
A DISTRIBUTED ALGORITHM FOR ON-LINE
DIAGNOSIS OF PLACE-BORDERED PETRI NETS 1

Şahika Genç, St́ephane Lafortune∗

∗Department of Electrical Engineering and Computer Science,
University of Michigan, 1301 Beal Avenue, Ann Arbor, MI

48109-2122, USAstephane,sgenc@eecs.umich.edu

Abstract: A new distributed algorithm for on-line fault detection and isolation of discrete-
event systems modeled by Petri nets is presented. The algorithm is applicable to systems
modeled in a modular manner by means of place-bordered Petri nets, i.e., Petri nets
with common places but distinct transitions. These Petri nets have transition labeled
with events; fault events are modeled as transitions labeled with unobservable events.
It is assumed that the diagnoser modules are able to communicate in real-time during
the diagnostic process. A merge function is defined to combine the individual diagnoser
states and recover the complete diagnoser state that would be obtained under a monolithic
approach.
Copyrightc©2005 IFAC

Keywords: Fault diagnosis, distributed algorithms, Petri nets, software implementation.

1. INTRODUCTION

This paper addresses the problem of detecting and
isolating faults or other significant events in dynamic
systems that can be modeled as a set of interacting
discrete-event modules. The events to be detected and
isolated (referred to as “faults” hereafter) are mod-
eled as unobservable events in the respective system
modules. Fault detection and isolation methodologies
based on the use of discrete-event models have been
successfully used in a variety of technological sys-
tems ranging from document processing systems to
intelligent transportation systems; see (Lafortuneet
al., 2001) and the references therein.

The methodology termed the “Diagnoser Approach”,
introduced in (Sampathet al., 1996) and subsequently
extended in several works including (Debouket al.,
2000), is of particular relevance to the present paper.
The key feature of the Diagnoser Approach is the use

1 This research is supported in part by NSF grants ECS-0080406,
CCR-0082784 and CCR-0325571, by ONR grant N00014-03-1-
0232, and by grant from the Xerox University Affairs Committee.

of a special discrete-event process called thediag-
noser. The diagnoser is built from the system model
and is used to (i) test the diagnosability properties of
the system and (ii) perform on-line monitoring of the
system for the purpose of fault diagnosis. The above
references regarding the Diagnoser Approach are all
based on the use of automata models for the sys-
tem under consideration, leading to the construction
of automata diagnosers. Recently, a diagnoser-based
methodology for on-line monitoring of discrete-event
systems modeled by Petri nets was proposed in (Genc
and Lafortune, 2003). As in (Sampathet al., 1996),
diagnosers are used for on-line monitoring; however,
Petri nets - not automata - are used to represent the
transition structures of these diagnosers. The use of
Petri nets offers potential advantages over automata
such as compactness of the transition structure and
distributed nature of the state.

This paper builds on and extends the results in (Genc
and Lafortune, 2003). The work in (Genc and Lafor-
tune, 2003) deals with systems described by (i) mono-
lithic models, leading tocentralizedPetri net diag-

nosers, and (ii) models composed oftwo Petri nets
sharing a set of common places, leading to a dis-
tributed diagnosis algorithm with communication ab-
breviated as “DDC-2” hereafter.2 In this paper, we
consider the case of modular systems consisting of
a setof place-bordered Petri nets and present a new
algorithm that extends DDC-2 to the case of multiple
modules. The extension of DDC-2 to multiple mod-
ules and in particular the associated correctness proof
of the new algorithm are non-trivial extensions of the
results in (Genc and Lafortune, 2003).

Petri net models have been employed to solve prob-
lems of state observability, system monitoring, alarm
analysis, and fault diagnosis in several works, in-
cluding (Sifakis, 1979; Giua, 1997; Hadjicostis and
Verghese, 1999; Benvenisteet al., 2003; Boel and
Jiroveanu, 2004). However, to the best of our knowl-
edge, reference (Genc and Lafortune, 2003) and this
paper are the first to explore the extension of the
Diagnoser Approach of (Sampathet al., 1996) to
Petri net models. Systems possessing modular struc-
tures are receiving more and more attention in the
recent literature on diagnosis, verification, and control
of discrete-event systems; see, e.g., (de Queiroz and
Cury, 2000; Suet al., 2002; Benvenisteet al., 2003;
Contantet al., 2004). The suitability of Petri nets to
model distributed systems was a key motivation for the
use of Petri net structures in the work in (Benveniste
et al., 2003) on alarm supervision in telecommunica-
tion networks. The same consideration motivates our
choice of Petri net structures as a means to mitigate
the combinatorial explosion that occurs when modular
models are converted to monolithic ones.

