
ACTIVE FAULT DIAGNOSIS IN CLOSED-LOOP
SYSTEMS

Henrik Niemann ∗ Niels Kjølstad Poulsen∗∗,1

∗Ørsted•DTU, Automation, Technical University of Denmark,
Building 326, DK-2800 Kgs. Lyngby, Denmark.

E-mail: hhn@oersted.dtu.dk
∗∗ Informatics and Mathematical Modelling, Technical

University of Denmark,
Building 321, DK-2800 Kgs. Lyngby, Denmark.

E-mail: nkp@imm.dtu.dk

Abstract: Active fault diagnosis (AFD) of parametric faults is considered in connection
with closed loop feedback systems. AFD involves auxiliary signals applied on the closed
loop system. A fault signature matrix is introduced in connection with AFD and it is
shown that if a limited number of faults can occur in the system, a fault separation in the
fault signature matrix can be obtained. Then the single elements in the matrix only depend
of a reduced number of parametric faults. This can directly be applied for fault isolation.
If it is not possible to obtain this separation, it is shown how the fault signature matrix
can be applied for a dynamical fault isolation, i.e. fault isolation based on the dynamic
characteristic of the fault signature matrix as function ofthe different parametric faults.
Copyrightc©2005 IFAC.
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1. INTRODUCTION

The area of AFD (Active Fault Diagnosis) has ob-
tained an increasing interest in recent years, see e.g.
(Campbell and Nikoukhah, 2004; Nikoukhahet al.,
2000) and the reference herein. AFD can result in a
fast fault detection and/or isolation. It is related with
system identification and design of experiments in
which auxiliary signals are used to excitate the system.

In the passive fault diagnosis approach, (Frank and
Ding, 1994; Gertler, 1998), the diagnosis is only based
on existing signals in the system, the control input, the
disturbance and the measurement output. As a con-
sequence of this, parametric faults in the system will
only be detected/isolated when it is excitated by either
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the control input or the disturbance. It is clear that this
will not in general give an optimal fault diagnosis of
the system. Instead, if the system is excitated by auxil-
iary signals, the detection and isolation of parametric
faults can be done in a much more systematic way.
In many cases, the fault diagnosis will also be much
faster.

The AFD also has drawbacks. The system is exci-
tated by auxiliary signals. These signals might disturb
the performance of the system in the fault free case.
Therefore, the auxiliary input needs to be designed
such that the effect on the performance is minimized,
but it should still be possible to detect/isolate paramet-
ric faults in the system.

The main focus in this paper is on the setup of active
fault detection in closed loop system. The fault sig-



nature matrix will be introduced as a central transfer
function in connection with AFD. It will be shown that
the fault signature matrix in some cases can be ap-
plied for direct fault isolation. If a direct fault isolation
cannot be obtained, a dynamic fault isolation needs to
be done. A design problem with respect to optimize
the auxiliary input signals for obtaining dynamic fault
isolation is formulated. An example study is included
to verify and illustrate the results.

2. SYSTEM SETUP

Consider the following generalized nominal system:

ΣP :















z = Gzww + Gzdd + Gzuu

e = Geww + Gedd + Geuu

y = Gyww + Gydd + Gyuu

(1)

whered ∈ R r is a disturbance signal vector,u∈ R m

the control input signal vector,e∈ R q is the external
output signal vector to be controlled,y ∈ R p is the
measurement vector,w∈ R k andz∈ R k are external
input and output vectors. The connection between the
external outputzand the external inputw is given by

w = θz

whereθ is a diagonal matrix

θ = diag(θ1, · · · , θi , · · · , θk)

representing the parametric faults in the system. We
will use the notationθi 6= 0 as a short form for

θ = diag(0, · · · , 0, θi , 0, · · · , 0)

i.e. θ j = 0, j 6= i. Note that the above description
is also applied in connection with the description of
systems including model uncertainties. Closing the
loop fromw to z in ΣP by usingθ, we get

ΣP,θ = Fu(ΣP,θ)

