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Abstract. The problem of infinite eigenvalue assignment by output-feedbacks is
considered. Necessary and sufficient conditions for the existence of a solution to
the problem are established. A procedure for computation of the output-feedback
gain matrix is given and illustrated by a numerical example.
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1. INTRODUCTION

It is well-known (Dai, 1989; Kailath, 1980; Wonham,
1979; Kucera, 1981; Kaczorek, 1993) that if a pair

(A,B) of standard linear systemx = Ax+ Bu is
controllable then there exist a state-feedback gain
matrix K such that det[[ s—A+BK ] = p(s), where
p(s):s” +a_s" +..+as+a, is a given arbitrary n
degree polynomial. By changing K we may modify
arbitrarily only the coefficients a,,qa,,...,a,_, but we
are not able to change the degree n of the polynomial
which is determined by the matrix / s. In singular

linear systems we are also able to change the degree
of the closed-loop characteristic polynomials by

suitable choice of the state-feedback matrix K. The
problem of finding of a state-feedback matrix K
such that det[Es—A+BK]|=a#0 (a is
independent of s) has been considered in (Delin and
Ho, 1999; Kaczorek 2003). The infinite eigenvalue
assignment problem by feedbacks is very important
problem in design of the perfect observers
(Kaczorek, 2000; Kaczorek, 2002b; Kaczorek, 2003).
In this paper the problem of infinite eigenvalue
assignment by output-feedbacks is formulated and
solved.

This is an extension of the method given in
(Kaczorek, 2003) for output feedback case.
Necessary and sufficient conditions for the existence
of a solution to the problem will be established and a



procedure for computation of the output-feedback
gain matrix will be presented.

2. PROBLEM FORMULATION

Let R be the set of nxm real matrices and
Rﬂ — Rnx] .

Consider the continuous-time linear system

Ex=Ax+Bu,y=Cx (D

where x:?, XeR", ueR" and y e R” are the
t

semistate, input and output vectors and
E,Ae R™ Be R"™,Ce R . The system (1) is
called singular if det £ =0 and it is called standard
when det £ #0.

It is assumed that rank E =r <n,rank B=m,
rank C = p and the pair (E, A) is regular, i.e.

det[Es — A] # 0 for some s € C )
(the field of complex numbers)

Let us consider the system (1) with the output-
feedback
u=v-Fy 3)

where v € R" is a new input and F' € R™? is a gain
matrix.
From (1) and (3) we have

Ex =(A-BFC)x+ Bv (4)

Problem 1. Given matrices E, A, B,C of (1) and
nonzero scalar & (independent of s). Find a
F € R™?" such that

det[Es — A+ BFCl=« %)
In this paper necessary and sufficient conditions for
the existence of a solution to the problem will be
established and a procedure for computation of F
will be proposed.
3. PROBLEM SOLUTION

From the equality
111
Es— A+ BFC =[Es— A,B] =
FC

_ []n’BF{Es — A}

C

(6)

and (5) it follows that the problem has a solution
only if

rank[Es — A, B] = n for all finite s € C (7)
and
mnk[Es B A} = p for all finite s € C ¥
C

The problem will be solved by the use of the
following two steps procedure

Step 1. (subproblem 1). Given E,4,B of (1) and a
scalar ¢ . Find a matrix K = FFC such that

det[Es— A+ BK]=« 9

Step 2. (subproblem 2). Given C and K depending
of some free parameters k,k,,...,k, (found in Step

1). Find desired F satisfying the equation
K=FC (10)

The solution of the subproblem 1 is based on the
following lemma [2,7].

Lemma 1. If the condition (2) is satisfied then there
exist orthogonal matrices U,V such that
Es—4

%
UlEs— AV = ,
0 Eys— A,

(11a)
E, A4 € R"™™

Bl nyxm
uB=|""|, ,B e R"
0 [E,,A,&R"™

where the subsystem (£ ,4,B) is completely
controllable, the pair (£, 4,) is regular, E is upper
triangular and * denotes an unimportant matrix.

