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1. INTRODUCTION

In the synthesis of tracking control systems, a com-

pensation input, which is applied to the controlled

system over finite-horizon time, is effective to improve

the transient response. From this point of view, the

design methods of compensation law which attains

favorable transient response are studied by various au-

thors: (Ikeda and Suda, 1988; Izumi et al., 2000; Ko-

jima and Ishijima, 1999). However, in the presence

of the system constraints such as input-output limita-

tions, the calculation task of compensation signal is

complicated and, especially for continuous-time sys-

tems, the design method of compensation law is not

founded.

For constrained systems, several control methods

are established in the paradigm of model predictive

control (Bemporad and Morari, 1999; Chmielewski

and Manousiouthakis, 1996; Scokaert and Rawlings,

1998) and, recently the dominant input-output relation

for linear system is investigated in terms of the open-

loop prediction (Kojima and Morari, 2004).

In this paper, we discuss a design method of compen-

sation law such that the resulting system attains favor-

able transient response within the system constraints.

In order to approach the problem, we first introduce a

singular value decomposition (SVD) for finite-horizon

linear systems. The SVD method provides a geometric

interpretation of input and output relations for linear

systems and, further, enables us to design a compen-

sation law by the static linear combination of the sin-

gular vectors, which describe the system responses.

The paper is organized as follows. In Section 2, we

formulate the problem in general form and illustrate

the relation to typical control problems. In Section 3,

a calculation method of singular value decomposition

(SVD) is derived for finite-horizon linear systems. In

Section 4, a design method of the compensation law

is obtained based on the SVD approach. In Section

5, numerical examples are described based on the

proposed design method.

2. PROBLEM FORMULATION

Let us begin with the typical servo system depicted

by Fig.1. In Fig.1(a), G, K denote the plant and

the controller respectively, and we prescribe input-

output constraints for the plant G. The output response

and corresponding input signal driven by the step

reference are depicted by Fig.1(b), and let us assume



(a)Servo system with constraints

(b)Input and Output responses

Fig. 1. Constrained system and responses

Fig. 2. Controlled system with compensation

both responses do not fulfill the constraints. If we

can introduce an additional compensation input v to

the controlled system over the finite time interval

[0, h], the performance of the control system will be

improved from the following viewpoints:

(i) Modify the responses u and y so that the resulting

responses fulfill the system constraints.

(ii) Drive the terminal state so that the response of the

system over [h,∞] attains favorable performance.

Motivated by this observations, we investigate the

relation between the auxiliary compensation input v
and the difference of the responses (ũ, ỹ), which are

generated by the signal v(Fig.2). In the sequel, we

formulate the problem in the general form (Fig.3) and

clarify the design method of compensation law.

3. SINGULAR VALUES AND VECTORS OF

LINEAR SYSTEMS

Consider a linear time invariant system driven by the

input v, which is applied over the time interval [0, h]
(Fig.3).

Σ :

{

ẋ(t) = Ax(t) + Dv(t), x(0) = 0
z(t) = Ex(t) + F0v(t), 0 ≤ t ≤ h

(1)

In (1), x(t) ∈ R
n, v(t) ∈ R

m, z(t) ∈ R
p are

the state, the compensation input, and the regulated

output respectively. For the system Σ, the following

assumptions are made:

(A1) A is stable.

(A2) (E, A) is observable and (A, D) is controllable.

(A3) FT
0 F0 = I .

In the system Σ, it should be noted that the output z(t)
denotes the difference of input and output signals

z(t) =

[

ũ(t)
ỹ(t)

]

(2)

which are generated by the compensation input v. In

the assumption (A1), we assume that the compensa-

tion input is applied to the stabilized control system.

In (A3), the output z(t) includes normalized penalty of

compensation input v(t). The design method of com-

pensation input is easily extended to the case FT
0 F0

is nonsingular. In this section, we introduce a singu-

lar value decomposition (SVD) for the system Σ and

clarify the relation between the compensation input v
and the output z.