The remainder of this paper is organized as follows.
We present in Section 2 our new distributed algo-
rithm with communication, abbreviated DDC-M, for
diagnosing systems composed ofM modules,M ≥ 2.
Results about the correctness of the DDC-M are pre-
sented in Section 3. In Section 4, we briefly present the
software implementation of DDC-M in MATLAB . Fi-
nally, some concluding remarks are given in Section 5.

2. DISTRIBUTED DIAGNOSIS WITH
COMMUNICATION

In this section, we study the problem of distributed
diagnosis with communication. We are interested in
the case where the system consists of a set of modules
and diagnosers are constructed for each module. We
allow these diagnosers to communicate.

We start with some general definitions. A Petri net
graph is defined asN = 〈P,T,A,w〉, whereP andT
are finite sets of places and transitions, respectively,A
is the set of arcs from places to transitions and from
transitions to places, andw : A→ Z+ is the weight

2 DDC-2 is denoted by DDC in (Genc and Lafortune, 2003); the
“-2” label has been added in this paper for the sake of clarity.

function on the arcs. We denote byW(P, t) the vector
of size equal to the number of places inP and whose
ith column is equal tow(t, pi)−w(pi , t) wherepi ∈ P
andt ∈ T.

A labeled Petri net is defined as(N ,Σ, l ,x0), whereΣ
is the set of events,l : Σ→ T is the transition labeling
function, andx0 is the initial state. A transitiont ∈ T
can fire fromx∈ X, whereX is the state space of the
labeled Petri net, if and only ift is feasible (enabled)
from x. Whent fires, the state transition functionf :
X×T → X gives the resulting state.

Some of the events inΣ are observable, i.e., their
occurrence can be observed (detected by sensors),
while the other events are unobservable; thusΣ = Σo∪
Σuo. The set of fault eventsΣ f is a subset ofΣuo.
We partition the set of faults into disjoint sets where
each set corresponds to a different fault type. This is
because it might not be necessary to detect and isolate
uniquely every fault event, but only the occurrence of
one among a subset (type) of fault events. We denote
by ΣFk the set of fault events corresponding to a type
k fault.

2.1 System Model

The system to be diagnosed is given by a set of place-
bordered labeled Petri netsM = {(Nm,Σm, lm,xm

0) :
m= 1,2, . . . ,M}, where the additional symbolm iden-
tifies themodulein the set andM is the number of
modules. The set of fault events of typek of module
Mm is denoted byΣFk,m. We assume the following
conditions∀Mm ∈ M : (i) ∀Mn ∈ M , Σm∩Σn = /0,
(ii) ∃Mn ∈ M , such thatPm,n = Pm∩ Pn 6= /0, (iii)
∀t ∈ Tm if t puts tokens into or removes tokens from
Pm,n for someMn ∈M , thenlm(t) ∈ Σo,m. Thus, the
modules inM have disjoint sets of transitions but
share at least one place with another module in the set.
The motivation for labeling transitions putting tokens
into or removing tokens from the common places with
observable events is to allow communication between
diagnosers to be triggered by observable events.

Example 1.Consider the valve and load model in Fig.
1, controller model in Fig. 2 and a pump model which
is graphically isomorphic to the valve up to renam-
ing of events and places. In the pump, the events
of the valve are renamed as follows:valveopen to
start pump, closevalve to stop pump, stuckclosed
to pump f ailed o f f , stuckopento pump f ailed on;
places are enumerated with prefixpminstead ofvl. We
take the parallel composition of the valve, pump, load
and controller (not shown here). The valve, pump and
load in Figs. 3, 4, 5 form the set of place-bordered nets
that constitute the overall system model. The places of
the controller in Fig. 2 are the common places between
these place-bordered nets. Figure 6 shows the in-
terconnection between the individual place-bordered
nets. For all the nets in this paper, the filled transi-

tions are labeled with unobservable events. The fault
types are:ΣF1,1 = {stuckopen1, stuckopen2},
ΣF2,1 = {stuckclosed1, stuckclosed2}, ΣF1,2 =
{pump f ailed on 1, pump f ailed on 2}, ΣF2,2 =
{pump f ailed o f f 1, pump f ailed o f f 2}, ΣF1,3 =
{ f ailed o f f}.

