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Abstract: The goal of this article is to show that the class of homogeneous systems
can be made very general if one considers generalized dilations (which are a class
of group actions) and defines homogeneity with respect to them. It turns out that
uniqueness of solutions (in both directions of time) is indeed a sufficient condition
for a system to be homogeneous with respect to some generalized dilation. The
relation between homogeneity and monotonicity is also studied and it is shown
that if a system is monotone with respect to some V (a positive function) then
there exists a generalized dilation with respect to which both the system and V
are homogeneous. Another result presented in the paper is the equivalence of local
monotonicity and global monotonicity under homogeneity.Copyright c©2005 IFAC
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1. INTRODUCTION

An autonomous system defined by the differential
equation ẋ = g(x), with g : R

n → R
n, is said to

be homogeneous with respect to dilation ∆ if for
all x ∈ R

n and λ > 0 the righthand side satisfies
g(∆λx) = λd∆λg(x) for some fixed d ∈ R (so
called the degree of homogeneity), where ∆λ :=
diag(λr1 , λr2 , . . . , λrn) with ri > 0 fixed. One can
encounter the above definition in articles appeared
as far back as (Kawski, 1988) or even earlier. This
concept of dilations and homogeneity seems to
have originated from the studies on nilpotent Lie
groups. See, for instance, (Goodman, 1976). The
concept was also extended to systems with a deci-
sion variable (i.e. ẋ = g(x, u)) and over the years
homogeneity has proven itself useful in stability
analysis and feedback design. In (Rosier, 1992)
it was shown that local asymptotic stability (of
the origin) is equivalent to global asymptotic sta-
bility for a homogeneous system and that for
such a system a homogeneous Lyapunov func-
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tion exists (a homogeneous Lyapunov function
V : R

n → [0, ∞) satisfies, aside from the generic
properties that a Lyapunov function satisfies, that
V (∆λx) = λκV (x) for all x ∈ R

n and λ > 0,
where κ > 0 is fixed). Conditions that imply
homogeneous feedback (a feedback law is homoge-
neous if the resulting closed-loop system preserves
homogeneity) stabilizability were among the prob-
lems tackled. See, for instance, (Hermes, 1995)
and (Grüne, 2000). Another interesting result ap-
peared in (Bhat and Bernstein, 1997) where it was
shown that if a system is homogeneous with a
negative degree then the asymptotic stability of
the origin implies that all solutions of the system
converge to the origin in finite time. A brief sum-
mary of the results on homogeneous systems can
be found in (Bacciotti and Rosier, 2001, §5.3).

In (Tuna and Teel, 2004b) an introduction of gen-
eralized dilations and a definition of homogeneity
with respect to this broader class of operators
than that of dilations were given for discrete-time
systems. In a parallel work (Tuna and Teel, 2004a)
authors studied homogeneous Lyapunov functions



for difference inclusions that are homogeneous
with respect to some generalized dilation. In this
paper homogeneity of autonomous systems in con-
tinuous time is studied in this new sense. After
generalized dilations are defined, homogeneity in
terms of the solution to the system is introduced
and a necessary and sufficient condition on the
righthand side of the differential equation (de-
scribing the system) that implies homogeneity for
a differentiable generalized dilation is given. In
Theorem 9 it is shown that uniqueness of the
solutions is enough in order for a system to be
homogeneous with respect to some generalized
dilation. Monotonicity of a system with respect to
a positive function V (which is sort of a Lyapunov
function) is also defined and in Theorem 11 it is
shown that for a system that is monotone with
respect to some V there exists a generalized dila-
tion with respect to which both the system and
V are homogeneous. Finally, in Theorem 12 local
monotonicity is shown to be equivalent to global
monotonicity under homogeneity.

