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Abstract: A robust Fault Detection and Isolation (FDI) scheme for uncertain polytopic
linear systems based on optimal H∞ deconvolution filters is discussed. The filter must be
capable to satisfy two sets of H∞ constraints: the first is a disturbance-to-fault decoupling
requirement, whereas the second expresses the capability of the filter to track the fault
signals in a prescribed frequency range. By means of the Projection Lemma, a quasi-
convex formulation of the problem is obtained via LMIs. Finally, a FDI logic consisting
of an adaptive thresholds scheme based on the on-line rms evaluation of relevant system
variables is proposed. The effectiveness of the design technique is illustrated via a
numerical example. Copyright c©2005 IFAC
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1. INTRODUCTION

Fault Detection and Isolation (FDI) techniques are im-
portant topics in systems engineering from the view-
point of improving the system reliability. A fault rep-
resents any kind of malfunction in a plant that leads to
unacceptable anomalies in the overall system behav-
ior. Such a malfunction may occur due to component
failures inside the main frame of the process, sensors
and/or actuators.

The issue of fault detection and isolation has been ad-
dressed by many authors in several books and survey
articles where many different design methodologies
have been exploited (model based approach, param-
eter estimation, generalized likelihood ratio etc.). See
(Frank, 1990; Patton et al., 1989; Qiu et al., 1993) and
references therein for comprehensive and up-to-date
tutorials.

In this paper a novel robust H∞ FDI design procedure
is proposed for polytopic uncertain LTI systems where

the residual generator is a deconvolution filter whose
dynamic does not depend on any nominal plant real-
ization. Such a filter will be designed so as to robustly
decouple the residuals (Fault Detection) from the dis-
turbances and conversely to enhance the sensitivity
to each fault signal by properly separating classes
of different faults (Fault Isolation). The satisfaction
of requirements on disturbances decoupling and fault
sensitivity enhancement leads to the minimization of
standard H∞-norm optimization problems. In particu-
lar, the first consists in minimizing the H∞-norm of
the disturbance-to-residual map whereas the second
corresponds to solve an optimal H∞ tracking prob-
lem where the objective is that the residual optimally
tracks the fault signal over a prescribed frequency
range.

The design methodology presented in this paper is a
two steps procedure. In the first step, the synthesis of
a robust FDI filter via LMI optimization techniques is
described. Via the Projection Lemma and Congruence
transformations (see (Tuan et al., 2003) for details),



the H∞ norm constraints can be converted into quasi-
LMIs feasibility conditions and efficiently solved by
standard semidefinite programming solvers. The sec-
ond step consists in equipping the residual generator
with the capacity of discriminating between real and
false alarms. This is done by resorting to decision log-
ics based on adaptive thresholds, computed on-line on
the basis of time-windowed rms-norms of the residual
responses. It worth pointing out that the use of stan-
dard Luenberger observers based on nominal models
(Casavola et al., 2003), instead of deconvolution filters
as here proposed, would have led to nonlinear ma-
trix conditions and nonconvex optimization problems,
much more difficult to be solved.

2. PROBLEM FORMULATION

Consider the following uncertain continuous-time lin-
ear system described by the following state-space
model

P :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = Ax(t)+Buu(t)+ [Bf Bd ]
[

f (t)
d(t)

]

y(t) = Cx(t)+Duu(t)+ [Df Dd ]
[

f (t)
d(t)

] (1)

where x(t) ∈ R
n represents the state, y(t) ∈ R

p the
measured output, f (t) ∈ R

m a set of detectable fault
signals, d(t) ∈ R

d bounded energy sensors/actuator
disturbances and u(t) ∈ R

r an external manipulable
command. The plant matrices belong to the polytopic
family[

A Bu B
C Du D

]
∈
{[

A(α) B(α)
C(α) D(α)

]

=
s

∑
i=1

αi

[
Ai Bu,i Bi
Ci Du,i Di

]
, α ∈ Γ

} (2)

where B := [B f Bd], D := [Df Dd ] and Γ is the unitary
simplex

Γ :=

{
(α1, . . . ,αs) :

s

∑
i=1

αi = 1,αi ≥ 0

}

W.l.o.g. we can assume that the polytope system is
quadratically stable (see (Boyd et al., 1994)). This
is the case e.g. when the system is pre-compensated.
Notice that such a condition is necessary in order
to satisfy the Bounded Real Lemma (see inequalities
(19)-(20) in Section III). In this case, u(t) plays the
role of a tracking reference signal.