Moreover the matrices E,4 and B are of the

forms
Eys—4, E,s—4,
-4 E, s—A4
Ejs—A, = 021 22_A 2
3
0 0
Es—4,, E,s—A4,
Ey a8 =4y, Eys— Ay
Ey s =4y Eys = Ay
0 = Ay Eygs—A4y,
(11b)
Bll nxn; ..
0 E; A, e R0, j=1..k
B =

n
mm N
B, eR"™, E n, =n,
i=l



with B A4, ,..., 4

nonsingular.

of full row rank and E_,..., E,

k k=1 ke

Remark 1.
form.

The matrix C =CV has no special

Theorem 1. Let the condition (2) and (7) be satisfied
and let the matrices E, 4, B of (1) be transformed to

the forms (11). There exists a matrix K satisfying
the condition (9) if and only if
i) the subsystem (E , A4 ,B)) is singular, i.e.

detE =0 (12a)
ii) if n, >0 then the degree of the polynomial
det[E s — A,] is zero, i.e.

degdet[E s — A ]=0 for n, >0  (12b)
Proof. Necessity. From (9) and (11a) we have

det[Es — A+ BK]=detU "' detV ™' (13)
det[E\s — 4, + B K]det[E;s— 4, ] =«

where K =KV eR"™ and det[Eos - AO] =1 if

n,=0.

From (13) it follows that the condition (9) holds only

if the conditions (12) are satisfied.

Sufficiency. First let us consider the single-input
(m =1) case. In this case we have

ey €n ey,
E =0 e, € |
i 0 0 .
ay  dp Ay n1 1n,
(14)
4 = ay Ay Ay 1 Aoy
1= 5
0 a, A3 1 Ay
B O O anl,nlfl anlnl
by,
0
B =b = :
0
where e, #0,a, #0 for i=2,..,n and b #0.
The condition (12a) implies that e =0.

Premultiplying  the matrix [Es—4,b] by

orthogonal row operations matrix P it is possible to

make zero the entries e .e e of E since

129 %1390 Fy

e #0, i=2,..,n . By this reduction only the entries
of the first row of 4 will be modified.
0 o - 0
El =RE =0 e, - €, |
0 0 - e,
_511 a, - al,nl—l aln,
a a e A, a (15)
Al _ EAI — 21 22 2,m -1 2m ,
0 ay - A3 1 D3y,
0 0 an],nrl amn,
71 =hb =b,
Let
— 1 _ _ _
kl ZF 1o Yo al.n]—l’l_alul] (16)

0 0 1
a, €,S—a,, €y, 18 =0y, | €,5—dy,
0 —dy 1S T A3y Gy ST Ay,
0 0 Ay €S =y,
=ayaya, , =0
17

where o = ardetU detV det Pdet[E s —A4,]".
The considerations can be easily extended for multi-
input systems, m >1. In this case the matrix P of
the orthogonal row operations is chosen so that all
entries of the first row of E = PE, are zero. By this
reduction only the entries of 4 ,i=1,..,k and B,
will be modified. The modified matrices will be
denoted by A4 ,i =1,...,k and B,.
Let

I?ZEI_I{[IZII’IZIZ""f‘ZIk]+ G} (18)

The matrix G € R™" in (18) is chosen so that

0 0 — 0 (=)"h
_ — a * * %
Es-4+BK=|" _ (19)
0 a, - % %
0 0 - a *

(* denotes unimportant entries)

a(_ 1)1+l
a?.] a}Z b 'a/.lflc

and ¢ =detU "' detV " detP "' det[Es—4,].
Using (13), (18) and (19) it is easy to verify that

h=

det[Es — 4+ BK]=cdetlEs -4 + BK|=a (20)
O



Remark 2. Note that for m >1 some entries of the
matrix G in (18) can be chosen arbitrarily.
Therefore, the matrix K = KV~ has a number of
free parameters denoted by £, £, ,...,k, .

The free parameters will be chosen so that the
equation (10) has a solution F for given C and K.