2. NOTATION AND DEFINITIONS

Consider the system

ẋ = f(x) (1)

where x ∈ D is the state and f is a map from
D to R

n. A solution of the system at time t,
passing through (the initial condition) x at t = 0
is denoted φ(t, x) for t ∈ (νx, τx), where −∞ ≤
νx < 0 < τx ≤ ∞ for all x ∈ D. Whenever τx is
finite it is the smallest positive number beyond
which the solution φ(·, x) cannot be extended
on D. Likewise, whenever νx is finite it is the
largest negative number beyond which an exten-
sion to the solution on D does not exist. Note
that φ(0, x) = x by definition and the backward-
in-time part of the solution is the forward-in-time
solution to the differential equation ẋ = −f(x).

The following assumption will prevail throughout
the paper: for each initial condition x ∈ D the
solution of the system (1) is unique and remains
in D for all t ∈ (νx, τx).

The notation R>0 stands for {z ∈ R : z > 0}.

Definition 1. An operator G : R>0 × D → D
is said to be a generalized dilation (or gilation

in short) if the following conditions hold for all
x ∈ D.

(1) G1x = x.
(2) Gλ1

Gλ2
x = Gλ1λ2

x for all λ1, λ2 ∈ R>0.

Remark 2. Note that a gilation G is an action of
the group R>0 on set D.

Two obvious gilation examples in one dimension
are Gλx = λx on D = R and Gλx = xλ on
D = R>0. One not so obvious gilation example
is

Gλx = sgn(x) ·

(

1 +

(

1 − x2

2λx

)2
)0.5

−
1 − x2

2λx

on D = (−1, 1) \ {0}. Last example tells us that
gilations are not always as easily recognizable as
dilations (which are nothing but diagonal matri-
ces) even in one dimension.

Remark 3. Let H : D → DH be a transformation
with an inverse H−1 : DH → D. Then GH

is a gilation on DH if it is defined as GH
λ z :=

HGλH−1z provided that G is a gilation on D.

A gilation on D will be denoted trivial if Gλx = x
for all λ > 0 and x ∈ D. A gilation is nontrivial if
it is not trivial.

Definition 4. Let V : D → R>0 be continuous.
System (1) is said to be monotone with respect to

V on D if for each x ∈ D and t1, t2 ∈ (νx, τx)

(1) t1 < t2 implies V (φ(t2, x)) < V (φ(t1, x)),
(2) limt→τx

V (φ(t, x)) = 0, and
(3) limt→νx

V (φ(t, x)) = ∞.

To give an example consider ẋ = x with D = R \
{0}. This system is monotone with respect to
V (x) = |x|−1 on D since φ(t, x) = x exp(t) for
t ∈ (−∞, ∞).

Definition 5. Function V : D → R>0 is said to be
homogeneous with respect to gilation G on D if

V (Gλx) = λκV (x) (2)

with fixed κ > 0 for all x ∈ D and λ > 0.

Definition 6. System (1) is said to be homoge-

neous with respect to gilation G on D if for each
x ∈ D the solution is unique and satisfies for all
λ > 0 and t ∈ (νGλx, τGλx)

φ(t, Gλx) = Gλφ(θλ, x(t), x) (3)

where θλ, x : (νGλx, τGλx) → (νx, τx) is a zero at
zero, continuous, and strictly increasing function
for each fixed pair of (λ, x) and will be called
correlator.

Sometimes correlator θλ, x is written as θλ when-
ever it does not depend on x.



3. RESULTS

When one does not have to worry about differen-
tiability (3) is equivalent to, thanks to chain rule
and (1),

∂Gλφ(θλ, x(t), x)·f(φ(θλ, x(t), x))·θ̇λ, x(t)

= f(Gλφ(θλ, x(t), x)) (4)

where ∂Gλη is shorthand for ∂Gλη/∂η. Moreover,
if θλ, x is independent of x then (4) boils down to

∂Gλx·f(x)·θ̇λ(t) = f(Gλx) (5)

which implies that θ̇λ(t) must be independent of
time t.