Fault detection and isolation (FDI) relies on the gen-
eration of a signal, referred to as residual, which must
be sensitive to failures, viz. capable to distinguish fail-
ures from disturbances and discriminate failures each
other. Specifically, the design must ensure that resid-
uals are “close” to zero in fault-free situations while
suitably deviating from zero in the presence of faults.
With these premises, the idea is to consider a residual
generator based on a deconvolution filter having the
following general structure.

F :

{
ẋF(t) = AFxF(t)+BFs(t)
z(t) = LFxF(t)+HFs(t) (3)

where xF(t) ∈ R
nF , z(t) ∈ R

p and

s(t) := [yT (t) uT (t)]T ∈ R
p+r (4)

Note that in the above filter structure the information
coming from the reference input u(t) is directly used
for estimation purposes.

Let
r(t) := z(t)− y(t) (5)

be the residual vector. Accordingly, the augmented
system of becomes

G :

⎧⎪⎪⎨
⎪⎪⎩

ẋcl(t) = Aclxcl(t)+Bcl,uu(t)+Bcl

[
f (t)
d(t)

]

r(t) = Cclxcl(t)+Dcl,uu(t)+Dcl

[
f (t)
d(t)

]
(6)

xcl(t) :=
[

x(t)
xF(t)

]
,

Acl :=

⎡
⎣ A 0

BF

[
C
0

]
AF

⎤
⎦ , Bcl =

⎡
⎣ B

BF

[
Df

0
Dd

0

] ⎤⎦ ,

Bcl,u :=

⎡
⎣ Bu

BF

[
Du

Ir

] ⎤⎦ ,Ccl :=
[

HF

[
C
0

]
−C LF

]
,

Dcl := HF

[
Df

0
Dd
0

]
− [

Df Dd
]
,Dcl,u := HF

[
Du

Ir

]
−Du

and the residual vector, depending on disturbances,
fault signals and command inputs, can be rewritten as

r(s) = Gr f (s) f (s)+Grd(s)d(s)+Gru(s)u(s) (7)

in terms of uncertain transfer functions Grd(s), Gr f (s)
and Gru(s). We shall assume hereafter that the number
of faults to be isolated is less than or equal to the
number of outputs. Such an assumption is necessary
because we want to consider simultaneous fault oc-
currences.

The objectives of robust residual generation are par-
tially conflicting each other. In fact, there exists a
trade-off between the minimization of the effects of
the disturbance and reference input on the residual and
the maximization of the residual sensitivity to faults.
The first leads to the minimization of the H∞-norms
of Grd and Gru. Notice that Gru �= 0 here because
of the model uncertainty, whereas it would be zero
in the uncertainty-free case thanks to the separation
principle. The fault sensitivity enhancement would
correspond to the maximization of the minimum sin-
gular values of Gr f , which is a nonconvex function
of the convolution filter matrices. This complication
can be gone around via the Smallest Gain Lemma
(Rank, 1998), which allows the replacement of a max-
imization problem regarding the minimum singular
value with the minimization of a standard H∞-norm
model-matching problem, specifically the minimiza-
tion of the H∞-norm of the difference between the
residuals r(s) and the faults f (s). The latter transfor-
mation involves a certain degree of conservativeness
up an extent that depends on γ f in (10), the lower
the best. For solvability reasons, the above problem
only makes sense over a prescribed frequency range,
Ω := [ωi, ωs]. Frequency weighting is also important
from practical points of view if the disturbances and



faults have known spectra. Then, for prescribed suit-
able levels γd , γu and γ f , the above problems can be
recast in the simultaneous satisfaction of the following
conditions:

max
α∈Γ

σω∈Ω1 (Grd( j ω)) ≤ γd , γd > 0. (8)

max
α∈Γ

σω∈Ω1 (Gru( j ω)) ≤ γu, γu > 0. (9)

max
α∈Γ

σω∈Ω2 (Wf ( j ω)−Gr f ( j ω)) ≤ γ f , γ f > 0.(10)