vl_1 vl_2

vl_4

vl_3

close_valve

close_valve

close_valve

close_valve

open_valve

stuck_closed_1 stuck_closed_2

stuck_open_1 stuck_open_2

open_valve

open_valve

open_valve

VALVE LOAD

set_point_decr

set_point_decr

set_point_incr

set_point_incr

load_2

load_1

load_3

failed_off failed_off

Fig. 1. The valve and load model.

close_valve

open_valve

c_1

c_2

c_6 c_5

c_4

c_3

CONTROLLER

start_pump

stop_pump

set_point_decr

set_point_incr

Fig. 2. The controller model.

vl_1

t4:cv

t5:ov

t8:so1

t12:sc1

vl_2

t3:sc2 t6:ovt7:cv t11:so2

vl_3

t9:cv t10:ov

vl_4

t1:cv t2:ov

c_5 c_2

c_1

c_4

Fig. 3. Place-bordered net: Module#1.

pm_1

t4:sp

t5:st

t8:fn1

t12:fo1

pm_2

t3:fo2 t6:stt7:sp t11:fn2

pm_3

t9:sp t10:st

pm_4

t1:sp t2:st

c_6 c_3

c_2

c_5

Fig. 4. Place-bordered net: Module#2.

load_1

t5:spd

t6:spi

load_2

t1:spi t3:foff

load_3

t2:spdt4:foff

c_1

c_4

c_3

c_6

Fig. 5. Place-bordered net: Module#3.

Module#1

Module#2

c_2,c_5

Module#3

c_1,c_4

c_3,c_6

Fig. 6. Common places between the modules.

2.2 Communicating Petri Net Diagnosers

2.2.1. Petri Net Diagnosers We construct a Petri
net diagnoser for each module in the setM and
denote the resulting set of diagnosers byMd =
{(Nm,Σm, lm,xd,m

0 ,∆ f ,m) : m= 1,2, . . . ,M}, where∆ f ,m

is the set of fault types ofMd,m. Petri net diagnosers
were first defined in (Genc and Lafortune, 2003). Due
to space limitations, some familiarity with (Genc and
Lafortune, 2003) is assumed in the sequel. Our Petri
net diagnosers differ from those in (Genc and Lafor-
tune, 2003) in terms of structure of message labels. We
present the salient features of these diagnosers.

The diagnoser statexm
d of moduleMd,m ∈ Md is a

matrix of the form


− | − | −
xm

s (i) | xm
f (i) | xm

l (i)
− | − | −




wherexm
s (i) denotes the state in rowi of diagnoser

statexm
d , xm

f (i) denotes the correspondingfault label,
and xm

l (i) denotes the correspondingmessage label.
The state partxm

s (i) of each rowi corresponds to one
possible state ofMm following the occurrence of the
observed sequence of events.

The diagnoser state transition function ofMd,m∈Md

is fd,m : Xm
d ×Σo,m→ Xm

d , whereXm
d is the state space

of Md,m. Given the diagnoser statexm
d ∈ Xm

d and the
observable eventa∈ Σo,m, then fd,m(xm

d ,a) is defined
only if there exists somet ∈ Tm labeled with the
observable eventa and enabled from the state part of
some rowi of xm

d . In that case,fd,m(xm
d ,a) is the listing

of elements in the set

∪u∈Sm(xm
d ,a)URm(u), (1)

where Sm(xm
d ,a) is the set of states with the corre-

sponding fault and message labels reached from the
rows of xm

d by firing transitions labeled with the ob-
servable eventa andURm(u) is the set of states with
the corresponding fault and message labels reached
from u by firing the enabled transitions labeled with
unobservable events. Let there beI rows in xm

d . For-
mally, we have

Sm(xm
d ,a) = ∪1≤i≤I ∪t∈Bm(xm

d (i),a)

{(um
s |um

f |um
l) : um

s = fm(xm
s (i), t), um

f = xm
f (i),

∀Mn ∈M \Mm such thatPm,n 6= /0,

um
l (Pm,n) = (xm

l (i,Pm,n) W(Pm,n, t))},

whereBm(xm
d (i),a) is the set oft ∈ Tm enabled from

xm
d (i) and labeled witha ∈ Σo,m. The definition of

unobservable reach of a (place-bordered Petri net)
diagnoser state is given in (Genc and Lafortune, 2003)
and omitted here. Fault labels are used as in automata
diagnosers to memorize the occurrence of a fault event
in the diagnoser state; see (Genc and Lafortune, 2003)
for further details onxm

f (i). Examination of the current
fault type reveals the status of the different types
of faults: fault(s) of TypeFk did not occur, fault(s)
of Type Fk possibly occurred (“Fk-uncertain state”),
fault(s) of Type Fk occurred for sure (“Fk-certain
state”).