ΣP,θ is given by

ΣP,θ :

{

e = Ged(θ)d + Geu(θ)u

y = Gyd(θ)d + Gyu(θ)u
(2)

Further, let the system be controlled by a stabilizing
feedback controller given by:

ΣK :
{

u = Ky (3)

2.1 Coprime factorization

Let a coprime factorization of the systemGyu(s)
from (1) and a stabilizing controllerK(s) from (3) be
given by:

Gyu = NM−1 = M̃−1Ñ, N,M,Ñ,M̃ ∈ R H∞

K = UV−1 = Ṽ−1Ũ , U,V,Ũ,Ṽ ∈ R H∞
(4)

where the eight matrices in (4) must satisfy the double
Bezout equation given by, see (Tayet al., 1997):

(

I 0
0 I

)

=

(

Ṽ −Ũ
−Ñ M̃

)(

M U
N V

)

=

(

M U
N V

)(

Ṽ −Ũ
−Ñ M̃

) (5)

2.2 Feedback Control

Based on the systemΣP,θ given by (2) and the feed-
back controllerΣK given by (3), the following block
diagram shown in Fig. 1 can be derived.

ΣP,θ

ΣK
�
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- -
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d e

Fig. 1. Feedback control system.

Now, including also a residual vector in connection
with the feedback control system in Fig. 1. A residual
vectorr can be given by, (Frank and Ding, 1994)

r = M̃y− Ñu (6)

Notice, the relation to the innovation signal in an ARX
structure and system identification.

Let’s use the feedback controller described by coprime
factors, i.e.K = Ṽ−1Ũ , in the block diagram. Further,
include also an auxiliary input vectorη in between
the two controller coprime matrices in feedback con-
troller. The block diagram in Fig. 1 includingη and
r is shown in Fig. 2. The two signal vectors,η and
r, will be applied in connection with the active fault
diagnosis.

Based on the feedback system in Fig. 2, it is possible to
give the transfer functions from the two input vectors
d,η to the two output vectorse, r. This is given by:

(

e
r

)

=

(

Ped Peη
Prd Prη

)(

d
η

)

(7)

whereP is given by (Niemann and Stoustrup, 2002):

Ped = Ged(θ)+Geu(θ)U(V −Gyu(θ)U)−1Gyd(θ)

Peη = Geu(θ)(M−U(V −Gyu(θ)U)−1(N−Gyu(θ)M))

Prd = (V −Gyu(θ)U)−1Gyd(θ)

Prη = −(V −Gyu(θ)U)−1(N−Gyu(θ)M)
(8)

Note that the transfer function from the input vectorη
to the residual vectorr is equal to the dual YJBK pa-
rameter, (Niemann, 2003; Tayet al., 1997). The dual
YJBK parameterization gives the parameterization of
all systems stabilized by a fixed feedback controller
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Fig. 2. Controller structure including residual vectorr
and the external input vectorη.

in terms of the stable dual YJBK parameter. The dual
YJBK parameter is normally denotedS. We will useS
instead ofPrη in the rest of this paper.

It is possible to rewriteS = Prη given by (8) into,
(Niemann, 2003):

S(θ) = M̃Gywθ(I − (Gzw+GzuUM̃Gyw)θ)−1GzuM
(9)

(9) gives a direct description of the parametric faults
effect on the closed loop stability. IfSgets unstable for
some faults, the closed loop system will be unstable.
A large S indicates that the faults has a major effect
on the system. A largeS will however also facilitate
the ability to detect the fault. Further,Salso shows the
equivalence between parametric faults and system un-
certainty. This equivalence is very useful in obtaining
systematic methods for fault tolerant control, see e.g.
(Niemann and Stoustrup, 2002).