Note that conditions (8) and (9) translate into the
robust decoupling of the residual w.r.t. disturbances
and reference inputs in the frequency interval Ω 1,
whereas condition (10) means that, in the frequency
interval Ω2, r(s) robustly tracks a filtered version of
the fault signal, Wf (s) f (s), with Wf (s) stable appro-
priately chosen. The detection and isolation problems
can be recast into the following multi-objective H∞
optimization problem:

Optimal FDI design problem (OFDP) - Given posi-
tive reals a, b and c, find a filter realization F(s) such
that

min
F(s)

aγd +bγ f + cγu

subject to

max
α∈Γ

∥∥F(s)Psd(s)−Pyd(s)
∥∥

∞ ≤ γd , (11)

max
α∈Γ

‖F(s)Psu(s)−Pyu(s)‖∞ ≤ γu, (12)

max
α∈Γ

∥∥Wf (s)− (F(s)Ps f (s)−Py f (s))
∥∥

∞≤γ f (13)

where Psd(s) :=
[

Pyd(s)
0

]
, Psu(s) :=

[
Pyu(s)

Ir

]
,

Ps f (s) :=
[
Py f (s)

0

]
.

Constants a, b and c are used to trade-off between the
conflicting requirements (11), (12) and (13).

The second important task for FDI consists in the eval-
uation of the generated residuals. One widely adopted
approach is to choose a threshold Jth > 0 and use the
logic

Jr(t) > Jth ⇒ faults
Jr(t) ≤ Jth ⇒ no faults (14)

for fault detection and

Jr,i(t) > Jth,i ⇒ i-th fault
Jr,i(t) ≤ Jth,i ⇒ without i-th fault (15)

for fault isolation where

Jr(t) =

√
1
t

Z t

0
rT (τ)r(τ)d τ (16)

See (Frank et al., 1997) for a detailed discussion
about this index and similarly for Jri(t). Details and
properties of the detection and isolation logic used in
this paper will be given in next Section 4.

3. LMI FORMULATION

The design of the residual observer (3) is accom-
plished by recurring to the above OFDP optimization
problem. Here it will be shown, following similar lines
as in (Tuan et al., 2003), that OFDP can be refor-
mulated as an LMI optimization problem when the
frequency constraints (11) and (13) are replaced by
an equivalent set of µ-parameterized LMI (quasi-LMI)
feasibility conditions

To this end, let a minimal state-space realization of the
tracking filter Wf (s) be given by

Wf (s) :=
[

Ar Br, f

Cr Dr, f

]

while

Psd (s) :=

⎡
⎣ A Bd[

C
0

] [
Dd
0

] ⎤⎦ ,Psu(s) :=

⎡
⎣ A Bu[

C
0

] [
Du
Ir

] ⎤⎦ ,Ps f (s) :=

⎡
⎣ A Bf[

C
0

] [
Df
0

] ⎤⎦

are the state-space realizations of Psd(s), Psu(s) and
Ps f (s) in (11), (12) and (13). It follows that W f (s)−
(F(s)Ps f (s) −Ps f (s)) can be realized as⎡
⎢⎢⎢⎢⎢⎣

Ar 0 0 Br, f

0 A 0 Bf

0 BF

⎡
⎣ C

0

⎤
⎦ AF BF

⎡
⎣ D f

0

⎤
⎦

Cr −HF

⎡
⎣ C

0

⎤
⎦+C −LF −(HF

⎡
⎣ D f

0

⎤
⎦−D f )

⎤
⎥⎥⎥⎥⎥⎦=:

⎡
⎢⎢⎢⎢⎢⎢⎣

Ã 0 B̃ f

BF C̃ AF BF

⎡
⎣ D f

0

⎤
⎦

−L̃ f −LF −H̃ f

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)
for some matrices AF , BF , LF and HF to be deter-
mined with AF asymptotically stable. Coherently, by
adding the unobservable/uncontrollable modes of A r,
non-minimal state-space realizations of F(s)Psd(s)−
Psd(s) and F(s)Psu(s)−Psu(s) assume the following
form⎡
⎢⎢⎢⎢⎢⎣