For instance, consider the system ẋ = x ln(x) on
D = R>0. The solution to this system is φ(t, x) =
xexp(t) which can be shown to be homogeneous
with respect to Gλx = xλ with θλ(t) = t. Observe
that

∂Gλx·f(x)·θ̇λ(t) = λxλ−1·x ln(x)·1

= xλ ln(xλ)

= f(Gλx) .

That is one has (5).

Remark 7. Let system (1) be homogeneous with
respect to some dilation ∆ with degree d. Then
the solutions satisfy (3) with Gλx = ∆λx and
θλ, x(t) = λdt. Since then ∂Gλx = ∆λ and

θ̇λ, x(t) = λd, one has from (5) that λd∆λf(x) =
f(∆λx). Hence the standard definition of homo-
geneity with respect to a dilation is recovered.

Lemma 8. Given x ∈ D and t ∈ (νx, τx) one has
τφ(t, x) = τx − t and νφ(t, x) = νx − t.

PROOF. Evident. ¥

Theorem 9. Consider system (1). Suppose there
exists x ∈ D and t ∈ (νx, τx) such that φ(t, x) 6=
x. Then there exists a nontrivial gilation G with
respect to which the system is homogeneous on D.

PROOF. One can reach the result by construc-
tion. Given some x ∈ D there are four possibilities
regarding νx and τx. Each case is studied below.

Case 1, νx = −∞ and τx = ∞: Let Gλx :=
φ(ln(λ), x). Observe that G1x = x and

Gλ1
Gλ2

x = Gλ1
φ(ln(λ2), x)

= φ(ln(λ1), φ(ln(λ2), x))

= φ(ln(λ1) + ln(λ2), x)

= φ(ln(λ1λ2), x)

= Gλ1λ2
x .

Therefore G is a gilation. Also observe that

φ(t, Gλx) = φ(t, φ(ln(λ), x))

= φ(t + ln(λ), x)

= φ(ln(λ), φ(t, x))

= Gλφ(t, x) .

Thus one has φ(t, Gλx) = Gλφ(θλ, x(t), x) with
θλ, x(t) = t. Note that θλ, x is a strictly increasing,
continuous map from (−∞, ∞) to (−∞, ∞) and
θλ, x(0) = 0.

Case 2, νx = −∞ and τx < ∞: Let Gλx :=
φ(τx(1 − λ−1), x). Observe that G1x = x and

Gλ1
Gλ2

x = Gλ1
φ(τx(1 − λ−1

2 ), x)

= φ(τη(1 − λ−1
1 ), η) (6)

where η := φ(τx(1 − λ−1
2 ), x). Now since, by

Lemma 8,

τη = τx − τx(1 − λ−1
2 )

= τxλ−1
2

one can proceed from (6) as

Gλ1
Gλ2

x = φ(τη(1 − λ−1
1 ), η)

= φ(τxλ−1
2 (1 − λ−1

1 ), η)

= φ(τxλ−1
2 (1 − λ−1

1 ), φ(τx(1 − λ−1
2 ), x))

= φ(τxλ−1
2 (1 − λ−1

1 ) + τx(1 − λ−1
2 ), x)

= φ(τx(1 − (λ1λ2)
−1), x)

= Gλ1λ2
x .

Therefore G is a gilation. Also observe that

φ(t, Gλx) = φ(t, φ(τx(1 − λ−1), x))

= φ(t + τx(1 − λ−1), x)

= φ((τx − λt)(1 − λ−1) + λt, x)

= φ((τx − λt)(1 − λ−1), φ(λt, x))

= Gλφ(λt, x)

since τφ(λt, x) = τx − λt by Lemma 8. Hence
φ(t, Gλx) = Gλφ(θλ, x(t), x) with θλ, x(t) = λt.
Note that θλ, x is a strictly increasing, continuous
map from (−∞, τGλx) to (−∞, τx), and one has
θλ, x(0) = 0.

