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Abstract: An adaptive robust nonlinear steering controller for ship’s course is developed. 
Incorporating the Nussbaum-type function gain and adaptive backstepping algorithm, the 
proposed control strategy requires neither known dynamic parameters of a ship’s model 
nor any knowledge about environmental disturbances. It is proved that the designed 
adaptive robust controller of ship steering can guarantee that the uniform ultimate 
boundedness of the resulting closed-loop system signals. Dynamic performance can be 
improved by an appropriate choice of the design parameters. The effectiveness of the 
presented algorithm has been demonstrated in a simulation involving a ship of 45m in 
length. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The ship course control directly influences the 
manoeuvrability, economy and security of ship 
navigation. An autopilot is a ship’s steering 
controller, which automatically manipulates the 
rudder to decrease the errors between the desired 
heading angle and the actual heading angle. 
Conventional autopilots are based on simple PID 
control. Modern autopilots using the LQG and ∞H -
control design techniques have been reported in the 
literature by a large number of authors (Fossen, 
2000). In addition, a large number of other advanced 
control methods, such as model reference adaptive 
control (Amerongen, 1984) and neural network 
adaptive control (Unar and Murray-smith, 1999), 
have been trialled in ship steering applications since 
the 1980s. So far, the linear Nomoto model has been 
widely accepted in the design of a ship course 
controller. However, in some cases such as a course–
changing manoeuvre calling for large rudder 
movements, ship steering equations of motion are 
highly nonlinear. For a certain nonlinear ship model, 

a state feedback linearization control law can be 
designed (Fossen, 1993), while feedback 
linearization with saturating and slew rate limiting 
actuators has been discussed by Tzeng et al. (1999). 
However they do not possess the robustness to 
changes of parameter and model. In order to maintain 
the desired performance of autopilots, it is important 
for designers to pay attention to the effects on a 
ship’s motions of strong disturbances induced by 
wind, waves and currents, and to the robustness to 
changes in a ship’s dynamics due to cargo loads, 
fouling and so on. A nonlinear adaptive autopilot 
based on backstepping and Nussbaum gain is 
developed for parametric uncertain ship without a 
priori knowledge of control gain (Du, 2004). A 
robust adaptive nonlinear control algorithm for ship 
steering autopilots, based on the projection approach 
and the Lyapunov stability theory, was presented by 
Yang (2000). However, the design procedure requires 
a priori knowledge of the signs of unknown control 
coefficients. 
 
In this paper, an adaptive robust nonlinear control 



 

     

strategy for ship steering is presented based on the 
Nussbaum-type function (Nussbaum, 1983) and 
adaptive backstepping algorithm (Krstic, et al.,1995). 
An adaptive robust nonlinear controller of ship 
steering model with both completely unknown 
parameters and unknown disturbances. Uniform 
boundedness of all signals in the resulting closed-
loop course error system is guaranteed, and control 
law is smooth. Suitable transient performance and 
control action can be achieved by carefully adjusting 
the design parameters. 
 
The paper is organized as follows: Section 2 
discusses nonlinear models for ship steering with 
uncertainties of parameters and disturbances. In 
Section 3 the adaptive robust nonlinear controller of 
ship course-changing is presented. Section 4 contains 
the simulation study while Section 5 summarizes the 
conclusion. 
 
 

2. SHIP STEERING EQUATIONS  
OF MOTION 

 
For small rudder angles, the transfer function 
between the rudder angle δ  and the yaw rate r  of a 
ship can be described by the linear 1st order model of 
Nomoto et al.. 
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K  is the gain constant and T  is time constant. The 
yaw angle )(tψ  is related to the yaw rate )(tr  as: 

)()( trt =ψ� . 
 
To describe large rudder angles and course-unstable 
ships, an extension of the 1st order model of Nomoto 
can be made by defining 
 

δψαψψ KT =++ 3
����               (2) 

 
where α  is the Norrbin coefficient which is 
produced by reverse spiral manoeuvres (Fossen, 
1994). 
 
The ship’s parameters are basically determined by its 
size and shape, and may vary depending on 
operational conditions such as ship speed, draft, trim, 
and water depth. The main environmental 
disturbances are wind, waves and currents, which are 
variable. Accordingly, the following nonlinear ship 
model is suggested in the controller design discussed 
in this paper. 
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where parameters K , T , α are unknown, ωδ  
represents an unknown bounded equivalent rudder 
angle induced by environmental disturbances such as 
waves, wind, ocean currents. ωδ  is represented as 

 
*p≤ωδ                             (4) 

 

where *p  is an unknown positive constant. 
 
To meet the demands of the later design stages, state 
variables are selected as ψ=1x , ψ�=2x , and 

control variable as δ=u . ψ=y  is output 
variable of the ship steering system. Then equation (3) 
is transformed into the following dynamic equations:  
 

21 xx =�                                 (5) 
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where, TKg = , TTTW ]/,1[* α−−= , 
Txxx ],[)( 3

222 =ϕ . In equation (3), 0>T when a 

ship’s line-movement is stable; whereas 0<T  
when a ship’s line-movement is unstable. The sign of 
control coefficient g  is viewed as the unknown in 
this paper. 
 