Ar 0 0 0

0 A 0 Bd

0 BF

⎡
⎣ C

0

⎤
⎦ AF BF

⎡
⎣ Dd

0

⎤
⎦

0 HF

⎡
⎣ C

0

⎤
⎦−C LF HF

⎡
⎣ Dd

0

⎤
⎦−Dd

⎤
⎥⎥⎥⎥⎥⎦=:

⎡
⎢⎣

Ã 0 B̃d

BF C̃ AF BF

⎡
⎣ Dd

0

⎤
⎦

L̃d LF H̃d

⎤
⎥⎦

(18)⎡
⎢⎢⎢⎢⎢⎣

Ar 0 0 0

0 A 0 Bu

0 BF

⎡
⎣ C

0

⎤
⎦ AF BF

⎡
⎣ Du

Ir

⎤
⎦

0 HF

⎡
⎣ C

0

⎤
⎦−C LF HF

⎡
⎣ Du

Ir

⎤
⎦−Du

⎤
⎥⎥⎥⎥⎥⎦=:

⎡
⎢⎣

Ã 0 B̃u

BF C̃ AF BF

⎡
⎣ Du

Ir

⎤
⎦

L̃u LF H̃u

⎤
⎥⎦

(19)
The addition of the unobservable/uncontrollablemodes
of Ar in (18) and (19) makes it possible to use the same
matrix vertices Ãi for the tracking and the decoupling
objectives. This choice is also necessary in order to ap-
ply the Projection Lemma and obtain a convex design.
For the same reason, note that the filter dimension (the
dimension of AF ) must satisfy

nF = nr (tracking) +n (plant) (Full Order Filter)

Then, by exploiting the Bounded Real Lemma, con-
ditions (8), (9) and (10) are jointly satisfied iff there
exist filter matrices AF , BF , LF and HF , with AF



asymptotically stable, and an auxiliary matrix X =
XT ∈ R

2nF×2nF , X > 0, such that the following matrix
inequalities⎡
⎢⎢⎢⎢⎢⎢⎣

(
Ã 0

BF C̃ f AF

)T

X+X

⎛
⎝ Ã 0

BF C̃ f AF

⎞
⎠ X

⎛
⎜⎜⎜⎝

B̃ f

BF

⎡
⎣ D f

0

⎤
⎦
⎞
⎟⎟⎟⎠
(

−L̂T
f

−LT
F

)
(

B̃T
f

⎡
⎣ D f

0

⎤
⎦

T

BT
F

)
X −γ f I −H̃T

f(
−L̃ f −LF

)
−H̃ f −γ f I

⎤
⎥⎥⎥⎥⎥⎥⎦

(20)⎡
⎢⎢⎢⎢⎢⎢⎣

(
Ã 0

BF C̃d AF

)T

X+X

⎛
⎝ Ã 0

BF C̃d AF

⎞
⎠ X

⎛
⎜⎜⎜⎝

B̃d

BF

⎡
⎣ Dd

0

⎤
⎦
⎞
⎟⎟⎟⎠
(

L̂T
d

LT
F

)
(

B̃T
d

⎡
⎣ Dd

0

⎤
⎦

T

BT
F

)
X −γd I H̃T

d(
L̃d LF

)
H̃d −γd I

⎤
⎥⎥⎥⎥⎥⎥⎦

(21)⎡
⎢⎢⎢⎢⎢⎢⎣

(
Ã 0

BF C̃u AF

)T

X+X

⎛
⎝ Ã 0

BF C̃u AF

⎞
⎠ X

⎛
⎜⎜⎜⎝

B̃u

BF

⎡
⎣ Du

Ir

⎤
⎦
⎞
⎟⎟⎟⎠
(

L̂T
u

LT
F

)
(

B̃T
u

[
Du

Ir

]T

BT
F

)
X −γu I H̃T

u(
L̃u LF

)
H̃u −γ f I

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)
will be negative definite. Notice that, for any given
quadruple (AF , BF , LF , HF ) with AF stable, the above
inequalities are jointly solvable for some symmetrical
matrix X > 0 and for sufficiently large γ f , γd and γu.
As a usual in the multiobjective optimization, a single
matrix X is used in both the LMI conditions (20), (21)
and (22).

