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Abstract: An alternative approach for stability analysis of uncertain systems modelled in state-

space is suggested. A new candidate for Lyapunov function and based on it stability condition 

which generalize most of the available results in the field are presented. The applicability of 

this approach is illustrated by an example, treated many times by different approaches. 
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1. INTRODUCTION1

Stability analysis for linear systems affected by 

structured parameter uncertainties is an active and 

important for practice field of research. Even 

though the problem is NP – hard in general, a 

number of more or less conservative tests are 

available. This paper is concerned with the class 

of uncertain systems described by a state space 

model 

,R)A()x,A( /dtd nnx    (1) 

where
p

p R)...( 1  is a vector of 

uncertain parameters. The state matrix depends 

affinely on , i.e. 

pp AAAA ...)( 11    (2) 

and all iA  are fixed matrices. 

Research in this area has been directed mainly to 

the following cases: (i)  is constant, but not 

exactly known, (ii)  is very fast time–varying 

and (iii)  has bounded rate of variation. The 

following assumptions are usually made: 

a) each i  ranges between two extremal values, 

i.e.  

                                                    

1 This research is supported by the Institute of 

 Information Technologies, BAS, under contract 

 No 010069 

,0],,[ iiiii  so vector  is 

valued in a hyper-rectangle p  with 
p2  vertices,  

b) r parameters ,0 pr are time variant, their 

rate of variation being well defined and satisfying 

,0],,[ iiiii rrrr  or 

 similarly,  is valued in another hyper-rectangle 

r  with 
r2  vertices. 

A widely applied approach to solve the stability 

problem is based on Lyapunov theory and the 

usage of fixed structure quadratic in the state 

function .)(),( xPxxv T

If ,)0()( 0PPP  then 

)()0,(),( xvxvxv  is a parameter 

independent, or pi -function. 

The functions 
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are said to be affine and quadratically dependent 

on the uncertain parameters, or simply a-function 

and q-function, respectively. In general, fixed 

structure Lyapunov functions have the form 
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where ,0,)...( 21 iL J  are L – 

tuples of partial degrees in the finite set J.

A distinction is made between quadratic and 

robust stability in the literature. The notion of 

quadratic stability consists in seeking for a pi -

function and it means stability for any (possibly 

infinite) time variation of , which may be quite 

conservative in many applications, except for 

case (ii), mentioned above. Stability tests are 

based on convex optimization over linear matrix 

inequalities (LMI) (Boyd et al., 1994). Robust 

stability means stability for all possible (but 

frozen) values of  in case (i). The third case 

above, which is the most general one, has also 

been studied recently, but to a lesser degree. For 

time-invariant uncertain systems, robust stability 

domains assessed by parameter dependent 

functions are always less conservative. On the 

other hand, robust stability (even for a- or q-

functions) cannot in general be analyzed using 

convex optimization techniques. 

Since the work of (Barmish and De Marco, 

1986), a great deal of interest has been devoted to 

robust stability analysis. Most of the works deal 

with model (1), (2) and are based on a-functions. 

The latter methods differ in the assumptions made 

regarding the uncertainty and in the overbounding 

techniques adopted. E.g., in (Gahinet et al., 

1996), under suppositions a) and b) and using 

multiconvextity arguments, a sufficient condition 

for robust stability based on LMI is proposed. 

Several relaxation techniques to replace 

parametrized LMI by a finite set of LMI are 

developed in (Tuan and Apkarian, 1999). The 

resulting relaxed feasibility problems thus 

become convex and hence can be solved by 

interior point methods. A robust stability method 

for uncertain ( possibly time-varying) system 

described by (1), (2), based on q-functions is 

proposed in (Trofino and Souza, 2001) and is 

referred to as biquadratic stability approach. It 

consists in LMI based sufficient condition for 

biquadratic stability, including quadratic and 

affine quadratic stability as particular cases. By 

considering the companion form of A( ), it can 

be shown that the respective Hermite matrix of its 

characteristic polynomial is a valid Lyapunov 

matrix P( ) ensuring stability. Based on this 

result, it is shown in (Henrion et al., to appear) 

that for robust stability analysis it is enough to 

seek for a parameter dependent function of degree 

at most np. If all matrices iA  are rank-one, the 

degree estimate becomes 2p, independently from 

the system order. Robust stability can be assessed 

by global minimization of a multivariate scalar 

polynomial by means of the proposed hierarchy 

of LMI relaxations. 

The main sources of conservatism for all similar 

approaches consist in: 

- the a priori fixed structure of the Lyapunov 

function, 

- the necessity to apply some convexifying 

techniques, required to put the problem in 

a numerically tractable form,  

- the inevitable treatment of  and  as 

independent uncertainties. 