Let us describe the system input v and the output z
on appropriate function spaces. Define spaces V :=
L2(0, h; Rm), Z := R

n ×L2(0, h; Rp) with the inner

products

〈f1, f2〉V :=

∫ h

0

fT
1 (β)f2(β)dβ f1, f2 ∈ V (3)

〈g1, g2〉Z := g0T

1 g0
2 +

∫ h

0

g1T

1 (β)g1
2(β)dβ

g1 =

[

g0
1

g1
1

]

, g2 =

[

g0
2

g1
2

]

∈ Z (4)

and denote input and output responses in the following

manner:

v̂ := v ∈ V , ẑ :=

[

Fx(h)
z[0,h]

]

∈ Z, (5)

M =: FTF > 0 (6)

where M > 0 is defined by the solution to the

Lyapunov equation

ATM + MA + ETE = 0. (7)

By including Fx(h) in (5), the equality

‖ẑ‖2
Z =

∫ h

0

zT(t)z(t)dt + xT(h)Mx(h)

=

∫ ∞

0

zT(t)z(t)dt = ‖z‖2
L2(0,∞;Rp) (8)

holds, the norm in Z is equivalent to the L2 norm

on [0,∞]. The system behavior between v and z is

described by the integral operator Γ ∈ L(V ,Z):



Fig. 3. Controlled system with compensation input

ẑ = Γv̂ (9)

[

(Γv̂)0

(Γv̂)1(ξ)

]

:=









F

∫ h

0

eA(h−β)Dv̂(β)dβ

E

∫ ξ

0

eA(ξ−β)Dv̂(β)dβ + F0v̂(ξ)









(10)

(0 ≤ ξ ≤ h)

and the corresponding singular values and vectors are

defined as follows:

σ ≥ 0, (f, g) 6= 0 : σg = Γf, σf = Γ∗g

f ∈ V , g ∈ Z. (11)

Next theorem provides a calculation method of singu-

lar values and vectors for the operator Γ.

Theorem 1. The singular values of operator Γ are

given by the roots of the following transcendental

equation:

det

{

[

−σ−1M I
]

eJ(σ)h

[

0
I

]}

= 0

J(σ) :=






A +
1

σ2 − 1
DFT

0 E
σ

σ2 − 1
DDT

−
σ

σ2 − 1
ETE −AT −

1

σ2 − 1
ETF0D

T







(σ 6= 1). (12)

Let σi be one of the singular values, define a non-zero

vector ui ∈ R
n which satisfies

[

−σ−1
i M I

]

eJ(σi)h

[

0
I

]

ui = 0, (13)

then the singular vectors (fi, gi) correspond to σi are

constructed as follows.

fi(ξ) =

[

1

σ2
i − 1

FT
0 E

σi

σ2
i − 1

DT

]

eJ(σi)ξ

[

0
I

]

ui

(14)

g0
i = σ−1

i

[

F 0
]

eJ(σi)h

[

0
I

]

ui (15)

g1
i (ξ) =

[

σi

σ2
i − 1

E
1

σ2
i − 1

F0D
T

]

eJ(σi)ξ

[

0
I

]

ui

(16)

(0 ≤ ξ ≤ h).

PROOF. Appendix A. 2

The singular values σi and vectors (fi, gi) character-

ize the input and output relations of the system Σ. If fi

is applied to the system, σigi is generated in the output

Fig. 4. Singular value and vector of linear systems

(Fig.4). Furthermore {fi} and {gi} form orthogonal

basis in V and Z respectively (Gohberg et al., 1990).

In the following, we normalize the singular vectors fi,

gi (i = 1, 2, 3, · · · ) as ‖fi‖V = 1, ‖gi‖Z = 1.

4. DESIGN METHOD OF COMPENSATION LAW

By employing the singular value decomposition (SVD)

obtained for the system Σ (Theorem1), we provide a

design method of compensation law, which fulfills the

system constraints.