By using the Projection Lemma (PL) and following
similar lines of (Tuan et al., 2003), inequalities (20),
(21) and (22) are satisfied iff (see (Tuan et al., 2003)
for details) the following matrix inequalities⎡

⎢⎢⎢⎢⎢⎢⎣

−µ (V+VT ) VT Acl, f +X VT Bcl, f 0 µVT

AT
cl, f V+X −X 0

(
−L̃T

f

−LT
F

)
0

BT
cl, f V 0 −γ f I −H̃T

f 0

0
(
−L̃ f −LF

)
−H̃ f −γ f I 0

µV 0 0 0 −X

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)

⎡
⎢⎢⎢⎢⎢⎢⎣

−µ (V+VT ) VT Acl,d+X VT Bcl,d 0 µVT

AT
cl,d V+X −X 0

(
L̃T

d

LT
F

)
0

BT
cl,d V 0 −γd I H̃T

d 0

0
(

L̃d LF

)
H̃d −γd I 0

µV 0 0 0 −X

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

⎡
⎢⎢⎢⎢⎢⎢⎣

−µ (V+VT ) VT Acl,u+X VT Bcl,U 0 µVT

AT
cl,u V+X −X 0

(
L̃T

u

LT
F

)
0

BT
cl,uV 0 −γuI H̃T

u 0

0
(

L̃u −LF

)
H̃u −γuI 0

µV 0 0 0 −X

⎤
⎥⎥⎥⎥⎥⎥⎦

(25)

are negative definite. Here, V is a slack variable of
proper dimensions and µ ≥ 0 is a scalar that can be
selected to be sufficiently large to render (23), (24) and
(25) feasible

Acl, f :=
(

Ã 0
BF C̃f AF

)
,Bcl, f :=

⎛
⎝ B̃ f

BF

[
Df
0

]⎞⎠ ,

Acl,d :=
(

Ã 0
BF C̃d AF

)
,Bcl,d :=

⎛
⎝ B̃d

BF

[
Dd
0

]⎞⎠ .

Acl,u :=
(

Ã 0
BF C̃u AF

)
,Bcl,u :=

⎛
⎝ B̃u

BF

[
Du
Ir

]⎞⎠ .

By partitioning V and X as 2×2 block-matrices

V =
[

V11 V12
V21 V22

]
, X =

[
X1 XT

3
X3 X2

]

and by taking into account the structure of A cl, f ,
Bcl, f , Acl,d and Bcl,d , (23)-(25) become

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ(V11 +V T
11) −µ(S2 +ST

2 ) V T
11 Ã+ B̂F C̃f + X̂1 ÂF + X̂T

3
−µ(S2 +ST

2 ) −µ(S1 +ST
1 ) V T

12 Ã+ B̂F C̃f +X3 ÂF +X2

(∗) (∗) −X̂1 −X̂T
3

(∗) (∗) −X̂3 −X̂2

(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)

V T
11 B̃ f + B̂F Df 0 µVT

11 µS2

VT
12 B+ B̂F Df 0 µST

2 µS1

0

(
CT

f

−CT
f HT

F +CT
f

)
0 0

0 −L̂T
F 0 0

−γ f I −(HF

[
Df

0

]
−Df )T 0 0

(∗) −γ f I 0 0
(∗) (∗) −X̂1 −X̂T

3
(∗) (∗) −X̂3 −X̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ(V11 +VT
11) −µ(S2 +ST

2 ) V T
11 Ã+ B̂F C̃d + X̂1 ÂF + X̂T

3
−µ(S2 +ST

2 ) −µ(S1 +ST
1 ) V T

12 Ã+ B̂F C̃d +X3 ÂF +X2

(∗) (∗) −X̂1 −X̂T
3

(∗) (∗) −X̂3 −X̂2
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)

V T
11 B̃d + B̂F Dd 0 µVT

11 µS2

V T
12 B+ B̂F Dd 0 µST

2 µS1

0

(
0

CT
d HT

F −CT
d

)
0 0

0 L̂T
F 0 0

−γd I (HF

[
Dd

0

]
−Dd)T 0 0

(∗) −γd I 0 0
(∗) (∗) −X̂1 −X̂T

3
(∗) (∗) −X̂3 −X̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ(V11 +VT
11) −µ(S2 +ST