It is well-known that the equation (10) has a solution
if and only if

C
rank C = rank[ } (21a)
K

or equivalently

ImK” < ImC”" (T denotes the transpose) (21b)

where Im denotes the image
The free parameters k., k

(21) holds.
Therefore, the following theorem has been proved.

k, are chosen so that

2900y

Theorem 2. Let the conditions (2), (7), (8) and (12)
be satisfied,

The problem has a solution, i.e. there exists F
satisfying (5) if and only if the free parameters
ki kysk, of K can be chosen so that the equation
(10) has a solution F for given C and K.

From the condition (21) and (16) we have the
following corollary.

Corollary 1. For m =1 problem has a solution if
and only if the row [a,,a,,...a,,a, —1] i
proportional to the matrix C.

Remark 3. If the order of system is not high say
n <5 the elementary row and column operations
instead of the orthogonal operations can be used.

4. EXAMPLE

For the singular system (1) with

(0 2 1 0 1 -1 0
01 -1 2 01 2 0
E= JA= ,
00 1 -1 -1 1 -1
00 0 1 0 2 1| (22
1 0
0 1 05 1 3 -2
B: , L =
00 {2.534—1}
10 0

find the gain matrix F € R** such that the condition
(5) is satisfied for ¢ =1.

In this case the pair (E,4) is regular since

-1 2s+1 ) -1

0 s-1 —-s-2 2s
det[Es — A] = =

0 1 s—1 1-s

0 0 -2 s—1

=@B=5)(s=1)°=(s+2)(s—1)+4s
The matrices (22) have already the desired forms
(11) with 4,=0,B,=0, E =E,A=A4,B =8B,

n]:n:4’}7] zz’ﬁ?‘:}q3 :Lm:z and

0 2 1 0
E, = 0 1aElzz _15E13= o

Ey =[1,Ey =[-1],E5 =[1]

1 -1 0 1
A“:O 15A12:2>A13:O>

A21 =[0 —1],A22 =[1],

A, = lA—ZA—lB—1 0
2 =[], 4y, =[2], 455 =[1], L

Using the elementary row operations [6,7] we obtain

1 -2 -3 1

0 1 1 -1
P1=

0 0 1 O

0 0 0 1

and

Es—A,B = P[Es—4,B]=
10 5 -5 1 -2
0 s -1 2 0

0 1 s=1 1-s 0 0
0 0 -2 s-10 0

Taking into account that in this case

[AllﬂAlz’AlB]:|:l 0 5}
0o 0 1 -2

_ 1 -2 0 0 0 0
B1: ’G:
0 1 05 k k, k

and using (18) we obtain

K:E:Efl{[‘qmzlz"qn]"'(;}:

| 2 2k 2k,-3 142k,

{0.5 ko ky,+1 kS—Z}
where £k, k,,k, are free parameters.

The free parameters are chosen so that the condition



[0.5 1 3 —2}
rank =

25 3 4 -1
05 1 3 -2 (23)
25 3 4 -1
=rank
2 2k 2k,-3 142k,
05 k k+1 k-2

is satisfied.
The condition (23) is satisfied for
k, =1k, =2,k, =0 and the equation

FO.513—2_2 21 1
25 3 4 —1] |05 1 3 -2
has the solution
-1 1
F=
1 O
It is easy to check that

det[Es— A+ BK]=detP ' det{Es — 4 + BK] =
0 0 0 1
05 s+1 2 0

o 1 s—1 1-s
0 0 -2 s-1

1

5. CONCLUDING REMARKS.

The problem of infinite eigenvalue assignment by
output feedbacks has been formulated and solved.
Necessary and sufficient conditions for the existence
of a solution to the problem have been established.
Two steps procedure for computation of the output-
feedback gain matrix has been derived and illustrated
by a numerical example. With slight modifications
the considerations can be extended for singular
discrete-time linear systems. An extension of the
considerations for two-dimensional linear systems
(Kaczorek, 1993) is also possible but it is not trivial.
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