Another major group of approaches, e.g. 

(Gardiner, 1997), (Rern et al., 1994), (Tesi and 

Vicino, 1990), (Zhang et al., 2002), is based on the 

conversion of the original stability problem into 

nonsingularity analysis of a suitable uncertain 

matrix (Kronecker, Lyapunov or bialternate sum of 

A( ) with itself).The stability domain is 

calculated through a guardian map which involves 

the determinants of the respective matrices. 

This paper is an attempt to suggest an alternative 

approach for stability analysis of uncertain systems 

modelled by (1) and (2). It proposes a candidate 

for Lyapunov function and based on it stability 

condition which to a great extent generalize most 

of the available approaches. 

2. MAIN RESULT 

Let X be some tt  matrix with spectrum 

},...,.{)( 1 tX . The following set 

notations are introduced: H is the set of Hurwitz 

matrices, 

SXXXH T },0:{  and SS  are the 

sets of symmetric and skew-symmetric matrices, 

and

)3()}.1(5.0,,...,1

,,,...,1,

0)(,:{

ttbbs

jitji

XXF jiSji

Consider case (i) under assumption a), i.e. the 

uncertain vector parameter  is time-invariant and 

.p  From now on, it is assumed that 

“ HX )( ”,

 “rank tX )( ”, “ SX )( ”, etc., should be 

understand in sense that X( ) is Hurwitz, has rank 

t and is symmetric, etc., respectively, for all 

.p

It is well known, that 

)4(,)]([rank

,)(

nAIj

RHA

since p  is a compact set, p0  and therefore 

.)0( HAA  Due to the term “ ” the 

above condition has only theoretical significance, 

but it also shows that the original stability problem 

could be suitably restated as a nonsingularity 

problem of increased order thus eliminating .



2.1. Linear matrix (vector) equations 

Consider a linear (in the unknown matrix X)

equation (LME): 
nnT RZYZXYYX ,;    (5) 

For Z general, symmetric or skew-symmetric 

matrix, LME (5) can be put in compact vector 

form, respectively, as 

),(vec)(vec)( ZXYK kk    (6) 

),(vec)(vec)( ZXYL ll    (7) 

),(vec)(vec)( ZXYB bb    (8) 

where ,,,),(vec blkss  denotes operator 

stacking the )1(5.0,2 nnlnk  and 

)1(5.0 nnb  entries columnwise of a 

general, symmetric or skew-symmetric matrix 

)( , respectively, in a suitable way. The 

coefficient matrices in (6) and (7) are known as 

the Kronecker sum of Y with itself and the 

Lyapunov matrix of Y, respectively. It is well 

known (Fuller, 1968) that 

},...,1,,...,1,

);()({)]([

ksnji

YYkYK jiS

and )]([ YL  is comprised of the l distinct 

eigenvalues of K(Y). Therefore, mat 

[vec XXk )](  or mat [vec XXl )](  is 

unique solution to (5) for any respective right-

hand side matrix Z iff 

)9(.)(rankr

)(rank)()(

lYLo

kYKYY

The case when a skew-symmetric solution X is 

searched for represents special interest. 

Theorem 2.1.1. (Savov and Popchev, 2003). 

LME (5) has unique solution SSX  for any 

SZ  iff FY  (3). 

Details of the proof are omitted, but it is based on 

the vector representation (8) of (5).It turns out 

that the coefficient matrix B(Y) is exactly the 

bialternate sum of Y with itself. In (Fuller, 1968) 

it is proved that  

}.,...,1,{)]([ bsYB s    (10) 

Now let )(AY  in (3). Suppose that 

rank kAK )]([  or rank .)]([ lAL  Then 

for any real )]([, Aj  and in 

accordance with (4) this is the iff condition for 

.)( HA  The Lyapunov functions 

,,,)],([vecmat

)(,)(),(

HZrksX

PxPxxv
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 ensuring robust stability for the uncertain system 

(1), (2) are obviously not structurally fixed. 