3. PASSIVE FAULT DIAGNOSIS

It has been shown in (Frank and Ding, 1994) that it
is possible to parameterize all residual generators by
using the YJBK parameterization. All residual vectors
rq for theΣP given by (1) can be described by

rq = QFDI,O(M̃y− Ñu) = QFDI,Or (10)

whereQFDI,O is a stable and proper filter of suitable
order.QFDI,O needs to be designed such that the resid-
ual signal/vectorrq satisfies the following conditions,
(Saberiet al., 2000):

• Fault detection

rq(t) = 0 for θ = 0, ∀(d(t),u(t))
rq(t) 6= 0 for θ 6= 0, ∀(d(t),u(t)) 6= (0,0)

• Fault isolation

rq(t) = 0 for θ = 0, ∀(d(t),u(t))
rq,i(t) 6= 0 for θi 6= 0, ∀(d(t),u(t)) 6= (0,0)
rq, j(t) = 0 for θ j = 0, j 6= i, ∀(d(t),u(t))

Note that the definitions of fault detection and isola-
tion given above are not unique. Depending on how
many faults that can occur simultaneously, differ-
ent definitions can be given, (Saberiet al., 2000). It
is also important to point out that it is not always
possible to designQFDI,O such that it is possible to
obtain exact fault detection and fault isolation. In-
stead, different forms of approximative fault detection
and/or fault isolation need to be considered, (Frank
and Ding, 1994).

4. ACTIVE FAULT DIAGNOSIS

The system given by (7) will now be applied in con-
nection with AFD. Let the system be given by:

ΣFDI :

{

e = Ped(θ)d + Peη(θ)η

r = Prd(θ)d + S(θ)η
(11)

where(d,e) are external disturbance input and per-
formance output vectors, respectively, and(η, r) are
internal auxiliary input and residual output vectors,
respectively. The internal vectors will be applied for
AFD. The systemΣFDI is shown in Fig. 3.

ΣFDI --
- -

rη
d e

Fig. 3. The system setup for active fault diagnosis.

The first important observation ofΣFDI is thatS(θ) is
zero in the fault free case, i.e.

S(0) = 0 (12)

It is clear from this first observation, thatS(θ) is
very important in connection with AFD. Following
the definition offault signaturefor additive faults in
(Massoumnia, 1986),S(θ) will be named as thefault
signature matrixin connection with parametric faults,
(Niemann, 2005a; Niemann, 2005b).

4.1 Direct Fault Diagnosis based on S.

The definition of fault detection and isolation given in
Section 3 in the passive fault diagnosis case takes the
following form in the AFD case:

• Fault detection

S(θ) = 0 for θ = 0
S(θ) 6= 0 for θ 6= 0

• Fault isolation

S(θ) = 0 for θ = 0
S(θ) = S(θi) for θi 6= 0
S(θ) 6= S(θ j) for θ j = 0, j 6= i



It should again be pointed out, that it is possible to
give other definitions for fault isolation, depending on
the number of faults that can occur simultaneously.
In the most common case, it is assumed that only a
single fault occurs by itself, i.e. two faults never occur
simultaneously. Based on this, it is possible to simplify
the fault signature matrixS(θ) given by (9). Let the
closed loop transfer function fromw to zbe given by

Gzw,cl = Gzw+GzuUM̃Gyw

Let the i′th fault occur in the system, i.e.θi 6= 0. The
fault signature matrix in (9) can then be written as

S(θi) =
θi

1− (Gzw,cl)ii θi
M̃GywΞiiGzuM (13)

whereΞii is ak×k zero matrix with 1 at element(i, i)
and(Gzw,cl)ii element(i, i) of Gzw,cl .

Observing that both̃MGyw andGzuM are stable trans-
fer matrices. FurthermoreS(θi) in (13) is stable if the
SISO transfer function

θi

1− (Gzw,cl)ii θi

is stable.