2 ) V T
11 Ã+ B̂F C̃d + X̂1 ÂF + X̂T

3
−µ(S2 +ST

2 ) −µ(S1 +ST
1 ) V T

12 Ã+ B̂F C̃d +X3 ÂF +X2

(∗) (∗) −X̂1 −X̂T
3

(∗) (∗) −X̂3 −X̂2

(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)



VT
11 B̃u + B̂F Du 0 µVT

11 µS2

V T
12 B+ B̂F Du 0 µST

2 µS1

0

(
0

CT
u HT

F −CT
u

)
0 0

0 L̂T
F 0 0

−γu I (HF

[
Du

Ir

]
−Du)T 0 0

(∗) −γu I 0 0
(∗) (∗) −X̂1 −X̂T

3
(∗) (∗) −X̂3 −X̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

where ÂF = V T
21AFV−1

22 V21, B̂F = V T
21BF , L̂F = LFV−1

22 V21, S1 =
V T

21V
−T
22 V21, S2 = V T

21V
−T
22 V12

X̂ =
[

X̂1 X̂T
3

X̂3 X̂2

]
=
[

I 0
0 V T

21V
−T
22

]
X

[
I 0
0 V−1

22 V21

]

The previous three inequalities are indeed quasi-linear
(µ-parameterized LMIs) in X̂ , S1, S2, ÂF , B̂F ,
V11, L̂F , HF . The next main result summarizes the
above discussion and provides a procedure for solving
OFDP:

Theorem 1. - A feasible solution to the OFDP prob-
lem is obtained by solving a sequence of µ-para-
meterized optimization problems

min
X̂ ,S1,S2,ÂF , B̂F ,V11,L̂F ,HF

aγd +bγ f + cγu

subject to
X̂ > 0

(23)− (25),
evaluated over the polytope vertices (2).

(26)
For any choice of µ > 0, if solvable, the above problem
is convex and admits a unique solution.

Remark 1. The matrices AF , BF , LF , HF , defining the
residual generator can be derived by means of the fol-
lowing procedure. Let us denote X̂ , S1, S2, ÂF , B̂F , V11,
L̂F a solution of (26):

(1) computeV22,V21 (nF ×nF ) by solving the follow-
ing factorization problem

S1 = V T
21V

−1
22 V21,

(2) compute AF ,BF ,LF

AF=V−T
21 ÂFV−1

21 V22,BF =V−T
21 B̂F ,LF =L̂FV−1

21 V22.

4. THRESHOLDS COMPUTATION

The detection and isolation decision logic is based on
the adaptive residual thresholds evaluation proposed
by (Frank et al., 1997). Consider first the detection
problem and let the time-windowed rms-norm

Jr(t) = ‖r‖rms,t =

√
1
t

Z t

0
rT (τ)r(τ)dτ,

Jri (t) = ‖ri‖rms,t =

√
1
t

Z t

0
rT
i (τ)ri(τ)dτ

be a convenient residual measure. Under fault-free
conditions, (7) becomes r(s) = Grd d(s)+Gru u(s) and
via the Perseval’s Theorem one has that

‖r‖rms,t, f=0 = ‖rd + ru‖rms,t
≤ ‖Grd‖∞ ‖d‖rms +‖Gru‖∞ ‖u‖rms,t
= γdν+ γu ‖u‖rms,t

where γ f is the solution of (10) and ν is a convenient
upper-bound to the rms-norm of the worst disturbance
acting on the plant. As a consequence, the following
threshold results

Jth(t) := γdν+ γu ‖u‖rms,t . (27)

Isolation thresholds can be derived in a similar way.
Let us consider the i-th component of residual vector
r(t). When the i-th fault signal is equal to zero in [0,t],
one has that