We will describe the design method of compensation

law based on the control system depicted in Fig.1. Let

us describe the system constraints by

zmin(t) ≤ z(t) ≤ zmax(t)

zmin(t) :=

[

umin(t)
ymin(t)

]

,

zmax(t) :=

[

umax(t)
ymax(t)

]

,

z(t) :=

[

u(t)
y(t)

]

, 0 ≤ t ≤ h (17)

and ur, yr be input and output signals generated by the

step reference. In case when the compensation signal

v(t)(0 ≤ t ≤ h) is applied to the controlled system

(Fig.2), the system response is described by

z(t) = zr(t) + z̃(t)

zr(t) :=

[

ur(t)
yr(t)

]

,

z̃(t) :=

[

ũ(t)
ỹ(t)

]

, 0 ≤ t ≤ h (18)

where ũ, ỹ are the responses generated by v. Hence,

in terms of the compensation signal, the system con-

straints are transformed to

z̃min(t) ≤ z̃(t) ≤ z̃max(t)

z̃min(t) := zmin(t) − zr(t)

z̃max(t) := zmax(t) − zr(t). (19)

For the generalized system (1) (Fig.3) with the con-

straints (17), we will provide a design method of com-

pensation law. Let σi, (fi, gi) (i = 1, 2, · · · , N) be

the singular values and normalized vectors of Σ, and

denote the candidate of compensation law by

ṽ =

N
∑

i=1

kifi, ki ∈ R. (20)



Then the output response is given by

z̃ = (Γṽ)1 =
N

∑

i=1

kiσig
1
i (21)

where the superscript denotes the second component

of the singular vector in Z . By discretizing the con-

straints (17) over the time interval [0, h]:

zmin(t) ≤ z(t) ≤ zmax(t)

t ∈ {t1, t2, · · · , ts} ⊂ [0, h], (22)

an approximate compensation signal which minimizes

J =

∫ ∞

0

{

ũT(t)ũ(t) + ỹT(t)ỹ(t)
}

dt (23)

is obtained by the following theorem.

Theorem 2. Define a matrix Λ and a matrix-valued

function Z(t) by

Λ := diag(σ2
1 , σ

2
2 , · · · , σ2

N ) (24)

Z(t) := [σ1g
1
1(t), σ2g

1
2(t), · · · , σNg1

N (t)] (25)

t ∈ [0, h].

Then the coefficients k = [k1, k2, · · · , kN ]T ∈ R
N

of (20) which minimize cost index (23) under the

discretized constraints (22) are given by the solution

to the following quadratic optimization problem.

kopt := arg min
k∈RN

kTΛk

s.t. z̃min(t) ≤ Z(t)k ≤ z̃max(t)

∀t ∈ {t1, t2, · · · , ts} ⊂ [0, h] (26)

PROOF. From the output response (21) and the defi-

nition (5), (23) is calculated as follows.

J =

∫ h

0

z̃T(t)z̃(t)dt +

∫ ∞

h

z̃T(t)z̃(t)dt

=

∫ h

0

{

N
∑

i=1

kiσig
1
i (t)

}T {

N
∑

i=1

kiσig
1
i (t)

}

dt

+

{

N
∑

i=1

kiσig
0
i

}T {

N
∑

i=1

kiσig
0
i

}

=

N
∑

i=1

k2
i σ2

i = kTΛk. (27)

Rewriting the constraints (22) with parameter k, the

optimal coefficients kopt is given by the quadratic

programming (26). 2

Remark 3. For any given ǫ > 0, there exists a finite

number of grid times {t1, t2, · · · , ts} such that the

uniform constraints:

z̃min(t) − ǫ · 1 ≤ Z(t)k ≤ z̃max(t) + ǫ · 1

1 := [1, 1, · · · , 1]T ∈ R
p (28)

are satisfied. This evaluation is obtained along [(Kojima

and Morari, 2004), Theorem 7] with the fact the sin-

gular vectors (14), (15), (16) are Lipschitz functions.

