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Abstract: The problem of controlling nonlinear noisy systems affected by large
possibly non-parametric uncertainties is approached via the introduction of a
supervisor which, whenever needed, switches on, in feedback to the plant, a
controller selected from a finite set of predesigned controllers. An application
to automatic drug delivery for anesthesia is presented to illustrate the method.
Copyright c©2005 IFAC

Keywords: Supervisory control, Lyapunov methods, Robust stability, Adaptive
Control

1. INTRODUCTION

Control of time-varying plants in the presence
of large uncertainties typically requires the in-
troduction of adaptation in the feedback loop.
However, conventional continuous adaptation is
not always capable of performing satisfactorily
mainly because of its inherent difficulty in taking
advantage of prior knowledge of potential plant
changes and/or of suitable candidate controllers.

In recent years, adaptive switching supervisory

control (SSC) has emerged as an alternative ap-
proach for tackling the problem (Hespanha and
Liberzon, 2001; Hespanha and Morse, 1999; Hil-
horst et al., 1994; Zhivoglyadov et al., 2001) with
its appealing inherent feature of resembling an
adaptive version of classic gain-scheduling control
which has been successful in so many applications.
As a matter of fact, SSC aims at extending gain-
scheduling control to cases where the supervisor
has no full information on the current dynamical
behaviour of the plant to be controlled. A typical
situation is the one where only records of past

plant I/O data are available in order to let the
supervisor decide whether the current controller
is adequate, and, in the negative, select another
candidate controller.

Switching mechanisms are usually based on a su-
pervisory logic whereby a controller is falsified
whenever the inferred behaviour of another con-
troller turns out to be better than the one actually
achieved by the currently operating controller.
Whenever this happens, the candidate controller
with the best inferred behaviour is switched on
in feedback to the plant, replacing the currently
operating controller. The main contribution of
this paper is to present falsification and inference
criteria integrated in a new supervisory switch-
ing logic, whereby no prior information on dis-
turbance bounds is required, nor specific knowl-
edge of plant models, not even in the form of
an uncertain parametric system of equations. In
particular, the method may apply to situations
in which the plant model (possibly nonlinear) is
very poorly known (non-parametric uncertainties)



provided that the state of the system be accessible
for measurement.

2. PROBLEM FORMULATION

Consider a discrete time nonlinear system of the
following form:

xt+1 = f̃(xt, ut, dt) (1)

f̃(x, u, d)
.
= f(x, d) + g(x, u)

with states x ∈ R
n, control inputs u ∈ U ⊂ R

p,
and exogenous bounded disturbances dt ∈ D ⊂
R

q . The aim is to design a supervisory control
strategy, capable of orchestrate, based on I/O
data, the switching among a finite family of can-
didate controllers in such a way that the resulting
closed-loop system be stable. Moreover, we would
like to allow the largest possible amount of a
priori uncertainty on the plant (1). In particular,
nothing is assumed on the function f which can be
completely unknown. Knowledge of the function
g(x, u) is needed in the preliminary prototype ver-
sion of the algorithm that we are going to develop;
however, as shown in a subsequent section, it can
in principle be neglected at the expense of some
performance degradation. The control law is se-
lected among a finite family of N state-feedbacks:

ut = ki(xt) i = 1 . . .N. (2)

Notice that, thanks to the special decoupled form
of (1) it is possible, based on the knowledge of the
current and past states and inputs, to compute
the one-step ahead state prediction based on the
i-th feedback

x(t|i) := f̃(xt−1, ki(xt−1), dt−1)

= xt + g(xt−1, ki(xt−1)) − g(xt−1, ut−1)

viz. the value of the state at t if the i-th controller
would have been used in the loop at t − 1. The
switching algorithm we propose improves on the
one in (Angeli and Mosca, 2004) as no a priori
knowledge of a Lyapunov function cover is as-
sumed to be known.

3. THE IDEAL SUPERVISORY ALGORITHM

We first describe a prototype version of the algo-
rithm, which already exhibits the main features
of the approach, although its applicability is re-
stricted in practice by the need of considering a
growing number of past I/O data. The switching

logic operates by comparing a set of performance
signals ∆i

t generated as follows

∆i
t := min Di

subject to Di ∈ R, Pi = P ′

i ∈ R
n×n

x(k|i)′Pix(k|i) − λx′

k−1Pixk−1 ≤ Di

for all k ∈ [1, t]

Di ≥ 0 I ≤ Pi (≤ MI)

(3)

where the constants M > 1 and 0 < λ < 1 are
parameter knobs of the supervisor.