It is clear that the rank of the fault signature matrix
S(θi) in (13) is 1. This means that it should be possible
to get a reduction ofS(θi) by using a pre-filterQFDI,I

and a post-filterQFDI,O aroundS(θi). S(θi) is then
given by

SQ(θi) = QFDI,O
θi

1− (Gzw,cl)ii θi
M̃GywΞii GzuMQFDI,I

(14)
If M̃Gyw is left invertible, it is possible to find a
stable weight functionQFDI,O such thatQFDI,OM̃Gyw

is a stable diagonal matrix. This will result in a row
separation of the faults in the fault signature matrix.
The i′th row of SQ(θi) will only depend on the single
parametric faultθi . In the case whenGzuMQFDI,I is
right invertible, a column separation inSQ(θi) can be
obtained, see (Niemann, 2005a) for further details.

4.2 Dynamic Diagnosis

In the case where a direct fault diagnosis based on
the structure of the fault signature matrixS(θ) can be
done, the auxiliary vector signal is only used to detect
if Si j (θ) 6= 0 or Si j (θ) = 0. If this is not possible, a
dynamic fault diagnosis must be done. In this case,
the auxiliary vector must be designed with respect to
obtain this dynamic diagnosis. An equivalent design
problem has been considered in details in (Campbell
and Nikoukhah, 2004). In (Campbell and Nikoukhah,
2004), it is assumed that the external output and the
measurement output are the same. Using the fault
diagnosis setup, based on the fault signature matrix
as considered in this paper, results in a more general
setup as shown in Fig. 3.

ConsiderΣFDI given by (11) in the fault free case,
θ = 0. The four transfer functions are given by:

Ped(0) = Ged(0)+Geu(0)UM̃Gyd(0)

Peη(0) = Geu(0)M

Prd(0) = M̃Gyd(0)

S(0) = 0

(15)

Let’s again assume that only a single parametric fault
occurs by itself. This is without loss of generality. We
have then the following hypothesis:

H0 : ΣFDI(θ = 0)
Hi : ΣFDI(θ = θi), i = 1, · · · ,k

where the associated transfer functions are given by
(15) forH0 (the fault free case) and by (8) and (13) for
Hi .

The auxiliary input signalη must be designed with
respect to:

• Minimize the effect fromη on the external output
e in the fault free case.

• Maximize the signature fromη on r in the fault
case.

In the case of faults, the degradation of the perfor-
mance due to the auxiliary input is not important. A
degradation of the performance will in general always
be the results of faults in the system. It is here more
important to detect the faults and subsequently handle
the faulty situation in a proper way.

In order to handle both deterministic and stochastic
components in the signals let us for the process,y,
introduce

V̄(y) = lim
T→∞

1
T

Z T

0
g(E

{

yyT}

) dt (16)

where y is a (possibly generated) stochastic pro-
cess with properties (second order) so that the func-
tion exists. Hereg is a scalar valued function (e.g.
det(·), tr(·) or g(X)=CXCT for a specific row vector,
C). Let us for short denotēV as the variance. A mea-
sure of the performace degradation for the nominal
system could be

Js
H0

=
V̄(Peη(0)η)

V̄(Ped(0)d)
(17)

depending on the overal control objective and its rela-
tion to cost function of the type in (16).

A fault detection could be based on a test for variance
increment in the residual, if that is the result of a
fault. However, a fault could also result in a reduction
in variance of the residual. The detection could in
both cases be implemented as a CUSUM detector,
(Basseville and Nikiforov, 1993).

The chance of detecting a fault by means of passive
methods depends on the change in variance i.e. on

V̄(Prd(θ)d)

V̄(Ped(0)d)



If this fraction is close to one the detection might be
difficult. In the case of variance increment the problem
can be reduced if an active method is used and a
stochastic probe (auxiliary) signal,η, is introduced.
For (η independent ofd) the ration becomes

V̄(Prd(θ)d)+ V̄(S(θ)η)

V̄(Ped(0)d)

sinceV̄(S(0)η) = 0. If, on the other hand, the fault
results in a decreased variance, then this method seems
intractable and is not pursuited further in this paper.

