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Abstract: This paper deals with multi-criterion planning problem. Beside traditional 
constraints, we assume that tasks can migrate between resources and they are executable 
by many methods with different results. The random start & forward search algorithm is 
proposed to solve the mentioned problem, in condition, the time for solving is limited.  
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1. INTRODUCTION 

Planning in manufacturing belongs to the category of 
complicated problems. Beside the complication 
caused by the task structure, there are another 
problems related to individual resource’s limitation 
or personal requirements. In addition, the main 
criterion of solving many planning problems is not 
only to find a plan with the minimal production time, 
but also to find such a plan with minimal production 
cost, maximal quality or utilization of each resource, 
etc. This paper focuses on proposing a new method 
for resolving multi-criterion planning problems 
based on heuristic search.   
 

2. PROBLEM DESCRIPTION 

Planning problem in this work is understood as 
follows: There is a set of tasks S0={Task1,..,Taskm}, 
each of them is executable by several alternative 
ways with different results.  
The task structure is specified clearly for each 
planning problem. Each task has a set of predecessor 
and successor tasks, whose execution is associated 
directly with its execution. A task that does not have 
a predecessor (or a successor) is called a starting (or 
ending) task, respectively. Each planning problem 
can have a number of stating and ending tasks. 
Next, there are a number of resources (equivalent or 
different) for executing these tasks. Each task is 
executable in several resources (in a special case, 

each task is executable in whichever resource). Let 
us assume that all tasks are uninterruptible during 
execution and one resource can perform only one 
task at any time.  
For each Task, let us denote Me(Task) as a set of 
executable methods for performing this task. Q(Task, 
method, input) is a multi-optional function {Task × 
method × input_data}  rR  describing the quality 
of the obtained result after executing this Task, by 
using the method method∈Me(Task) and the input 
data input. A variable input involves necessary data 
for executing this task, which might be gathered from 
the external environment or from executions of other 
tasks connected with this one. The set rR  is an r-
dimensional set of real numbers representing r types 
of criteria, which are used to assess a task’s 
execution. Three usual options for assessing a task’s 
execution are cost, duration and quality. Cost of a 
task describes the financial or opportunity cost 
inherent in performing the task. Duration describes 
the amount of time that a method will take to execute 
the task. Quality describes the "goodness" of 
performing the task. Of course, different applications 
have different notions of what corresponds to model 
quality. For example, a quality might include 
accuracy, speed or completeness of a task result, etc.  
Each planning problem is associated with many 
constraints, e.g. deadlines, limited capacities of 
resources, predefined quality, etc. Moreover, in order 
to assess different plans, a common criterion function 



     

is defined. This function is usually multi-parameter 
function and it has not measurement. 
The main objective is to find such a sequence of 
performing given tasks in order to satisfy all defined 
constraints and simultaneously to minimize the 
predefined criterion function. 
 

3. PLANNING AS HEURISTIC SEARCH  

It is known that planning problems could be solved 
by two basic manners. The first kind of methods 
constructs the global plan by successively adding 
new tasks to the already examined part. The initial 
set of tasks is divided into a number of portions and 
in each phase one of these portions is added to the 
already examined set of tasks. This method requires 
recording all intermediate results for future 
calculation. As a result, the process solving requires 
exhausting work and the space demanded for 
backing up information might grow considerably 
when the amount of tasks is great.  
The second manner is to improve the current plan. 
The process starts with any initial plan. In order to 
satisfy required criteria this plan is re-constructed, 
until it satisfies the desired requirements. Here, the 
essential difficulty is in selecting a part of the current 
plan to repair. However, theoretically, not 
necessarily this process brings better solutions. 
Beside that, the complexity of this approach is the 
same as in the previous one, if solver wants to ensure 
the optimality of the achieved solution. The 
difference is this method could provide a solution at 
any time. Therefore, it is appropriate to solve 
problems that do not have fixed deadlines. Due to the 
main advantage of the second method that allows 
providing a final solution at any time, the method 
presented here is built in this principle. 
 