Finally, the xm
l (i) part of each row of the diagnoser

state corresponds to the message label. Message la-
bels memorize the history of token additions/removals
for common places. For convenience, we divide the
message label into different parts where each part per-
tains to common places (if any) between two given
modules. We will need the following notation for pre-
fixes and suffixes of message labels. Supposeym

d =
fd,m(xm

d ,a) for somexm
d ∈ Xm

d and a ∈ Σo,m. Then,
for someMn ∈ M and rowsi, j of xm

d , ym
d , respec-

tively, if ym
l (j,Pm,n) = (xm

l (i,Pm,n) W(Pm,n, t)), then
ym

l (j,Pm,n).P f x = xm
l (i,Pm,n) and ym

l (j,Pm,n).S f x=
W(Pm,n, t).

The module and corresponding diagnoser have the
same Petri net graph. However, the modules do not
have disjoint sets of places and can affect each
other’s states via the common (shared) places. If di-
agnosers are not informed of each others token addi-
tions/removals for the common places, then their state
estimates will be incomplete. We overcome this prob-
lem by defining a communication protocol between
diagnosers, presented next.

2.2.2. Communication Protocol We now formal-
ize our DDC-M algorithm for distributed diagnosis
of communicating Petri net diagnosers. DDC-M is
presented in two parts, called Algorithms 1 and 2,
respectively. Algorithm 1 pertains to diagnoser state
updates and if necessary generation of messages upon
occurrence of an observable event at one module. Al-

gorithm 2 pertains to diagnoser state updates upon
reception of a message from another module. Pseudo-
code descriptions of Algorithms 1 and 2 are given in
the tables below. We provide some explanations for
the different lines in these two algorithms.

Algorithm 1: The outer loop (line 1) considers for the
sake of generality a sequence of observable events.
Consider these events one at a time. The module the
event occurs at is identified in line 2 and called here-
after themastermodule. In line 3, the diagnoser state
of the master module is updated for the observed event
according to the diagnoser state transition function.
Then, all other modules that have common places with
the master module, theneighbormodules hereafter,
need to be considered (line 4). For those neighbor
modules whose common places with the master mod-
ule were affected (addition and/or removal of tokens)
by the execution of the observable event, lines 6-12
need to be performed. (Recall the assumption that
transitions into common places are labeled by observ-
able events.) In lines 6-12, the appropriate message
for the communication from the master module to the
neighbor module is constructed. This message con-
sist of the message labels of the relevant rows of the
master’s diagnoser state, namely the rows for which
tokens were removed and/or added in common places.
Note that each row of the message is composed of
a prefix (previous message label) and a suffix (most
recent update on common places).3 The effect of a
message on the diagnoser state of the neighbor module
is captured by the functionUDSCin line 13, which is
evaluated by Algorithm 2.

Algorithm 2: The algorithm is triggered by the recep-
tion of a message by a given module, which will result
in an update of the diagnoser state at that module. The
new diagnoser state is initialized in line 1. Then, the
algorithm loops over the rows of the prefix part of
the message received (line 2) and over the rows of the
current message label in the diagnoser state (line 3) in
order to find matches (line 4). Each match triggers the
construction of a new row for the module’s updated
diagnoser state (lines 5 to 9). The construction of this
row involves using the suffix of the message received
to update the state of the common places affected and
leaving the states of the other places unchanged (line
5). The fault label of the new row is carried over
from that of the row that triggered the match since
the event involved in the transition is an observable
event (line 6). The suffix of the message received is
appended to the appropriate part of the message label
of the new row (line 7) while the rest of the message
label is carried over (lines 8 and 9). The complete
row constructed as described is added to the updated
diagnoser state (line 11). The listing of all rows con-
structed by the above process for all matches in line 4

3 We have developed techniques for preventing unbounded growth
of message labels; these are not presented here due to space con-
straints.

is the value returned by the functionUDSC. Note that
it is not necessary to perform the unobservable reach
since we assume that transitions out of common places
are labeled by observable events.

Algorithm 1 Distributed Diagnosis with Communication

Require: The sequenceσo1σo2 . . .σoR is observed.
1: for r = 1 : Rdo
2: FindMm such thatσor ∈ Σm,
3: xm

d,r ← fm,d(xm
d,r−1,σor).