In the following we will focus on a method which
is based on the application of a probe signal with a
distinct signature in the residual signal. Such a signal
could be a harmonic function with angular frequency
ω0 and amplitudeA. The indicator function could be

V(y) = | lim
T→∞

1
T

Z T

0
E{y}ejω0t dt| (18)

The amplitude has to be determined such that the
performance degradation in (17) is limited (toc).
In order to maximize the signature,V(S(θ)η), the
frequency,ω0, must be found as the maximum to
S(θ)P−1

eη (0).

5. EXAMPLE STUDY

Consider the following first order system:

Gyu(s) =
k

1+ τs
=

1
τ

k
s+1/τ

(19)

It is assumed that thek and the time constantτ can be
faulty. A parametric fault model is applied given by:

k = k0(1+ θk)

1
τ

=
1
τ0

(1+ θτ)
(20)

wherek0 andτ0 are the fault free parameters. Using
the system description given by (1),ΣP is then given
by the following state space form:

ΣP :































ẋ = −
1
τ0

x +

(

k0
−1
τ0

)

w + k0u

z =

(

0
1

)

x +

(

1
0

)

u

y =
1
τ0

x +

(

0
1
τ0

)

w

(21)

where the loop fromz to w is closed byθ given by

θ = diag(θk,θτ) (22)

Based on the system setup in (21), it is possible to
give the equation for the fault signature matrixS as
function ofθk andθτ. Assume that an observer based
feedback controller is applied. Letf be a stabilizing
state feedback gain andl be a stabilizing observer
gain, i.e.(− 1

τ0
+ k0 f ) and 1

τ0
(−1+ l) are stable, re-

spectively.Scan then be calculated directly from (9).

In the followingk0 = 1 andτ0 = 1 and the controller
is designed withf = −2 andl = −3. This results in

closed loop poles in−3 and−4 for the controller and
observer, respectively. The plant is characterized by an
input disturbance, i.e.Gyd = Gyu and the disturbance
is modelled as white noise with intensity equal 0.1.
Furthermore isGeu = Ged = Gyu.

Assume that the single fault results ink = 1.1 (orθk =
0.1, θτ = 0). In Figure 4 the amplitude spectrum for
S(9,0) (equivalent tok = 10) andPeη(0) is depicted.
θk = 9 is selected for illustration of the effect fromθk

on S. θk = 0.1 is applied in the rest of the example.
Let ω0 be (angular) frequency at which the transfer
function SP−1

eη attain is maximum value. If the task
is to maximize the fault signature inr subject to a
constrained degradation ine under normal operation
(no fault), then the optimal probe signal is a harmonic
with frequencyω0. From Fig. 4 is easily seen that
ω0 ≃ 10 Hz. In Fig. 5 it can also be seen that this
choice is fairly robust.
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Fig. 4. Bode plot fork = 10 showingS(9,0), Peη(0)
and their ratio.
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The results from a simulation experiment are shown
in the Figs. 6, 7 and 8. The fault occurs att = 10 sec
and the probe signal is only active in the period from
5 sec to 15 sec. The quality of the control can be
measured as the variation in the error signal,e (see



Fig. 2 and the signal in 6). As a result ofc = 0.1 the
effect of the probe signal is barely seen in the error
signal before the fault occurs (in the period from 5sec
to 10sec). The detection is illustrated by means of the
accumualted signal

δ = |

Z T

0
re jω0t dt|

in Fig. 8, but a real time implementation should be
based on a CUSUM version.
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Fig. 6. The error signal,e, obtained in the simulation.
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Fig. 7. The residual,r, signal obtained in the simula-
tion.
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6. CONCLUSION
Active fault diagnosis has been applied in closed-
loop systems. A fault signature matrixS has been
introduced. It has been shown how the fault signature
matrix is central in the AFD. The gain ofS is a
direct indication of the effect from the faults on the
system. Based on this matrix, direct fault detection
and fault isolation can be obtained in some cases. In
the cases where direct FDI is not possible, dynamic
FDI must be carried out. An index for the design of
auxiliary input (probe) signals has been formulated.
An example shows how it is possible to detect small
faults using an auxiliary signal with only a minor
performance reduction of the nominal system.
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