‖ri‖rms,t, fi=0 =

∥∥∥∥∥ri,d +
m

∑
j=1, j �=i

ri, f j + ri,u

∥∥∥∥∥
rms,t, fi=0

≤ ‖Grd‖∞ ‖d‖rms+
m

∑
j=1, j �=i

∥∥eT
i Gr f e j

∥∥
∞ ‖ f j‖rms,t + γu ‖u‖rms,t

where ei is the canonical basis of R
m and ri,d and

ri,u denote the distinct amounts of ri depending on
disturbances and, respectively, on the external input
u(t). By denoting with ξi j :=

∥∥eT
i Gr f e j

∥∥
∞ the H∞-

norm of the map between the j-th fault to the i-th
residual, a convenient isolation threshold is given by

Jth,i(t) := γdν+
m

∑
j=1, j �=i

ξi j β j + γu ‖u‖rms,t (28)

where β j denotes an upper bound to the rms-norm of
the j− th fault class.

5. AN ISOLATION EXAMPLE

This example aims at illustrating the isolation capabil-
ity of filters designed by the proposed method. To this
end, consider the following uncertain LTI system

P0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(s) =
k1

s2 +θ1 s+θ2
(u(s)+ f1(s))

+
k1

(sT1 +1)(s2 +θ1 s+θ2)
d1(s)

y2(s) =
k3 k1

s2 +θ1 s+θ2
(u(s)+ f1(s))+

k4
sT4 +1

f2(s)

+
k1

(sT1 +1)(s2 +θ1s+θ2)
d1(s)+

k2(sT2 +1)
sT3 +1

d2(s)

where: T1 = 0.1, T2 = 10, T3 = 0.2, T4 = 1, k1 =
1, k2 = 0.2, k3 = k4 = 10 and the parameters θ1,
θ2 belonging to the intervals 0.5 ≤ θ1 ≤ 1.2, 1 ≤
θ2 ≤ 1.5 The signals d1(t) and d2(t) are assumed
to be unitary variance white noises. We are inter-
ested here to isolate faults over the frequency inter-

val Ω = [0, 1] rad
s . Here, we consider the following

output filter (P(s) = H(s)P0(s)) and tracking filter
H(s)= diag([ 1

s+1 , 1
s+1 ]), Wf (s)= diag([ 1

s2+s+1
, 1

s+1 ]).
Note that a polytopic state-space realization of P(s)
consisting of four vertices results. By solving the
quasi-convex problem (26) for a = 1, b = 1,c = 1, it
results that the lowest value of µ ensuring the feasi-
bility of (26) equals µ = 1.2, and the corresponding
optimal values of the objective function terms are γd =
0.0230, γ f = 0.7749 and γu = 1.3351. In this example,
the simulations have been carried out by taking the un-
certain plant parameters constant at one of its vertices
(θ1 = 0.5, θ2 = 1). The detection and isolation capa-
bility of the filter can be observed in Fig. 1, where the
time responses ri(t), i = 1,2 for u(t) = 0 are reported
under superimposed unitary variance white noises d 1
and d2 and for the following faults occurrence

f1(t) =

⎧⎨
⎩

0 t < 5s.
1 5s. ≤ t ≤ 50s.
0 50s. < t ≤ 100s.

, f2(t) =
{

0 t ≤ 50s.
1 50s. < t ≤ 100s.



The residual r(t), fault indexes Jri(t) and thresholds
Jth,i(t), i = 1,2 for an external signal u(t) = 1 −
e−0.01t , t ≥ 0, are finally shown in Figs. 2-3.
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Fig. 1. Residual response, dashed line r1(t), continu-
ous line r2(t) for u(t) ≡ 0
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Fig. 2. Threshold on the first residual Jth,1(t) for u(t)=
1− e−0.01t
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Fig. 3. Threshold on the second residual Jth,2(t) for
u(t) = 1− e−0.01t

6. CONCLUSIONS

A novel solution for Robust Fault Detection and Isola-
tion for Linear Polytopic Uncertain plants via decon-
volution filters has been proposed. By taking advan-
tage of the Projection Lemma and using Congruence
transformations, the FDI problem has been converted
into a quasi-LMI optimization problem. An adaptive
threshold logic has been proposed in order to to dis-
criminate between real and false alarms. A numerical
example showing the effectiveness of the proposed

approach has been described in details and the results
have shown good detection and isolation capabilities.
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