Remark 3.1. It is useful to provide hints on the
meaning of M . This is clearly an upper-bound on
the condition number of P and hence an a priori
bound on the eccentricity of the ellipsoidal level
sets of the Lyapunov function the algorithm is
seeking. Knowledge of this upperbound allows to
limit the search of a decreasing quadratic function
within a compact space and, through some anal-
ysis techniques that we discuss in the subsequent
Section, will provide us with an estimate of the
needed past data window. 2

The following lemma is an easy consequence of
(3).

Lemma 3.2. Let the system (1) be quadratically

stabilizable with contraction rate λ for some
controller ki(x), ( and Pi condition number less
than M ) , viz. there exists Pi : I ≤ Pi(≤ MI)
so that for all x, d

f̃(x, ki(x), d)′Pif̃(x, ki(x), d) − λx′Pix ≤ γi(|d|)(4)

for some K∞ function γi. Then, there exists an
index i ∈ {1 . . .N} such that for all t ∈ Z+

∆i
t ≤ max

τ∈[1,t−1]
γi(|dτ |) (5)

2

Let i?t denote the controller in the loop at time t
with i?0 arbitrarily initialized. We adopt a switch-
ing logic with hysteresis defined as follows:

i?t := arg min
i
{∆i

t − εδii?
t−1

} (6)

where ε > 0 plays the role of an additive hys-
teresis constant, and δij is the Kroneker’s δ. The
following holds:

Lemma 3.3. Assume that system (1) is fed at time
t ∈ Z+ by the control ut = ki?

t
(xt) where i?t is

selected according to (6). Then, the number of



controller switchings up to time t, that we denote
by ηt, can be upperbounded as follows:

ηt ≤ (N + 1) ·

⌈

mini ∆i
t

ε

⌉

(7)

where dye denotes the smallest integer greater
than or equal to y. 2

For the proof of the previous lemma, see (Angeli
and Mosca, 2004) (Lemma 3.3).

Practical Input-to-State Stability (ISS) for the
overall scheme can now be proved.

Theorem 1. Let the plant be quadratically sta-
bilizable with the P condition number upper-
bounded by M as in (4) for some controller ki(x).
Then, system (1) controlled by the supervised
state-feedback:

ut = ki?
t
(xt)

where i?t is selected according to the supervisory
logic in (3) and (6), is practically Input to State
Stable. 2

Proof 3.4. Let ‖d‖∞ be bounded (if d is un-
bounded nothing is left to prove as the ISS claim
is void). By virtue of Lemma 3.2, mini ∆i

t ≤
γ(‖d‖∞). Therefore, exploiting (7) the switching
stops in finite time. From that time on, call it
t0, i?t ≡ i?, and a sequence of matrices Pt exists,
I ≤ Pt ≤ MI , so that for the closed-loop trajec-
tory corresponding to the i? controller:

x′

kPtxk − λx′

k−1Ptxk−1 ≤ min
i

∆i
t + ε

for all k ∈ [t0 + 1, t]. Since by Lemma 1,
min{Di

t} ≤ γ(‖d‖∞) we can conclude that:

x′

kPtxk − λx′

k−1Ptxk−1 ≤ γ(‖d‖∞) + ε

for all k ∈ [t0 + 1, t]. Assume without loss of
generality Pt → P̄ as t → +∞. Fix an arbitrary
finite k > t0 we have:

x′

kPtxk − λx′

k−1Ptxk−1 ≤ γ(‖d‖∞) + ε

for all t ≥ k . Hence, going to the limit as t → +∞
yields:

x′

kP̄ xk − λx′

k−1P̄ x(k − 1) ≤ γ(‖d‖∞) + ε.

Since k is arbitrary we may conclude for V (xt) :=
x′

tP̄ xt.

V (xt) ≤ V (xt0)λ
(t−t0) +

γ(‖d‖∞) + ε

1 − λ
.