 
4. RANDOM START AND PLAN REPAIRING - A 

GENERAL SCHEME 

The proposed method has three basic stages: The 
first stage chooses a random initial plan for repairing. 
In the second stage, the initial plan is decomposed 
into a number of disjoint sub-plans, and one of them 
is chosen for rescheduling. In the last stage, tasks in 
the selected part are rescheduled to improve the 
current plan. During reorganization, historical data 
can be taken from the database (if they exist) to 
evaluate newly created plans. This cycle continues 
until time expires.  
In general, generating an initial plan could be made 
at random by taking any plan, if the problem solving 
is too complicated. However, the importance is not to 
generate already examined plans.    
In the second stage, the current plan is decomposed 
to a number of disjoint parts. Then, one or several of 
disjoint parts are selected for rescheduling. 
On the basis of predefined constraints the solver 
calculates and chooses parts of the current plan for 
rescheduling (explanation in more can be found in 

Section 5). Of course, there are many different 
constraints, which eventual plans have to satisfy, e.g., 
deadline for the last task of a plan, minimal cost or 
quality. Beside that, there are such constraints that 
are generated from particular task relationships.  
In the last phase (the most important one) the solver 
tries to modify an order of tasks in the selected part, 
with the expectation to achieve a better plan 
(according to the common measure). The solver takes 
the last best-achieved plan as a target for comparison 
with newly created ones.  
Repairing process is an iterative one, in which the 
solver successively modifies an order of each task in 
the selected parts, until all variants are examined or 
plan(s) with the desired parameters is achieved. If 
better results are not achieved, more parts can be 
selected for rescheduling. Repairing process might 
continue to improve the plan’s quality until time 
limitation expires. Plans are selected on the basis of 
the common measurement. A plan quality is 
represented by a vector {z1, z2,..., zr}, where i∈[1,r]|zi  
is one of parameters. Plans could be assessed by a 
coefficient evalu(plan) defined by the following 
equation: 

evalu(plan)= α1z1 +....+αrzr (1) 
or 

evalu(plan)= 22
11 )(...)( rr zz αα ++   (2) 

where α1,..,r≥0 are weights defined by the user, which 
express the priority of each criterion over others in 
selecting final plans; and they satisfy a condition: 

α1+α2+…+αr =1. (3) 
The criterion function evalu(plan) could also be more 
complicated, if the user evaluates each parameter by 
different manners, e.g. the cost might multiply to the 
second degree, but plan time and makespan are 
evaluated by linear combination.   
 
 
5. DECOMPOSITION AND SELECTION FOR 

RESCHEDULING 

The first difficulty is selecting parts of the current 
plan for rescheduling. Let us divide the initial set of 
tasks into two parts: one consists of rescheduled tasks 
(marked as Set_resche) and the second one consists 
of the rest of tasks (marked as Set_irre). Tasks in 
Set_irre have unchanged orders and methods for 
execution during the rescheduling process. Two most 
important criteria for choosing parts for rescheduling 
are time and cost requirement; however, there could 
be more criteria, such as, quality, idle time, etc.  
 
5.1 Selection of parts for rescheduling from the time 
point of view 
 
Let assume that there is a predefined deadline when 
the last task has to be terminated. For each task Taski 
we define: 
− T_mi is minimal duration of its execution (among 

all possible methods for performing this task),  



     

− Ti is duration of this task by using the current 
method, 

− Start_ti, is its start time, End_ti is its termination 
time. 

End_ti = Start_ti +Ti  ≥ Start_ti + T_mi (4) 
Each task has a set of predecessor and successor 
tasks. Denote 
− Taski ⇒ Taskk means Taskk requires results of 

Taski. 
− pre(Taski) is a set of predecessors of Taski: ∀Taskk 

∈ pre(Taski) | Taskk ⇒ Taski . 
− succ(Taski) is a set of successors of Taski: ∀Taskk 

∈ succ(Taski) | Taski ⇒ Taskk . 
− Taski is called a starting task if pre(Taski) is empty; 

and it is the ending task if succ(Taski) is an empty 
set. There might be a number of starting and ending 
tasks - let us denote S_Tasks and E_Tasks as a set 
of starting and ending tasks, respectively.  

− min_durationi denotes minimal time interval from 
start of Taski till end of the last task.  