Case 3, νx > −∞ and τx = ∞: Let Gλx :=
φ(νx(1 − λ), x). Observe that G1x = x and

Gλ1
Gλ2

x = Gλ1
φ(νx(1 − λ2), x)

= φ(νη(1 − λ1), η) (7)

where η := φ(νx(1 − λ2), x). Now since, by
Lemma 8,



νη = νx − νx(1 − λ2)

= νxλ2

one can proceed from (7) as

Gλ1
Gλ2

x = φ(νη(1 − λ1), η)

= φ(νxλ2(1 − λ1), η)

= φ(νxλ2(1 − λ1), φ(νx(1 − λ2), x))

= φ(νxλ2(1 − λ1) + νx(1 − λ2), x)

= φ(νx(1 − λ1λ2), x)

= Gλ1λ2
x .

Therefore G is a gilation. Also observe that

φ(t, Gλx) = φ(t, φ(νx(1 − λ), x))

= φ(t + νx(1 − λ), x)

= φ((νx − λ−1t)(1 − λ) + λ−1t, x)

= φ((νx − λ−1t)(1 − λ), φ(λ−1t, x))

= Gλφ(λ−1t, x)

since νφ(λ−1t, x) = νx − λ−1t by Lemma 8. Hence
φ(t, Gλx) = Gλφ(θλ, x(t), x) with θλ, x(t) = λ−1t.
Note that θλ, x is a strictly increasing map from
(νGλx, ∞) to (νx, ∞), and θλ, x(0) = 0.

Case 4, νx > −∞ and τx < ∞: Let

Gλx := φ

(

τx

(

1 −
τx − νx

τx − λνx

)

, x

)

.

Observe that G1x = x and

Gλ1
Gλ2

x = Gλ1
φ

(

τx

(

1 −
τx − νx

τx − λ2νx

)

, x

)

= φ

(

τη

(

1 −
τη − νη

τη − λ1νη

)

, η

)

= φ

(

τη

(

1 −
τη − νη

τη − λ1νη

)

+τx

(

1 −
τx − νx

τx − λ2νx

)

, x

)

(8)

where η := Gλ2
x. Note that

τη = τx − τx

(

1 −
τx − νx

τx − λ2νx

)

=
τx(τx − νx)

τx − λ2νx

and τη − νη = τx − νx, by Lemma 8. Let us define
T := τx − νx. Then one can write

τη

(

1 −
τη − νη

τη − λ1νη

)

=
τxT

τx − λ2νx

(

1 −
T

τxT
τx−λ2νx

(1 − λ1) + λ1T

)

=
τxT

τx − λ2νx

−
τxT 2

τxT (1 − λ1) + λ1T (τx − λ2νx)

=
τx(τx − νx)

τx − λ2νx

−
τx(τx − νx)

τx − λ1λ2νx

.

Therefore one can write

τη

(

1 −
τη − νη

τη − λ1νη

)

+ τx

(

1 −
τx − νx

τx − λ2νx

)

= τx

(

1 −
τx − νx

τx − λ1λ2νx

)

(9)

Combining (8) and (9) one obtains

Gλ1
Gλ2

x = φ

(

τx

(

1 −
τx − νx

τx − λ1λ2νx

)

, x

)

= Gλ1λ2
x .

Therefore G is a gilation. Also, although the
intermediate steps of the calculation are not given,
it can be shown that

φ(t, Gλx) = Gλφ(θλ, x(t), x)

with correlator

θλ, x(t) =
(τx − λνx)2t

λ(τx − νx)2 + (1 − λ)(τx − λνx)t
.

It is not hard to check that θλ, x(t) has a positive
time derivative, hence strictly increasing, and it
continuously maps (νGλx, τGλx) to (νx, τx). Also
θλ, x(0) = 0.

Since in each case the solution to the system is
used to construct G, the assumption that there
exists x ∈ D and t ∈ (νx, τx) such that φ(t, x) 6= x
rescues G from being trivial. Hence the result. ¥

Remark 10. Consider the proof of Theorem 9.
Observe that

lim
ν→−∞

τ

(

1 −
τ − ν

τ − λν

)

= τ(1 − λ−1)

and

lim
τ→∞

τ

(

1 −
τ − ν

τ − λν

)

= ν(1 − λ) .