This concludes the proof of Practical Input-to-
State Stability.

4. FINITE WINDOW LENGTH

The algorithm in the previous Section entails, at
each time step, the solution of an LMI of linearly
growing dimension. This is a serious drawback
of the algorithm which keeps its validity only as
a conceptual scheme. Hereafter we discuss the
possibility of limiting the amount of past data
to a finite window length without affecting in a
significant manner the stability features of the
prototype algorithm. To this end we consider the
following modified performance criteria:

∆i
t := min Di

subject to Di ∈ R, Pi = P ′

i ∈ R
n×n

x(j|i)′Pix(j|i) − λx′

j−1Pixj−1 ≤ Di

for all j ∈ [t − L, t]

Di ≥ ∆i
t−1 I ≤ Pi ≤ MI.

(8)

There are two fundamental differences with re-
spect to (3). First of all, only a finite window
length of L + 1 past samples for the state are
considered. As a consequence, monotonicity of the
signals ∆i

t could, in principle, be lost; this is why
the monotonicity property is enforced by letting
Di ≥ ∆i

t in the optimization (8). It is clear that
Lemma 3.2 holds even in this new set-up. We are
now ready to prove the Main Result of the paper.

Theorem 2. Let the plant be quadratically stabi-
lizable with condition number upperbounded by
M for some controller ki(x). Then, system (1)
controlled by the supervised state-feedback:

ut = ki?
t
(xt)

where i?t is selected according to the supervisory
logic in (8) and (6), is practically Input to State
Stable provided that

L ≥ M
λ

1 − λ
. (9)

2

Proof 4.1. Let ‖d‖∞ be bounded (if d is un-
bounded nothing is left to prove as the ISS prop-
erty trivially holds). By virtue of Lemma 3.2,
mini ∆i

t ≤ γ(‖d‖∞). Therefore, exploiting (7) the
switching stops in finite time. From that time on
(let us relabel this as t0 and assume without loss
of generality t0 > L), i?t ≡ i?, and a sequence
of matrices Pt exists, I ≤ Pt ≤ MI , so that for
the closed-loop trajectory corresponding to the i?

controller:

x′

kPtxk − λx′

k−1Ptxk−1 ≤ min
i

∆i
t + ε (10)



for all t ≥ t0 and all k ∈ [t − L, t]. We define
the following candidate Lyapunov function Πt :=
∑L

i=0 P (t+ i) and Vt := x′

tΠtxt. By Lemma 3.2 it
is straightforward to verify that:

Vt = x′

tΠtxt =

L
∑

i=0

x′

tPt+ixt

≤
L

∑

i=0

λx′

t−1Pt+ixt−1 + γ(‖d‖∞) + ε

= λx′

t−1Πt−1xt−1 + γ(‖d‖∞) + ε

+ λx′

t−1[Pt+L − Pt−1]xt−1

≤ λx′

t−1Πt−1xt−1 +

+ λ(M − 1)x′

t−1xt−1 + γ(‖d‖∞) + ε

≤ λ(1 + (M − 1)/(L + 1))x′

t−1Πt−1xt−1

+ γ(‖d‖∞) + ε = λ̃Vt−1 + γ(‖d‖∞) + ε (11)

where we defined λ̃ := λ(1 + (M − 1)/(L + 1)).
Therefore if we choose

L ≥ M
λ

1 − λ

we have λ̃ < 1 and this in turn implies practical
ISS by virtue of (11).

5. HANDLING NON-DECOUPLED
DISTURBANCES

The special form of f̃ allows to compute the
expression of x(t|i) for all i = 1 . . .N ; In words
it allows to perform a “virtual” experiment and
compute the state of the system at time t as if
the i−th controller were in the loop at time t− 1.
This approach, which allows to evaluate the per-
formance of controllers without actually “testing”
them in feedback to the plant, has the drawback
of requiring explicit knowledge of the vector func-
tion g(x, u). When this is not the case, it is still
possible, at the cost of performance degradation,
to modify the performance signal generator ac-
cording to the following set of equations:

δi
t = min Di

subject to: Di ∈ R, Pi = P ′

i ∈ R
n×n

x′

kPixk − λx′

k−1Pixk−1 ≤ Di

∀ k ∈ [t − L, t] : i?k−1 = i

Di ≥ ∆i
t−1 I ≤ Pi ≤ MI.