 

3. DESIGN OF NONLINEAR ADAPTIVE  
ROBUST AUTOPILOT 

 
Ship autopilots can be designed to perform two 
entirely different functions: course-changing and 
course-keeping. Particular consideration is given to 
the course-changing problem in this paper. During 
course-changing operations it is desirable to specify 
the dynamics of the desired heading instead of using 
a constant reference signal. One simple way to do 
this is by applying model reference techniques. The 
ideal performance can be given by reference model 
(8) (Fossen, 1994). 
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where ξ  and nω are the parameters to be 
determined that describe the closed-loop system 
response characteristics; the input rψ  of the 
reference model is the course-changing heading 
command, and the output dψ  of the reference model 
is the desired smooth course-changing signal. A 
second-order model is sufficient to generate the 
desired smooth course signal dψ  with known and 

bounded derivatives dd ψψ ��� , . 
 
The adaptive robust nonlinear controller of course 
tracking of the system (5)-(7) is designed as follows. 
The design consists of 2 steps. 
 
Step 1: Define the course heading error 

dxz ψ−= 11 , which satisfies 



 

     

 

dxz ψ�� −= 21                          (9) 
 

2x  is viewed as the virtual control input. The 

intermediate control function 1φ  for the virtual 

control 2x  to stabilize (9) is defined as 
 

dzcz ψφ �+−= 1111 )(                    (10) 
 

where 1c  is a positive design constant. However, 2x  
is not the actual control, hence a difference between 

2x  and the intermediate control function 1φ , which 

is defined as 122 φ−= xz . Accordingly, (9) should 
be expressed as: 
 

2111 zzcz +−=�                        (11) 
 

Consider Lyapunov function 1V  
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The time derivative of 1V  along the solution of (11) 
is given by 
 

1V� 21
2
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The undesired effects of 2z  on 1V�  will be controlled 
at the next step. 
 

Step 2: Using (9), (10) and the definition for 2z , the 

derivative of 2z  is expressed as 
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In the light of (4) and (14), the time derivative of 
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For notional convenience, let TT
a WW ]1[ ** = , 

TT
dda xcxc ])([ 2121 ϕψψϕ ��� −−= , then (15) 

can be further written as  
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where ** gpb = . 
 
In order to cope with the unknown sign of control 
coefficient g , the Nussbaum gain technique is 

employed in this paper. A differentiable function 
)(kN  is called a Nussbaum-type function if it has 

the following properties: 
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Commonly used Nussbaum functions include: 

))2/cos(()exp( 2 kk π , )cos(2 kk , )sin(2 kk  
(Ge and Wang, 2002). 
 
To complete the later controller design, the following 
lemma relating to the property of Nussbaum gain and 
two useful technical lemmas are given. 
 

Lemma1: (Ge and Wang, 2002) Let )(⋅V  and )(⋅k  

be smooth functions defined on ),0[ ft  with 

0)( ≥tV , ),0[ ftt ∈∀ , and )(⋅N  be an even 

smooth Nussbaum-type function. If the following 
inequality holds: 
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where constant 01 >C , θ  is a nonzero constant 

and 0C  represents a suitable constant, then )(tV , 

)(tk  and τθ dkkN
t

�)(
0�  must be bounded on 

),0[ ft . 
 

Consider Lyapunov function 20V  
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where 0>Γ=Γ T , 0>λ , and aŴ  and b̂  are the 

parameter estimates of *
aW  and *b  respectively to 

be determined later. 
 
Let u  be 
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where 2c  is a positive design constant, ε  is a small 

positive constant and )(kN  is an even smooth 
Nussbaum-type function. 
 
In order to prevent parameter drifts, the following 
adaptive law incorporating a leakage term based on a 
variation of σ -modification is presented. Let the 
parameter adaptation laws be 
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where 0,,, 00 >bWabw σσ  are design constants. 
 

Noting (16), (21), (23), the time derivative of 20V  is  
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Adding and subtracting (27) on the right hand of (26), 
and using (23)-(25), 
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there is 
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The following inequalities can be achieved by 
applying Young’s inequality. 
 

)ˆ()ˆ( 0*
aa

T
aa WWWW −−  

20*
2

*

2
1ˆ

2
1

aaaa WWWW −−−≥         (29) 

)ˆ( *bb − )ˆ( 0bb −  

≥ 2* )ˆ(
2
1

bb − 20* )(
2
1

bb −−            (30) 

 

By using (29), (30) and the property of function 
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ε
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0>ε  and Rx ∈ , equation (28) can be further 
written as:  
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where the constant 021 >C  is defined as 
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Consider the augmented Lyapunov function 2V  
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Then, the time derivative of 2V  is 
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where the constant 022 >C  is defined as 
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Upon multiplication of (34) by tCe 22 , it becomes 
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Let ,/ 2221 CC=ρ  integrating (39) over ],0[ t , then 
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Applying Lemma 1 to (39), it can be concluded that 
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τ� , )(tk  and )(2 tV  are bounded, hence 

aŴ , b̂ , 1z , 2z , 1φ  and the original states 21 , xx  are 

bounded ),0[ ft . According to (Ryan, 1991, Prop. 