In the following definitions I present the necessary 
conditions for feasible plans. 
Definition 1: A plan is realizable if the following 
conditions are satisfied for all i, k: 
− if Taski ⇒ Taskk , then Start_ti+T_mi ≤ Start_tk , 
− if [Start_ti ,Start_ti +T_mi]∩[ Start_tk, 

Start_tk+T_mk] # 0 then Taski and Taskk are 
executed in two different resources. � 

For each plan, let us define the parameters Time_end, 
which represent the time when the last task is 
terminated. In order to fulfil the deadline condition, 
an inequality Time_end ≤ Deadline has to be valid. It 
follows: 

Start_ti ≤ Deadline – min_durationi  (5) 
Equation (5) shows out the necessary condition that 
each task has to fulfil in order to keep the specified 
deadline. In other words, Equation (5) specifies the 
latest time when each Taski has to start in order to 
keep a deadline. All tasks that violate this condition 
must be included in the selected part (Set_resche) for 
rescheduling. Here the challenge is how to identify 
the value min_durationi for an arbitrary Taski.  
In this paper we assume that all the resources are not 
equivalent and each task can be executed in only 
several ones of them (a task can be migrated between 
these equivalent resources). For example, a job-shop 
scheduling problem, in which each task could be 
executed in only one type of resources, not in all. In 
order to estimate values min_duration in a general 
case, when all resources are not the same, the 
following method is proposed. 
Genetic Heavy Weight Task (GHWT): let us denote 
last_time as the time when a resource finishes the 
last operation. At the beginning setting last_time = 0 
for each resource. 
- Each resource takes a task with the longest duration 

(T_m), which is executable at this moment by this 
resource. 

- In each turn: choose a resource with a minimal 
last_time. If tasks that are executable in this 
resource exist (with all predecessors already 
assigned), then the one with the longest duration 
(T_m) will be selected for execution, otherwise the 
next resource with the second minimal last_time is 
selected, etc. Record a Start_t and update a value 
last_time by T_m of the newly assigned task. 

- Stop when all tasks are assigned. 
- After constructing a plan, calculate a value 

min_duration for each task as follows:  
min_durationi = Time_end - 

j
min Start_tj + 

T_mi 
(6) 

where Taskj ∈ Succ(Taski) and ∀i=1,..,m values 
Start_ti are stored before.  
It is easy to verify that GHWT has a complexity 
(≅O(m2)), since in each turn the number of tasks that 
this algorithm examines is maximally m. Variables 
min_duration have also another function – they are 
used to estimate the time when a plan finishes. 
 
5.2 Selection of parts for rescheduling from the cost 
point of view 
 
Let us assume that there is a maximal defined cost 
(max_cost) that a plan can have. To simplify we 
propose that an execution cost of each task depends 
on only the method selected for execution. On the 
basis of such assumption the total cost of a plan is 
calculated as the sum of the cost of all tasks 
execution. Let us define: 
- ci is a cost of Taski by using the current method 

for execution. 
- min_ci is the minimal cost of Taski among all 

applicable methods. 
- max_ci is the maximal cost of Taski among all 

applicable methods. 
- total_cost = ∑ci|∀i is the total cost of a plan. 
It is provable that: 

max_cost- ∑
∈ irreSetTask

i
i

c
_

 ≥ ∑
∈ rescheSetTask

i
i

c
_
min_  

(7) 

Equation (7) expresses the necessary condition that 
the selected part of tasks for rescheduling has to 
fulfil. More details could be found in [Dang, 2003]. 
 
 

6. PLAN REPAIRING 

After selecting a part (or several parts) of tasks for 
rescheduling, repairing process is started. Starting 
with the unchanged part of the initial plan, step-by- 
step the solver adds a number of tasks from part 
Set_resche to a plan. The best-first search method is 
used to find the best intermediate plan, but with some 
modifications (to be explained later). This process 
continues until all tasks from set Set_resche are 
added to the plan.  
 
6.1 Forward search applied in plan repairing 
 



     