(12)

∆i
t =

{

∆i
t−1 if i 6= i?t−1

δi
t if i = i?t−1

The signal generator (12) can be applied to gen-
eral nonlinear systems of the form

xt+1 = f̃(xt, ut, dt). (13)

Notice that the performance signal relative to any
controller, is frozen whenever the controller is not
in the loop. If the controller is currently operating,
the performance signal is updated and possibly
increased, by imposing a quadratic dissipation in-
equality over the time samples, among the last L+
1, for which a certain controller was active. By the
above considerations it is clear that Lemma 3.2
still holds with the performance signals generator
(12).

We are now ready to state our main result for this
Section.

Theorem 3. Let the plant be quadratically stabi-
lizable with condition number upperbounded by
M for some controller ki(x). Then, system (1)
controlled by the supervised state-feedback:

ut = ki?
t
(xt)

where i?t is selected according to the supervisory
logic in (12) and (6), is practically Input to State
Stable provided that

L ≥ M
λ

1 − λ
. (14)

2

Proof 5.1. Let ‖d‖∞ be bounded (if d is un-
bounded nothing is left to prove as the ISS
property trivially holds). Notice that the signals
∆i

t generated by (12) are monotone as functions
of time. By virtue of Lemma 3.2, mini ∆i

t ≤
γ(‖d‖∞). Therefore, exploiting (7) the switching
stops in finite time. Let us relabel this as t̃0 and
t0 := t̃0 + L + 1, so that, for all t ≥ t0, we are
guaranteed that ∆i

t computed according to (12)
equals ∆i

t computed according to (8). Hence, the
stability proof can be carried out along the same
lines as in Theorem 2.

The last piece of a priori information that needs
to be removed in order to come up with a fully
data-based method is the upperbound M on the
condition number of the quadratic Lyapunov func-
tion P . If such an M is not known in advance we
may as well adopt an algorithm in which both M
and L are time-varying. We suggest the following
update law:

Mt+1 =

{

Mt if i?t = i?t−1

2 · Mt if i?t 6= i?t−1

An analogous update law can be used for Lt; in
particular the window length will double at each
switching instant. Since switching stops, M and L
will become eventually constant and stability can
be analyzed provided that M and L are arbitrarily
initialized subject to (14).



6. APPLICATION TO NEUROMUSCULAR
BLOCKADE REGULATION

The dynamic response of the neuromuscular
blockade may be modelled by a cascade of
a linear compartmental pharmacokinetic model
(Mendonca and Lago, 1998) whose transfer func-
tion is:

c(s)

u(s)
=

1/τ

s + 1/τ

λ

s + λ

(

a1

s + λ1
+

a2

s + λ2

)

(15)

followed by a nonlinear memoryless output func-
tion:

rt =
100C50

S

C50
S + cS

t

(16)

In the former equations ct is the effect compart-
ment concentration, ut is the drug infusion rate
and rt is the level of neuromuscular blockade,
normalized between 0 and 100. Moreover ϑ

.
=

[a1 a2 λ1 λ2 λ C50 S τ ]′ ∈ R
8 is an uncertain

parameter vector.
A general requirement in anesthesia is to ensure a
suitable level of muscle relaxation in the patient.
To this end, supported by clinical results, 5 ro-
bust PID controllers were designed (Manuelli and
Mosca, 2003) of the following form:

ut = gc

(

1 +
Ts

ci

z

z − 1
+

cd

Ts

z − 1

z

)

et (17)

where et = reft − rt is the difference between
the desired level, set by the anaesthetist, and
respectively the induced level of neuromuscular
blockade. Ts is the sampling time and gc, ci, cd are
the controller parameters. Experimental evidence
suggested that none of the previous controllers
could perform satisfactorily over a broad range
of patients. Therefore it seems appropriate to im-
plement a switching supervisory algorithm which
adaptively selects the controller in the loop.
It is worth noticing that, based on (2), the ad-
missible controllers are nonlinear static state feed-
backs on the contrary, the PIDs in (17) are dy-
namic output controllers. To cope with this dis-
crepancy notice that:

Aϑ(d)ct = Bϑ(d)ut (18)

or equivalently: ∆(d)Aϑ(d)ct = Bϑ(d)δut where
∆(d) = 1 − d and for the PID controllers:

δut = −Si(d)et i = 1, . . . , 5 (19)

with

Aϑ(d) = 1 + a1(ϑ)d + . . . + any
(ϑ)dny

Bϑ(d) = b1(ϑ)d + . . . + bnu
(ϑ)dnu

Si(d) = si0 + si1d + . . . + sins
dns

(20)

where Aϑ(d), Bϑ(d) are the polynomials result-
ing from the discretization of (15) with sam-
pling time Ts and Si(d) is a realization of the
PID in (17). Since ct = NL(ϑ, et, reft), as
from (16), the recursion for et is of the form:
Āϑ(d)NL(ϑ, et, reft) = Bϑ(d)δut where Āϑ(d) =
∆(d)Aϑ(d). Equations (15)-(17) suggest ny=4,
nu=4 and ns=2 as the degrees of polynomials in
(20). Hence, choosing the state vector as: χt =
[et et−1 et−2 et−3 et−4 δut−1 δut−2 δut−3]

′, the
system evolution is described by an equation of
the form: χt+1 = f(ϑ, χt, δut, reft). Notice that
this is not a minimal realization of the I/O map-
ping, however, in this way the supervisor can
switch among static state feedback gains of the
form ut = ki(χt) as specified in (2). Numerically,
the local quadratic stabilizability of the plant in
feedback with at least one of the controllers has
been verified. Unfortunately, the high non linear-
ity of the output function (16) does not allow
to globally fulfill quadratic stability of the closed
loop system. As a consequence, convergence is
guaranteed only locally around the desired equi-
librium. Since the neuromuscular blockade system
(15)-(16) does not allow the explicit knowledge of
the vector function g(x, u) in (1), the approach
described in Sec. 5 was applied.
In the following simulations reft is fixed to a con-
stant value r0 =10% which corresponds to a high
level of neuromuscular blockade typically required
in many surgical activities. The sample time is
fixed to 20 sec.. During the first 10 minutes the
control loop is open because the patient is assim-
ilating the drug bolus dose injected at time t= 0
in order to induce total neuromuscular blockade
in a short period of time.
The switching algorithm parameters are set to
ε= 1 and λ= 0.98. The latter is chosen greater
than the dominant eigenvalue of the closed loop in
such a way that a desired convergence rate could
be satisfied. A drawback of using a non-minimal
realization is the ill-conditioning of the closed loop
system matrix which imposes, in turn, a high
value for the M parameter. Since, accordingly to
(14), this would imply a large past data window,
simulations (see figures 1, 2) were carried out
ignoring the theoretical bound in (14) and L was
fixed to 50 samples which appeared to be a good
compromise between window length and perfor-
mance of the algorithm. The same experiment was
carried out with an output noise of 3% magnitude
of the reference value and the algorithm (see fig-
ures 3, 4) still performs satisfactorily.

7. CONCLUSIONS

A new supervisory switching algorithm is dis-
cussed for uncertain nonlinear systems affected by
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Fig. 1. Figure shows the output (top) and the
input (bottom) of the plant when ε= 1, λ=
0.98 and M= 1013.
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Fig. 2. Figure shows the switching signal (top) and
the performance signals (bottom) relative to
the 5 controllers.
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Fig. 3. Output (top) and input (bottom) are
shown when a 3% amplitude noise is added
on the plant output.

disturbances of unknown bounded amplitude. The
method reduces to a minimum the amount of a
priori information needed in order to be imple-
mented. In particular, in its most general version
can be seen as a fully data-based method. The
key idea is to exploit collected data relative to
each controller in order to build a quadratic Lya-
punov function which is possibly decreasing along
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Fig. 4. Switching signal (top) and performance
signals (bottom) relative to the 5 controllers
are shown for the same setting as previous
figure.

trajectories or at least bounded. As a by-product
of the computation of the Lyapunov function, per-
formance signals are generated which provide an
estimate of the magnitude of disturbances acting
on the plant. Some performance degradation is to
be expected compared to similar Lyapunov-based
methods which required more a priori information
on the plant. Simulations for a comparisons of the
two schemes are currently under investigation.
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