =1,

2. i=level,
3. if Ωi≠{∅}, take any interval [i

xi
l , i

xi
h] from Ωi

and remove it from Ωi, otherwise i=i+1, if i<n,
4. update num_low_value; if num_low_value>1,

then i=i-1 and return to 3,
5. update L and H, p0 and pmin,
6. check the validation of (14)

a. if L≤Q≤H go to 8,
b. if H<Q i=i+1 and return to 3,
c. if L>Q i=i–1and return to 3,

7. check the conditions from Lemmas 3 and 4
a. if all conditions are satisfied go to 8,
b. if not, i=i–1 and return to 3,

8. apply the approach presented in Theorem 1 to
find the final solution; update value F,

9. if i>level, i=i -1 and return to 3,
10. if i=level and Ωi ={∅}, then level = level+1, and

return to 2, until level=n.

As described in the algorithm’s label, the proposed
algorithm is built in the branch-and-bound principle.
Before realizing the final phase – finding values of
quantities with given domains, a number of
conditions are checked. The purpose is to avoid
exploring useless cases. After any solution
satisfying all necessary conditions presented in
Lemmas 3 and 4 is achieved, the solver returns to
the previous state and takes another unselected one
to continue.

6. PERFORMANCE ANALYSIS

The algorithm presented above can be used to find
the optimal solution. Despite many efforts to reduce
the search space, the number of configurations to be
examined is large. The kernel of the algorithm is Step
8, which is solvable in O(n*logn). Consequences 1
and 2 allow omitting a lot of small intervals from
seller’s offers. Lemmas 3 and 4 are used to verify the
optimality conditions of final solutions before
realizing Step 8. Many candidate configurations are
reduced because of the conditions derived in Lemma
3 and 4. On the other hand, the complexity of the
algorithm is not reduced to linear or pseudo-linear as
wished. When the number of interval in seller’s
offers is large, the solving process is lengthy due to a
large number of configurations. For that reason,

some restrictions have to be added in order to
achieve the sub-optimal solution in acceptable time.
The above algorithm will be compared with some
other algorithms which can be used to find the
optimal solution too.

7. α-PRICE SOLUTION

One of the ways how to make the solving process
faster is to reduce the dimension of sets Ωi|i=1,..,n , i.e.
the sets of intervals in which the values qi|i=1,..,n could
be. Let us denote Ωi

α={[li
j,hi

j]}j=s,..,k, where pi
s≤α, i.e.

a set of intervals in which the unit price pi is not
higher than the constant α. The minimal practical
value that the constant α could have min{pi

k}. The
achieved solution is called α-price solution,
concerning the fact that unit price provided by every
seller is not higher than α. Based on this discussion,
the following modified algorithm is presented.
Algorithm for finding α-price solution - Branch-and-
Bound with Restriction 2 (BBR-2):

1. initially, set α= min{pi
k}, θ is any constant,

2. calculate all sets Ωi
α|i=1,..,n

3. call BBR to solve, but all original sets Ωi|i=1,..,n are
replaced by Ωi

α|i=1,..,n
4. if any solution is achieved STOP; otherwise,

α=α+θ and return to 2.
The difference between BBR and BBR-2 is that
smaller sets Ωi

α|i=1,..,n are used to construct the final
solution. The achieved solution is sub-optimal;
however, its quality could be assessed by the
following theorems.
Theorem 2: Let Fopt and Fα denote the total payment
of the optimal solution and the solution achieved by
applying BBR-2 with constant α; then

Fα/ Fopt ≤α/min{pi
k|i=1,..,n} (27)

 Proof: ∀i, pi≤α, due to the assumption of finding α-
price solution. Consequently, Fα ≤αQ. On the other
hand, ∀i, pi ≥ min{pi

k|i=1,..,n}, and then
Fopt≥Q*min{pi

k|i=1,..,n} =>
Fopt/min{pi

k|i=1,..,n}≥Q≥ Fα/α. It is easy to derive (27).
The theorem is proved.
Theorem 3: BBR-2 is solvable in O(n*logk)+
O(n*logn).
Proof: ∀i, pi

j increases when j moves from 1 to k;
thus, let us identify maximal coefficient s, so that
pi

s≤α<pi
s-1 is achievable in O(logk). Calculating all

sets Ωi
α|i=1,..,n requires maximally O(n*logk)

operations. The existence of any α-price solution is
checked by using (14), namely by checking the
condition

∑ =

n

i
i
si

a
1

≤Q≤∑ =

n

i
i
ka

1
, where ∀i, Ωi≠{∅} (28)

where si is the lowest index, which satisfies i
si

p ≤α.
This operation is solvable in O(n). When any solution
is achieved, the algorithm stops; in addition,
according to Theorem 1, Step 4 is solvable in

O(n*logn); therefore the BBR-2 algorithm achieves
any α-price solution in O(n*logk)+ O(n*logn).