The main idea of forward search (FS) is explained as 
follows: Starting with a plan that is constructed of 
tasks from Set_irre(called Part 1), solver tries to 
explore all possible neighboring sub-plans, which 
could be created by adding some tasks from set 
Set_resche to Part 1. It is similar to the best-first 
search method (BFS); the difference is that, in order 
to increase the quality of eventual plans, first 
performs a branch-and-bound search to a certain 
depth. Afterwards, it selects one of the best 
intermediate plans for a new root and continues 
searching from this one. As a result, there is a larger 
chance to reach a better choice than the BFS. 
Comparing temporary plans requires parameters of 
the temporary plan and the remaining part of a plan 
created by unassigned tasks. Because FS is used, the 
parameter of the temporary plan is identified 
immediately. Identifying the second parameter is 
more difficult, because it requires examining all 
potential variants that unassigned tasks can create. 
For that reason, I have adopted an idea from [Kumar 
et al., 1994, chapter 8], [Nguyen et al., 2002] to 
predict these parameters. 
Referring to Figure 1, after choosing a part of tasks 
for rescheduling, all values min_durationi for Taski ∈ 
Set_resche are loaded from the database. Next, the 
total cost of all the selected tasks is calculated easily. 
Without loss of generality, let us assume that only 
one level ahead will be calculated, and Task4 and 
Task6 are added at level 1 to the temporary plan. 
Both tasks use their first method for execution with 
corresponding parameters Task4: {T4, c4} and Task6: 
{T6, c6}. Task4 is executed by resource 1, and Task6 
by resource 2. 
Solver uses the stored values min_duration to 
estimate the time when the final plan will finish. Let 
us denote t1, t2, t3, … as the time when resources 
perform their last operation (indexes 1, 2, 3 
correspond to the number of resources) and 
Time_end as the time when a plan will finish. Tremain 
is the time interval after Task4 and Task6 are finished 
up to the end of a plan. An estimate of values Tremain 
and Time_end is made as follows: 

Tremain ≅ max[(min_duration4 – T_m4), 
(min_duration6 – T_m6)] 

(8) 

and 
Time_end ≅ max[t1 + T4 + (min_duration4 – 
T_m4), t2 + T6 +(min_duration6 – T_m6), t3,.] 

(9) 

Due to the definition of min_duration introduced in 
Section 5, values Tremain and Time_end cannot exceed 
the real time when a plan finishes. Because all 
variables of Equation (8) and (9) are known, values 
Tremain and Time_end can be specified immediately 
without a complicated calculation. Both Equation (8) 
and (9) can be extended for a general case where 
instead of Task4 and Task6 they can work with all 
tasks that are assigned at that moment to a temporary 
plan. In a general case, let Taski1 be added to 
resource 1, Taski2 to resource 2, Taski3 to resource 3, 
etc.., then values Tremain and Time_end can be 
estimated as: 

Tremain ≅ max[(min_durationi1 – T_mi1), 
(min_durationi2 – T_mi2), …] (10) 

and 
Time_end ≅ max[t1 + Ti1 + (min_durationi1 

– T_mi1), t2 + Ti2 +(min_durationi2 – 
T_mi2), ...] 

(11) 

Variables Tremain and Time_end are close to the real 
values, if all tasks are executed by the shortest 
methods. To get more precise values of these 
variables, calculating Tremain and Time_end as well, 
when all the remaining tasks are executed by the 
longest methods is useful. The process to get these 
values is similar as above. Estimates of time when a 
plan will finish could be calculated as a combination 
of these values.  

An estimate of the cost of the second part of a plan 
could be made in a similar way. Let cremain denote the 
total cost of all unassigned tasks after adding Task4 
and Task6 to a temporary plan. An estimate of cremain 
is computed as the total sum of the minimal cost of 
each unassigned task:  

cremain ≅ min_cresche – (min_c4 + min_c6) = 
min_cremain  

(12) 

min_cresche is an estimate cost of all unassigned tasks 
when they are executed by the method with lowest 
cost; min_c4 and min_c6 are minimal performance 
cost of Task4 and Task6. All variables of Equation 
(12) are known; therefore the cost estimate could be 
specified immediately. Similarly, it is possible to 
ensure that the cost estimate calculated by Equation 
(12) does not exceed the real cost of reaching the 
goals from the current state. This equation could also 
be extended for a general case with an arbitrary 
number of tasks. Let us use the same assumption as 
above: Taski1 is added to resource 1, Taski2 to 
resource 2, Taski3 to resource 3, etc..; then the cost 
estimate is calculated as the total sum of the minimal 
cost of each unassigned task: 

cremain ≅ min_cresche – (min_ci1 + min_ci2 + 
min_ci3 +..) = min_cremain 

(13) 

Of course, min_cremain defined as in Equation (12) or 
(13) is minimal cost of the remaining part of a plan, 
which requires executing all the rest of tasks by such 
methods that guarantee minimal cost. In order to get 
more precise values of cremain another variable, called 
max_cremain is used, which expresses maximal cost of 

Resource 1 Task4 

Resource 2 Task6 

End 

Tremain  

Part 1 

t1 t3 

≥min_duration4 

≥min_duration6 

t2 

Figure 1: Estimation of execution time 

Time_end 

Resource 3 



     

the rest of tasks. cremain then could be calculated as a 
linear combination of the variables (min_cremain and 
max_cremain), e.g.,   

cremain = β1 max_cremain + β2 min_cremain (14) 
where β1 + β2 =1. On the basis of the achieved 
results, coefficients {β1, β2} are modified to adjust to 
the criterion function, in order to find the most 
appropriate combination. Calculation of max_cremain 
is similar to the calculation of min_cremain, so 
explanation is omitted. In the next part the method 
for plan repairing is presented. 
 