2

The inequalities stated in (26) are explicitly described

in the following form.

Hk ≤ W (29)

H :=























Z(t1)
−Z(t1)
Z(t2)
−Z(t2)

...

Z(ts)
−Z(ts)























∈ R
2·p·s×N , W :=























z̃max(t1)
−z̃min(t1)
z̃max(t2)
−z̃min(t2)

...

z̃max(ts)
−z̃min(ts)























∈ R
2·p·s

Thus the number of variables and constraints in the

optimization linearly depends on N , s respectively.

Theorem 2 has a potential to be extended to other

control problem since the response of the system

defined by (5) includes the terminal state Fx(h). A

deadbeat control law is similarly obtained as follows.

Corollary 4. Let xr(t) be the state response of con-

trolled system when step reference is applied and let

xr(∞) be the steady state. By including equality con-

straints

Z̄k = F{xr(∞) − xr(h)} (30)

Z̄ : = [σ1g
0
1 , σ2g

0
2 , · · · , σNg0

N ] (31)

to (26), we can design a deadbeat compensation law,

which attains xr(h) = xr(∞) at t = h. 2

5. NUMERICAL EXAMPLES

Let us illustrate the results (Theorem 2, Corollary 4)

with numerical examples: 1) compensation law for

the system constraints; 2) compensation law for the

deadbeat control.

5.1 Improvement of transient response

Consider the servo system depicted by Fig.1(a) with

K = 8, G(s) =
1

(s + 4)(s + 2)
. (32)

The step response y is required to fulfill the following

constraints (Fig.5(a)):

ymax(t) =

{ t

2
+ 0.1 (0 ≤ t ≤ 2)

1.1 (2 < t ≤ 4)
(33)

ymin(t) =

{ t

2
− 0.1 (0 ≤ t ≤ 2)

0.9 (2 < t ≤ 4)
(34)

By employing 8 singular values in descending order

(Table 1) and discretizing the uniform constraints by

t = nT (T = 0.05 : n = 0, 1, 2, · · · , 80), the

compensation input is obtained based on Theorem 2

(Fig.5(b)). The improved response by the compensa-

tion law is depicted by Fig.5(a) (solid line) and it is

observed that imposed constraints (33),(34) are satis-

fied.
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Fig. 5. Example 5.1 Improvement of transient re-

sponse

Fig. 6. Example 5.2 deadbeat control

5.2 Deadbeat control under input constraint

Consider a position control problem of the hard disk

drive in Fig.6 (Hirata et al., 1993):

G :







ẋp(t) =

[

0 1
0 0

]

xp(t) +

[

0
Kp

]

up(t)

yp(t) =
[

1/Tp 0
]

xp(t)

Kp = 6.33 × 10−2[ms2/V]

Tp = 12.7 × 10−6[m/trk]. (35)

Controller K is designed by LQ control with the

weighting matrices Q = diag(1, 1, 1), R = 0.1. Out-

put and input responses when reference input 800[trk]

is applied to the system are depicted in Fig.7(a) and

(b) by dotted line respectively. We will design the

deadbeat control such that the output y completely

attains 800[trk] on time 0.015[s] and holding the value

thereafter while satisfying control input constraint

−4 ≤ up(t) ≤ 4. (36)

By employing 10 singular values in descending order
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(c) compensation input

Fig. 7. Example 5.2 Deadbeat control under input

constraint

(Table 2) and discretizing the uniform constraint by

t = nT (T = 0.0001 : n = 0, 1, 2, · · · , 150),
the compensation input is obtained by Corollary 4

(Fig.7(c)). In Fig.7(a) solid line shows that the output

response with compensation input, and it reached the

desired reference within 0.015[s]. The control input

is depicted in Fig.7(b) (solid line), and fulfills the

constraints. The compensation input tends to large as

the deadbeat control requires rapid change of the states

in short period.