8. SIMULATION RESULTS AND DISCUSSION

Both described algorithms have been implemented in
C++ and verified in many examples with real data.
All experiments have been tested in the same PC
with processor P3, 766 MHz. To verify the
performance of the described algorithms, the A*
search algorithm [Kumar et al., 1994] is chosen to
compare with BBR. A* is selected because it can be
used to find the optimal solution. Another algorithm
presented in [Dang & Jennings, 2002] with the
purpose to find sub-optimal solution is selected to
compare with BBR-2. This algorithm is based on the
principle similar to the best-first search algorithm
[Kumar et al., 1994], so we will denote it as BFS.
In experiments, the number of sellers is set by 50,
and the number of intervals in each offer is from 20
to 40, (k∈[20,40]). Each seller can offer maximally
from 104 up to 4*104 units (ai

k is randomly selected
from [104, 4*104]) and the demand Q∈[104,5*105].
The simulation results are shown in Table 1.
In Table1, Q represents the desired demand; next two
columns show the performance of BBR and A*
algorithm in seconds. Fopt is the total payment of the
optimal solution (the really lowest payment);
λ=max{Fsub/Fopt} is the coefficient used to predict the
area where the optimal solution could be, based on
the results achieved by applying each proposed
algorithm. Fα denotes the results of BBR-2. Columns
Fsub/Fopt (%) and Fα/Fopt (%) express the ratio
between the sub-optimal and the optimal solution in
percentage. Running time of both the algorithms
BBR-2 and BFS are shown in the columns “running
time” and they are given in milliseconds.
The achieved results point out that BBR is applicable
for situations when a small number of sellers can
satisfy the desired demand. Using the derived
theoretical results reduces the solution space several
times; BBR is about 10 times faster than A*

algorithm, however, it is not sufficient for more
complicated situations. For larger cases, in which the
solver has to explore configurations consisting of
more than 10 from 50 existing sellers, in order, BBR
seems not to be a practical approach to get the
desired demand.
On the other hand, BBR-2 and BFS achieved of
average quality solutions, but required only little time
for realization. The sub-optimal solutions achieve
about 102% of the really optimal one. In many
experiments BBR-2 achieved better results than BFS,
mainly in such cases when seller’s offers have
significantly different distribution of unit prices and
lengths of intervals. When seller’s offers are close
one to another (i.e. the distribution of unit prices and
the dimension of intervals are relatively equal in each
offer), both algorithms achieved equivalent results.
BFS is somewhat faster, because it always takes the
best branch to continue the search. On the other

hand, it has to be mentioned that BBR-2 requires a
lot of time to generate sets {Ωi}i=1,..,n and it explores
many redundant configurations that were not
solutions in previous cycles. To avoid redundant
exploring, each examined configuration could be
indicated, but this requires considerable memory for
storage. BBR-2 is clearly better than BFS regarding
the prediction of the range of the optimal solution.
BFS predicts that the optimal solution might have F
value in the range of: [Fsub/50, Fopt], (50 is the
number of sellers); to compare, BBR-2 predicts more
precisely the range of the optimal solutions’ value.
BBR-2 prediction is between [Fsub/1,1, Fsub] bounds.
From practical point of view, applying BBR-2 gives
a better chance to assess the total payment that the
buyer minimally can pay; it is an important factor in
decision making during negotiation when the time
for calculating is limited.
To compare BBR-2 and BFS, a number of
experiments were made. The achieved results
confirmed that both algorithms are comparable as to
the achieved solution. However, BBR-2 is better
when sellers have different supplies with different
distribution of unit prices. In Table 2 some selected
results are given, which show the differences
between both algorithms applied for the above
mentioned cases. The coefficient of prediction that
BBR-2 can achieve is much better than BFS. That
means the actually optimal solution is very close to
the solution achieved by applying BBR-2.