Moreover

lim
ν→−∞

(τ − λν)2t

λ(τ − ν)2 + (1 − λ)(τ − λν)t
= λt

and



lim
τ→∞

(τ − λν)2t

λ(τ − ν)2 + (1 − λ)(τ − λν)t
= λ−1t .

That is, the constructed gilations and correlators
in Case 2 and Case 3 are the limiting cases of their
counterparts in Case 4.

Theorem 9 is an existence result. The construction
method in the proof uses the solution which is
almost never explicitly known for an arbitrary
system. Although it seems a little technical at
first sight the proof is simply based on the idea of
finding a continuous map between the domain of
gilation coefficient λ which is (0, ∞) and domain
of time t which is (νx, τx) and using the solution
itself as the gilation. Hence it is required that
the solution is unique for each initial condition
x ∈ D both in forward and backward time. This
uniqueness assumption which also is embedded in
Definition 1 might seem to degrade the generality
of the result since even a very simple system such
as ẋ = |x|

1

2 with D = R does not satisfy the
uniqueness assumption. The fix is simple though:
just remove (disregard) the stationary point(s) for

the analysis. Note that the solution to ẋ = |x|
1

2 is

unique on D = R \ {0}.

Theorem 11. Given V : D → R>0, let system
(1) be monotone with respect to V on D and
its solutions be continuous. Then there exists a
continuous nontrivial gilation G with respect to
which both the system and V are homogeneous
on D.

PROOF. Let C := {z ∈ D : V (z) = 1}. Then let
function ω : C × R>0 → R satisfy

V (φ(ω(z, λ), z)) = λ

and let ϕ : D → C be such that, for all x ∈ D,
V (ϕx) = 1 and ϕx = φ(t, x) for some t ∈ (νx, τx).
Both ω and ϕ are well defined and continuous
since the solution and V are continuous and V
satisfies the conditions of Definition 4. Let us
define gilation G as follows

Gλx := φ(ω(ϕx, λV (x)), ϕx) .

Note that V (Gλx) = λV (x) by definition. Due to
monotonicity, V (φ(t1, x)) = V (φ(t2, x)) implies
t1 = t2. Therefore

G1x = x

due to that V (G1x) = V (x) and that G1x =
φ(t, x) for some t ∈ (νx, τx). Moreover,

Gλ1
Gλ2

x = Gλ1
φ(ω(ϕx, λ2V (x)), ϕx)

= φ(ω(ϕη, λ1V (η)), ϕη)

where η = Gλ2
x. Note that ϕη = ϕx and V (η) =

λ2V (x). Therefore one can continue as

Gλ1
Gλ2

x = φ(ω(ϕx, λ1λ2V (x)), ϕx)

= Gλ1λ2
x .

Hence G is a gilation. Gilation G is continuous
due to the continuity of its constituent functions.
Given x and λ let θλ, x : (νGλx, τGλx) → (νx, τx)
be a function satisfying

ω(ϕx, λV (φ(θλ, x(t), x)))

= t + ω(ϕx, λV (x)) (10)

Note that (10) implies, by the way ω is defined,

V (φ(θλ, x(t), x))

= λ−1V (φ(t + ω(ϕx, λV (x)), ϕx))

= λ−1V (φ(t, Gλx)) (11)

which in turn implies θλ, x is continuous since V
and φ are continuous. Equation (11) also implies
that θλ, x is strictly increasing since V (φ(t, x)) is
strictly decreasing in t. Also θλ, x(0) = 0. Using
(10) and the definition of G one can show that

φ(t, Gλx) = φ(t, φ(ω(ϕx, λV (x)), ϕx))

= φ(t + ω(ϕx, λV (x)), ϕx)

= φ(ω(ϕx, λV (φ(θλ, x(t), x))), ϕx)