 
7. RANDOM START AND PLAN REPAIRING 

BASED ON FORWARD SEARCH   

In this section the algorithm used for solving a multi-
parameter planning problem is presented.  
First: using the GHWT method for calculating Tremain 
(presented in Section 5.1).  
The RSaFS Algorithm: 
Phase 1: choose a random initial plan.  
Phase 2: choose parts Set_irre and Set_resche for 
rescheduling – Section 5.    
Phase 3: initialization: 
a. solution  the current temporary plan 
b. g(solution) and h(solution) are a vector of all 

parameters of the current sub-plan and the 
remaining part of a plan, which consists of 
unassigned tasks 

1. calculate all possible configurations to k steps 
ahead; constant k is defined in interval [1,10].  

2. for each constructed temporary plan, estimate 
values of a minimal time termination, minimal 
and maximal cost of the remained part,  

3. choose a temporary plan with the highest 
promising results according to the defined 
measure (Equation (1) or (2)) (calculating 
parameters of the eventual plan is presented 
below); 

4. update the solution, then return to step 1 
5. stop when all tasks are assigned. Update the 

currently best solutions, 
6. compare the time and cost criteria, if the cost 

criterion has more important influences upon the 
criterion function, then increase β2. Otherwise, 
increase β1. Restart phase 1; 

7. if a newly achieved plan has significantly 
different parameters from the estimated ones 
(essentially, time when a plan finishes), recall 
GHWT to recalculate all estimate values Tremain, 
but on the basis of the new plan. 

Phase 1 is easy for understanding. An initial plan 
could be chosen at random. 
Phase 2 has been explained in detail in Section 5. In 
Step 4 of Phase 3, parameters of an eventual plan are 
calculated on the basis of values of vectors 
g(solution) and h(solution). The time when a plan 
finishes could be estimated by using Equation (10) 
and (11) in which values Tremain are taken from the 

procedure that has been called before starting the 
repairing phase. The cost of a final plan is estimated 
by merging the cost of g(solution) and h(solution).   
On the basis of the estimated values, the newly 
constructed plan with highest evaluation is chosen as 
a new state of a search. Then, the set of unassigned 
tasks is reduced by the tasks that have been added to 
the selected plan. Steps 7 and 8 are used to get more 
precise cost and time estimates, since a situation 
might happen when the first estimate values are far 
from the realistic ones. 
 
 

8. SIMULATION RESULTS AND COMPARISON 
 
The algorithm selected to compare with RSaFS is a 
heuristic search plan – HSP-r [Bonet & Geffner, 
2001]. HSP-r is essentially the best-first search 
method, but it deals with only the cost parameter. 
Both the algorithms are implemented in C++.  
The case of study chosen for solving is a standard 
scheduling problem, which could be described as 
follows: there are 10 different products, each of them 
consists of 10 different tasks (or operations), which 
are executable in specific resources. Each task could 
be executed by two methods with different duration 
and cost. In general, when duration increases, the 
cost decreases and vice versa, but these variables are 
not directly dependent one from the other. There are 
five groups of resources; each of them consists of 
two equivalent machines. Tasks can be migrated 
among these equivalent machines. 
Simulation results are shown in Table 1. Each 
algorithm has 5s for running (there is only time of 
using processor for calculation, without time needed 
for operation system or generating input data). The 
criterion function used to evaluate plans is: 
eval(plan) = 0.6*time + 0.4*total_cost, where time is 
the time when the last task is accomplished, and 
total_cost is the total cost of execution of a plan. (β1, 
β2) are coefficients used to make estimates of the 
cost. The estimated cost is calculated as follows: 