2.2. Generalized Lyapunov function 

Let SSX  and C be some (possibly parameter 

dependent) nn  matrices. Consider the uncertain 

time invariant matrix 

)()()]([)( ACXgG ij  and the 

associated with it parameter dependent matrix 

,)]([]),([ PfPG ijF   (11) 

where for ,,,...,1, jinji

),()()( jijiijijij ggf

),()1()()1()( jijiijijji ggf

)1(][ nn

ij R   is arbitrary real vector and 

SP  is arbitrary (possibly parameter dependent) 

matrix. Denote by 
*

 the particular case 

when .jiij

Theorem 2.2.1. The uncertain system (1), (2) is 

robustly stable, i.e. ,)( HA  if and only if 

there exist matrices SPCSX S ,,  and 

vector , such that  

)12(.0)(]),([]),([)(

)())(()(

APGPGA

ACCAL

TT

TT

FF

If condition (12) holds, the function 

xPGGxx T

g ]}),([)({),(v F  is a 

Lyapunov function for system (1), (2). 

Proof. Let .)( HA  Since FH , in 

accordance with Theorem 2.1.1., there exists 

unique matrix SSX  satisfying LME (5) for 

)(AY  and any ,SSZ  e.g. 

).()]([ CACAZ T
 Then (5) can be 

rewritten as 

.)()]()[()()( SGACxACX T

This implies 

.,]),([

)()()()(

SPSPG

fgf jiijjiijij

F

Consider the matrix inequality (12), which can be 

always guaranteed by suitable choice of matrices 

C, P and vector . E.g. 
*,0P

and ,HC  or  

0)()](,0[0 PPCX F and

,0)()()()( APPAT
 or for any C, 

 and 0)(P , such that 0)(L  ( )(P

is independent from )(G ), etc. This proves the 

necessity part. 

Let (12) holds for some )(A  and let also 

]),([ PGF  be taken as in (11). Condition (12) 

can be rewritten as 



S

T

T

PGA

ACXAL

]}),([)(

)())(({2)(

F

S

T PGACXA ]}),([)()){((2 F

S

T PGGA ]}),([)(){(2 F

0)]()([2 S

T RA (13)

where ])()[(5.0)( T

S denotes the 

symmetric part of matrix )( . From the 

definition of ]),([ PGF in (11) it follows that 

SR )(  for all p , including the 

uncertainty free case ( )0 . Therefore, 

,0)0(R  due to .)0( HAA  Since 

0)(L , it follows that rank ,)( nR

which for this class of uncertain systems is 

equivalent to 0)(R . As a consequence 

,)( HA  which proves the sufficiency part. 

Obviously v xRxx T

g )(),(  is a valid 

Lyapunov function for system (1), (2) under 

condition (12). 

Theorem 2.2.1 includes most of the available 

robust stability analysis approaches as particular 

cases which becomes evident from the following. 

1) For X + C = 0 and )(PP , one has 

,0)(G )()](,0[ PPF and a 

standard parameter dependent function with fixed 

structure xPxT )(  is searched to ensure 

condition (12). 

2) Suppose that rank nR )(  and unique 

matrix SSX  is searched for, such that LME 

(5) be satisfied for )(TAY  and arbitrary 

11 ZZZ T
. This in accordance with 

Theorem 2.1.1, is equivalent to nonsingularity of 

matrix )]([AB . Then, (5) can be rewritten as 

SGAAZX )()()]([ 1

1

1  and for 

*

1 ,),( HCCAZ  and 0P ,

one has  

.0)(0)0,0(

),()()()(1

L

GACXG

F

The proposed parameter dependent function 

),(v xg  has a structure, which enables some 

extensions in robust stability analysis. As it was 

already said, the case 0CX  is only a 

particular one. Suppose that X and C are some 

parameter dependent matrices. By means of a 

suitable choice for them, vector  and matrix 

)(PP  it becomes possible to get more 

chances to convexify condition (12) (in the sense 

of (Gahinet et al., 1996) or (Tuan and Apkarian, 

1999)), in comparison with the standard robust 

stability approach based on functions ),(v xa  or 

),(v xq . Note also, that the vector form (8) of 

LME (5) can be suitably used to show that for 

)(AY  a solution vector (not even unique) 

vec )(Xb  exists for some (not all) right-hand side 

vectors, by applying the solution of uncertain 

systems of linear equations approach. 

As far as time-varying (with bounded rate of 

variation) uncertain systems are considered, the 

proposed structurally fixed version of the function 

),(v xg is suitable for the application of the 

procedures presented in (Gahjinet et al., 1996), or 

Trifino and Souza, 2001). The advantages outlined 

above for time-invariant uncertain systems are 

retained in this case as well. 

3. UNCERTAIN SYSTEMS OF LINEAR 

EQUATIONS 

Consider an interval systems ][][ zyX , where 

[X] and [z] are mm  and 1m  interval matrix 

and vector, respectively. The set of all possible 

solutions is  

}],[],[:{ zXyzzXXyD . This 

model supposes that the entries of [X] and [z]

represent independent uncertainties. In many 

engineering and control problems one faces the 

case when these entries depend on a single interval 

vector ,  where  is a compact set, e.g. a 

polyhedron p . Define the augmented 

1)1( p  vector 
T)1( . Such an 

uncertain system is modelled as 

)14(,...,1

,,,
1

mi

dzcxzyx iiijiji

m

j

jij

where ijc  and id  are given real fixed row vectors. 