= Gλφ(θλ, x(t), x)

since ϕx = ϕφ(θλ, x(t), x). Hence the result. ¥

Theorem 11 points out that a system and a
positive function V with respect to which the
system is monotone can be tied with a common
gilation with respect to which both the system and
V are homogeneous. Function V can be thought
as a generalized Lyapunov function, except the
fact that its range excludes zero. That exclusion
is due to the fact that monotonicity and hence
homogeneity break down when V (x) = 0, likewise
when V (x) = ∞. Note that if V : D → R≥0

is a Lyapunov function for some system, then it
is an immediate observation that the system is
monotone with respect to V on D \ {z ∈ D :
V (z) = 0}.

Theorem 12. Let system (1) be homogeneous
with respect to some gilation G and V : D → R>0

be a continuous function that is homogeneous
with respect to G on D. Suppose for each x ∈ D
satisfying V (x) = 1 there exist τ ∈ R>0 and
ν ∈ R<0 such that, for all t1, t2 ∈ [ν, τ ]

• t1 < t2 implies V (φ(t2, x)) < V (φ(t1, x)),
• V (φ(τ, x)) = 2−1, and
• V (φ(ν, x)) = 2.



Then the system is monotone with respect to V
on D.

PROOF. Since V is homogeneous it satisfies
(2). Without loss of generality, let κ in (2) be
unity. Since system (1) is homogeneous its so-
lutions satisfy (3). Let x ∈ D be given. De-
fine λ := V (x)−1. Observe that V (Gλx) = 1.
Let θλ, x be the function in (3) and let θ−1

λ, x be
its inverse which exists since θλ, x is continuous
and strictly increasing. Hence there exist ν < 0
and τ > 0 such that ν ≤ t1 < t2 ≤ τ im-
plies V (φ(t2, Gλx)) < V (φ(t1, Gλx)). In addition
V (φ(τ, Gλx)) = 2−1 and V (φ(ν, Gλx)) = 2. Then
for each t ∈ [θλ, x(ν), θλ, x(τ)] one can write

V (φ(t, x)) = λ−1V (Gλφ(t, x))

= V (x)V (φ(θ−1
λ, x(t), Gλx)) .

Thence one can infer, since θ−1
λ, x is a continuous

and strictly increasing function, that ν1 ≤ t1 <
t2 ≤ τ1 implies V (φ(t2, x)) < V (φ(t1, x)). Also,
V (φ(τ1, x)) = 2−1V (x) and V (φ(ν1, x)) = 2V (x),
where ν1 := θλ, x(ν) and τ1 := θλ, x(τ). One
can generalize this to, for k ∈ {1, 2, . . .} and
t1, t2 ∈ [νk, τk]

• t1 < t2 implies V (φ(t2, x)) < V (φ(t1, x)),
• V (φ(τk, x)) = 2−kV (x), and
• V (φ(νk, x)) = 2kV (x),

where νx < νk+1 < νk and τk < τk+1 < τx. The
result hence follows as k → ∞. ¥

Theorem 12 is, in some sense, the generalization
of the result that the local asymptotic stability
(of the origin) for a homogeneous (with respect
to a dilation) system is equivalent to the global
asymptotic stability. The generality comes from
that monotonicity is a more general concept than
asymptotic stability is and that homogeneity with
respect to a generalized dilation is considered.

4. CONCLUSION

Using generalized dilations, a more general defi-
nition for continuous-time homogeneous systems
was introduced. It was shown that uniqueness of
solutions is enough for a system to be homoge-
neous with respect to some generalized dilation.
The relation between monotonicity and homo-
geneity was also studied and two basic results
were presented. The first one is that if a system is
monotone with respect to some positive function
V then there exists a generalized dilation with
respect to which both the system and V are ho-
mogeneous. The second result is that if a system
is locally monotone with respect to some V and
there exists a generalized dilation with respect to

which both the system and V are homogeneous
then the system is monotone with respect to V .
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