Table 2: comparison between BBR-2 and BFS

BBR 2 BFS
Q

(104) Fα/Fopt
(%) λ

run
time
(ms)

Fsub/Fopt
(%) λ

run
time
(ms)

2,776 100,00 1,03 65 101,42 50 20
3,689 100,11 1,03 71 100,65 50 14
4,592 100,18 1,03 51 100,52 50 14
5,489 100,07 1,03 84 100,14 50 19
6,821 100,00 1,00 34 101,04 50 23
7,278 100,40 1,03 108 100,34 50 18

Although the real number of suppliers might not be
as high as assumed in simulated experiments, but
applying BBR and BBR-2 allows predicting the
minimal cost of the goods what the manufactory
should pay. That result allows minimizing the
production cost of products, and increases the
manufactory’s concurrent abilities.

9. CONCLUSSION

In this paper, two algorithms (BBR and BBR-2) have
been presented to solve the “reverse auction”
problem with single item for trading. In the BBR
algorithm, the solution space is reduced many times
by using consequences of a number of derived
theoretical results. The global solution is achievable
for some classes of cases in acceptable time. For
more complicated cases, the heuristic BBR-2
algorithm is proposed. It is a simpler version of BBR
when only a part of seller’s offers is considered for
calculation. The BBR-2 algorithm has pseudo-linear
complexity and it is realizable for large cases with
many sellers and the desired demand. In addition, it
has much better predicted range of the optimal
solution’s value than the BFS algorithm.
The objective for our future research is to extend the
BBR and BBR-2 algorithm to solve the “reverse
auction” problem with multi-item trading.

Acknowledgement: This paper is partially supported by
APVT and VEGA grant agencies under grants No APVT
51 011602 and VEGA 2/1101/21.

REFERENCES

Dang, V. D. and Jennings, N. R. (2002): Polynomial
algorithms for clearing multi-unit single item and
multi-unit combinatorial reverse auctions. ECAI-
2002, Lyon, France, 23-27.

Gonen R. and Lehmann D. (2000): Optimal solutions
for multi-unit combinatorial auctions: Branch and
bound heuristics. In ACM Conference on Electronic
Commerce, Minneapolis, MN, 2000, 13–20.

Kumar V., Grama A., Gupta A., and Karypis A.
(1994): Introduction to Parallel Computing. Design
and Analysis of Algorithms. The
Benjamin/Cummings Publishing Company, Inc.,
California, 1994. ISBN 0-8053-3170-0.

Sandholm, T., and Suri, S (2002): Optimal Clearing
of Supply/Demand Curves. In Proceedings of the
13th Annual Int. Symposium on Algorithms and
Computation (ISAAC), Vancouver, Canada, 2002.

Sandholm T., Suri S., Gilpin A., Levine D. (2002):
Winner determination in combinatorial auction
generalizations. In: Int. Conf. on Autonomous
Agents and Multi-Agent Systems (AAMAS),
Bologna, Italy, 2002, 69–76.

Table 1: Simulation results and comparison between BBR and A*, BBR-2 and BFS.

BBR 2 BFS Q
(104)

BBR -
running
time (s)

A* - running
time (s)

Fopt
(monetary

unit) Fα/Fopt (%) λ Running
time (ms) Fsub/Fopt (%) λ running

time (ms)
1,5 0,6 0,8 112500 101,33% 1,06 118 100,98% 50 18
2 0,217 0,46 143800 100,14% 1,00 16 100,14% 50 10

2,5 7,16 12,45 184500 100,49% 1,06 103 100,16% 50 15
3 6,38 16,71 214800 100,56% 1,00 30 100,56% 50 8
4 26,89 56,87 286400 100,56% 1,00 23 100,56% 50 6
5 132,51 2156,9 360000 100,00% 1,03 80 100,00% 50 14
6 547,95 4577,4 431200 100,19% 1,00 62 100,19% 50 11
8 1882,1 13543,8 574400 100,28% 1,06 105 100,28% 50 10
10 14413,5 232561,8 720000 100,00% 1,06 142 100,00% 50 29