2), if the solution of the closed-loop is bounded, then 
∞=ft . All signals of the resulting closed-loop 

system are uniformly ultimately bounded. 
Furthermore, from the definition of )(2 tV  and (37), 
it is concluded that for any given 

))0((2 2
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T  such that, for all Tt ≥ , there is *µ≤z . The 

compact set :{ 2Rzz ∈=Ω  }*µ≤z  can be 

made as small as required by an appropriate choice 
of the design constants for achieving suitable 
transient performance. Hence, the realm of heading 
error dyz ψ−=1  is regulated to a small 

neighbourhood of 01 =z , as shown by the 
following theorem about ship course control systems. 
 
 

Theorem 1: Applied to ship motion nonlinear 
systems (5)-(7) with parametric uncertainty and 
unknown boundedness of environmental 
disturbances, and without a priori knowledge of 
control direction, the adaptive robust nonlinear 
control scheme described by (21)-(25) guarantees 
that all signals of the resulting closed-loop adaptive 
system are uniformly ultimately bounded, and the 
tracking error of a ship’s course can be regulated to 
any prescribed accuracy by appropriately choosing 
the design constants. 
 
 

4. SIMULATION STUDY 
 
This section validates the proposed nonlinear 
adaptive robust autopilot on a ship with a length of 
45m (Unar and Murray-smith, 1999). The model 
equation (3) of the ship at a forward speed of 5 m/s 
has the following set of dynamic parameters: 

31=T s, 5.0=K 1/s, 4.0=α s2. ωδ  is a 

)(8 ⋅×° rand  with )(⋅rand  being zero mean 
random noise with magnitudes of 1 and frequency of 

0.1 rad/s which is a rudder angle that is equivalent to 
disturbances induced by wind, wave, current. In the 
simulation, let the input rψ  of the reference model 
(8) be the square wave signal whose period is 400s 
and magnitude is °30 . The design parameters of the 
reference model are chosen as sradn /05.0=ω , 

8.0=ξ . The control design parameters are selected 

as 05.01 =c , 52 =c , ])5.0,5.0,5.0([diag=Γ , 

5.0=λ , 1.0=bσ , 1.0=wσ , 1.0=ε , 

1.00 =b , [ ]T
aW 001.01.00 = . The initial 

values are chosen as ,0)0(ˆ,0)0()0( 21 === bxx  

π*6.0)0(,]000[)0(ˆ == kW T
a . The 

results of simulation are plotted in Fig. 1 to Fig. 6. 
Fig. 1 shows the actual heading ψ  (solid line) 

quickly tracks the desired heading dψ  (dotted line), 
and the control rudder angle (dashdot-line) is smooth. 

The parameter estimates b̂  and aŴ , Nussbaum gain 

)(kN  (solid line) and its argument k  (dotted line) 
are illustrated in Fig. 2 to Fig. 6., respectively. The 
parameter estimates are convergent. All signals are 
bounded as proven in Theorem 1. From the above 
fact, it might be concluded that the presented 
controller possesses some adaptability and robustness 
with respect to environment disturbances. 
 
 

5. CONCLUSION 
 
In order to improve the performance of ship autopilot, 
this paper firstly discusses a nonlinear mathematical 
model of a ship steering system with parametric 
uncertainties and unknown environmental 
disturbances. Secondly, a nonlinear adaptive robust 
course-changing autopilot is put forward. The main 
advantage of the proposed control scheme is that no 
a priori knowledge is required about the sign of the 
unknown control coefficient due to the incorporation 
of Nussbaum gain into the autopilot adaptive 
backstepping design. In addition, it can deal with the 
uncertainties of both parameters and boundedness of 
environmental disturbances. It has been proven that 
the proposed adaptive robust nonlinear control 
strategy can guarantee the uniform ultimate 
boundedness of the resulting closed-loop adaptive 
system signals and accomplish adaptive tracking 
control of ship course. The effectiveness of the 
proposed method was illustrated using a simulation 
study. 
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Fig. 1. Actual heading angle (—), reference heading 

angle (���), and control rudder angle (– �). 
 
 

 
Fig. 2. Adapting parameter: b̂ . 
 
 

 
 

Fig. 3. Adapting parameter: 1,
ˆ

aW . 
 
 

 
 

Fig. 4. Adapting parameter: 2,
ˆ

aW . 
 

 
 

Fig. 5. Adapting parameter: 3,
ˆ

aW . 

 

 
 
Fig. 6. Nussbaum gain )(kN  (—) and its argument 

)(tk  (���). 
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