6. CONCLUSION

A design method of compensation law for the linear

constrained systems is derived. By introducing singu-



Table1 SingularValues σi of Γ ∈ L(V,Z) on numerical example

(a)

σi Singular Values

σ1 1.397157

σ2 1.365168

σ3 1.176565

σ4 1.140163

σ5 1.070774

σ6 1.050191

σ7 1.029234

σ8 0.697683

Table2 SingularValues σi of Γ ∈ L(V,Z) on numerical example

(b)

σi Singular Values

σ1 36.865207

σ2 35.857275

σ3 19.570308

σ4 12.147986

σ5 7.228114

σ6 4.931555

σ7 3.490633

σ8 2.683115

σ9 2.138936

σ10 1.802170

lar value decomposition for finite-horizon linear sys-

tems, a compensation law is obtained by the linear

combination of singular vectors based on quadratic

programming. Strength and limitation are discussed

with numerical examples.
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Hirata, Liu, Mita and Yamaguchi (1993). Head po-

sitioning control of a hard disk drive using

H∞control theory. Transactions of the Society

of Instrument and Control Engineers(Japanese)

29, 71–77.

Ikeda and Suda (1988). Synthesis of optimal servosys-

tems. Transactions of the Society of Instrument

and Control Engineers(Japanese) 24, 40–46.

Izumi, Kojima and Ishijima (2000). Improving tran-

sient responses with compensation law. Transac-

tions of the Institute of Systems, Control and In-

formation Engineers (Japanese) 13, 123–126.

Kojima and Ishijima (1999). LQ preview synthesis:

Optimal control and worst case analysis. IEEE

IEEE transactions on automatic control 44, 352–

357.

Kojima and Morari (2004). LQ control for constrained

continuous-time systems. Automatica 40, 1143–

1155.

Scokaert and Rawlings (1998). Constrained linear

quadratic regulation. IEEE transactions on auto-

matic control 43, 1163–1169.

Appendix A

Proof of theorem 1

The adjoint operator Γ∗ ∈ (Z,V) is given as follows.

(Γ∗ẑ)(β)

= DTeAT(h−β)FTz0 +

∫ h

β

DTeAT(ξ−β)ETz1(ξ)dξ

+ FT
0 z1(β), (0 ≤ β ≤ h)

(A.1)

ẑ =

[

z0

z1

]

∈ Z (A.2)

Introducing auxiliary variables

p(ξ) :=

∫ ξ

0

eA(ξ−β)Df(β)dβ (A.3)

q(β) := eAT(h−β)FTg0 +

∫ h

β

eAT(ξ−β)ETg1(ξ)dξ

(A.4)

to (10), the following relations are obtained.

σg0 = Fp(h) (A.5)

σg1(ξ) = Ep(ξ) + F0f(ξ), (0 ≤ ξ ≤ h) (A.6)

p(0) = 0 (A.7)

p′(ξ) = Ap(ξ) + Df(ξ) (A.8)

σf(β) = DTq(β) + FT
0 g1(β), (0 ≤ β ≤ h) (A.9)

q′(β) = −ATq(β) − ETg1(β) (A.10)

q(h) = FTg0. (A.11)

From (A.6), (A.8), (A.9), (A.10), the differential equa-

tion
[

p′(ξ)
q′(ξ)

]

= J(σ)

[

p(ξ)
q(ξ)

]

(A.12)

is derived and (A.5), (A.7), (A.11) yield boundary

conditions:

p(0) = 0, q(h) = σ−1Mp(h). (A.13)

Finally the next relation is obtained by (A.12) and

(A.13)

[

−σ−1M I
]

eJ(σ)h

[

0
I

]

q(0) = 0. (A.14)

Since q(0) = 0 implies (p, q) = 0 and (f, g) = 0,

the condition (12) is required if σi the singular value.

Corresponding singular vectors fi and gi((14)-(16))

are obtained from the relations (A.5)-(A.11) with ui =
q(0) 6= 0 which satisfies (A.14).