Then (14) is called an uncertain linear system with 

dependent coefficients, or simply a parametrised 

linear system (PLS). Note that when )(A  has an 

affine structure, i.e. 

pp AAAA ...)( 110  the vector 

equation (1) exactly matches the PLS (14).  

The solution set is 

)}.()(,:{)( zyXyD

Obviously PLS can be viewed as interval systems 

as well, but in general this leads to contraction of 

. One of the problems dealt with in interval 

analysis is to get an outer estimation )(*D  of 

the interval hull of )(D , i.e. )()( *DD ,

guaranteeing that any solution of the PLS lies 

within some enclosure set, e.g. ph . A 



fundamental necessary and sufficient condition 

for )(Dy  is 

0)()( zyX .

 A significant number of approaches are 

developed to solve the problem for both interval 

and PLS. Among them one should mention the 

application of the interval Gauss-Seidel method in 

(Popova, 2000), (Shary, 2001) and the procedure 

of consecutive uncertain parameters elimination 

in (Alefeld et al., 2003). An important fact 

concerning PLS(1) is that it is required to find 

some set )(*D thus guaranteeing that )(D  is 

not empty. 

4. EXAMPLE 

Consider the uncertain time – invariant system 

(1), where 

121

2

11

421

030

102

)(A .

This example is oftentimes treated and it can be 

seen that the exact stability domain 
*

2 , is 

described as 75.11  and 

32 .

case 1 (Lyapunov function with fixed structure). 

Let 0,R . Consider the matrix 

0],[),()( ijij ccCCAG  for 

)2,2(),( ji  and 22c . For any 

.)(, SG  Let 
*

 and P be the 

solution to the fixed Lyapunov equation 

2
1

)( AAPAPA TT
. Condition (12) 

becomes 

0)()(2

)()()()(2

NM

PAPACAA TT

where ][)()()( ij

T nPAPAN .

Since )(M  has the same structure as C with 

2

322m , provided that 30 23

and for 0)(
1221

2

3 n , one gets a 

convex with respect to  problem. It turns out 

that for 7499.11000,10 1

9

1

and 0)(,999.2500 2 L  in (12). 

The upper bound for  is practically the exact 

one, while the lower one is absolutely satisfactory 

and much better in comparison with the available 

results for this case. Note that neither relaxations, 

nor solutions to LMI are required in this case. 

case 2 (Lyapunov function with not fixed 

structure). Consider matrix 

0,

,),()()(

R

XXAIXG T

.

It is desired to justify the existence of matrix X

such that SG )(  and 

rank
*

2,3)(A . If this is so, for 

0]),([0,* PGFP  and 

inequality (12) will be satisfied, thus generating 

the necessary and sufficient stability condition. 

The symmetry condition for )(G can be 

rewritten in the form (14) as 

0)1(

)2()5(

232

1321221

x

xx

0)26( 132 x

)2(

)7()1(

2

2321121 xx

Let 013x . Application of the Gauss-Seidel 

approach for the reduced PLS results in  

231

1

2112 )1()5( xx ,

)]2(

)1[()7(

2

121

1

2123 xx
.

Let ]3,3[12x  and ]1,1[23x . The right-

hand sides of the reduced PLS are convex in 

and therefore they achieve their extremal values at 

the respective vertices. It can be easily seen that for 
*

2  and 0  the PLS has a solution 

and therefore SG )( .

For 
*

2  one has 02 11  and 

03 22 . Consider the triangular 

matrix 

1)2()1(

010

001

)(
1

22

1

11

T

and the matrix product 

1

1

2

341

2

11

)(00

030

102

)()( AT ,

where 13 1 and 14 4 .

For 
*

2 ,

rank 3)(rank3)()( AAT .

Application of the proposed here approach for 

stability analysis of uncertain systems results in 

determining the exact stability domain for  in 

this case. 

5. CONCLUSION 



An attempt to generalize most of the available 

approaches for stability analysis of uncertain 

systems is made. The main contribution is due to 

the derived here candidate Lyapunov function 

which includes the available similar functions as 

particular cases. The search for a solution to a 

PLS can be viewed as an alternative to the 

guardian map approach in stability analysis. The 

applicability of the proposed method is illustrated 

by an example. 
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