cremain = β1 max_c + β2 min_c, (15) 
max_c and min_c are the maximal and minimal costs 
of the rest of tasks.  
In Table 1, RSaFS-10, or -all, mean that after 
finishing the first step, only 10 the best states, or all 
states are taken for consideration within the 
framework of two-step forward search, respectively. 
HSP-r uses the best-search algorithm and it chooses 
only one best temporary state to continue its search. 
In comparison, RSaFS explores many states at once 
and, moreover, it performs a search forward in 
several steps. Therefore, there is a larger probability 
than in HSP-r that the selected state is the optimal 
one. The next significant difference is that RSaFS 
allows improving the current estimation of the cost 
by changing coefficients β1 and β2 (from Equation 
(15)) during searching in order to adjust to the 
criterion function. HSP-r uses a fixed estimate of the 
cost, but as the achieved results show, there is not a 



     

good combination for every situation, which would 
always guarantee the best solution. RSaFS modifies 
coefficients β1 and β2 in such a way, in order to focus 
on finding such plans, which have a better chance to 
optimize the criterion function. For example, in these 
experiments, when a plan with parameters 
(execution_time= 80 and total_cost=450) is found, it 
is easy to see that the cost has bigger influence on the 
criterion function than the time of execution. 
Therefore, solver tries to find a plan with smaller 
cost, increases coefficient β2 and decreases β1. Thus, 
the cost estimate prefers plans with small cost, close 
to the minimal cost of execution, to those with short 
time of execution. If this trend achieves better 
solutions, the process continues. Otherwise, solver 
tries with other coefficients. In all experiments this 
process converts to the conclusion that calculation of 
estimated cost by using only the minimal cost (β1=0 
and β2=1) brings the best results of all. However, this 
conclusion is not always true for every planning 
problem. For example, when the cost of plan is much 
lower than the time of execution, then using the 
maximal cost only (equivalently with preferring to 
use methods that have a short duration for executing 
tasks) for making estimates brings the best results. In 
cases when the criterion function has more 
parameters or it is not a linear function, setting 
appropriate coefficients {β1, β2,…} might not be an 
easy task, but modifying them frequently in order to 
adjust to the criterion function achieves really better 
results than using fixed parameters.    
There is one advantage of HSP-r over RSaFS; that is, 
HSP-r achieves quicker solutions than RSaFS due to 
the fact that a forward search within the repairing 
phase explores much more states than HSP-r does. In 
general, HSP-r could be considered as a special case 
of RSaFS when a new state of a search is selected 
after performing only one-step forward investigation. 
If the time available for running a program is too 
short, HSP-r might achieve better solutions, since 
RSaFS cannot examine as many plans as HSP-r can. 
 

9. CONCLUSSION 
 
The simulation results indicate that for resolving a 
concrete type of planning problems like the 
scheduling problem that has been chosen as the case 

of study, RSaFS has achieved significant 
improvements in comparison with HSP-r, if they 
have the same time of solving. There are also other 
algorithms, e.g., a number of different algorithms 
based on graphplan (Blum & Furst, 1997), little 
different or modified from the graphplan. Due to 
complicated problems associated with maintaining 
and memorizing data as discussed in Section 2 are 
seen as an inappropriate method for solving the types 
of planning problems – planning in manufacturing - 
that are dealt in this work. For that reason these 
algorithms are not selected for comparison. The 
scheduling problem that has been chosen for 
simulation is a special type of the general planning 
problems. However, applying RSaFS to other 
applications could be the objective of future research.  
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Table 1: Simulation results 

 
(β1, β2) Experi. Num. 1 2 3 4 5 6 7 8 9 10 
1-0 HRS 180 168 192 183 181 188 185 198 178 180 
0-1 HRS 155 108 147 115 142 155 165 162 121 120 
1-0 RSFS-10 170 162 178 161 182 176 185 181 141 181 
1-0 RSFS-all 181 169 192 165 181 178 183 198 141 181 
0,5-0,5 RSFS-10 139 132 156 122 164 119 163 163 107 105 
0,5-0,5 RSFS-all 135 132 134 122 180 155 175 128 140 106 
0,3-0,7 RSFS-10 135 141 149 94 168 137 177 144 89 112 
0,3-0,7 RSFS-all 146 121 126 106 111 141 171 144 95 99 
0-1 RSFS-10 138 128 165 103 168 154 172 149 108 123 
0-1 RSFS-all 110 101 137 89 88 122 182 131 77 106 