4: for all Md,n ∈Md such thatPm,n 6= /0 do
5: if {W(Pm,n, t)|t ∈ Bm(xm

d,r−1,σor)} 6= {0} then
6: Mesgm,n ←{ },
7: for all j=# of rows ofxm

l ,r do
8: Mesgm,n.P f x(j)← xl ,r (j,Pm,n).P f x,
9: Mesgm,n.S f x(j)← xl ,r (j,Pm,n).S f x,

10: Mesgm,n(j)← (Mesgm,n.P f x(j),Mesgm,n.S f x(j)),
11: end for
12: Send all different rows ofMesgm,n,
13: xn

d,r ←UDSC(xn
d,r−1,Mesgm,n),

14: end if
15: end for
16: end for

Algorithm 2 Update of Diagnoser State upon Communication

Require: xn
d,r−1,Mesgm,n

1: Xn
d,r ←{ },

2: for all i = 1 : Number of rows ofMesgm,n.P f x do
3: for all j = 1 : Number of rows ofxn

l (Pc(n,m)) do
4: if Mesgm,n.P f x(i) == xn

l (j,Pc(n,m)) then
5: ys(Pm,n) := xn

s,r−1(j,Pm,n)+Mesgm,n.S f x(i)
ys(P(n)\Pm,n)← xn

s(j,P(n)\Pm,n)
6: yf ← xn

f (j)
7: yl (Pc(n,m))← (xn

l ,r−1(j,Pc(n,m)), Mesgm,n.S f x(i))
8: for all Md,q ∈ (Md \Md,m) such thatPc(n,q) 6= /0 do
9: yl (Pc(n,q))← xn

l ,r−1(j,Pc(n,q))
10: end for
11: Xn

d ← Xn
d ∪

[
ys|yf |yl

]
12: end if
13: end for
14: end for
15: UDSC(xn

d,r−1,Mesgm,n)← Listing of the setXn
d,r

Example 2.In this example we illustrate the applica-
tion of DDC-M. Consider the set of place-bordered
nets of Example 1. Suppose that initially there is only
one token at each of the following places:c1, vl1,
pm1 and load1. Consider the following ordered lists
of places and the common places for states and mes-
sage labels:P1 = {c1,c2,c4,c5,vl1,vl2,vl3,vl4}, P2 =
{c2,c3,c5,c6, pm1, pm2, pm3, pm4}, P3 = {c1,c3,c4,
c6, load1, load2, load3}, P1,2 = P2,1 = {c2,c5}, P1,3 =
P3,1 = {c1,c4} andP2,3 = P3,2 = {c3,c6}. In the mes-
sage label, neighbor modules are ordered in ascending
module numbers.

Then, the initial diagnoser states of the modules are as
follows: x1

d,0 = [10001000|00;10000010|10;1000000

1|01], x2
d,0 = [00001000|00;00000010|10;00000001|

01], and x3
d,0 = [1000100|0]. The only observable

event enabled isopenvalve. If the eventopenvalve
is observed, then applying Algorithm 1,Module#1
finds the next diagnoser state using the diagnoser state
transition function and sends messages toModule#2
and Module#3. Upon reception of the messages,

Module#2 and Module#3 update their current diag-
noser states according to Algorithm 2. Overall, the
state, fault information, and message labels (con-
sistent with the ordering of the rows) of the diag-
noser states obtained by Algorithms 1 and 2 are
as follows. Valve: x1

d,1 = [01000001|01|10 : −10;
01000010|10|10 :−10; 01000100|00|10 :−10]. Pump:
x2

d,2 = [10000001|01|10 : ; 10000010|10|10 : ; 1000

1000|00|10 :]. Load:x3
d,3 = [0000100|0|−10 :]. The

next enabled observable event isstart pump. Upon
its occurrence,Module#2 finds the next diagnoser
state using the diagnoser state transition function and
sends messages toModule#1 and Module#3. After
the observation ofstart pump, the state, fault in-
formation, and message labels (consistent with the
ordering of the rows) of the new diagnoser states
are as follows. Valve:x1

d,1 = [00000001|01|10− 10 :
−10; 00000010|10|10− 10 :−10; 00000100|00|10
−10 :−10]. Pump:x2

d,2 = [01000001|01|10−10 : 10;
01000010|10|10−10 : 10; 01000100|00|10−10 : 10].
Load:x3

d,3 = [0100100|0| −10 : 10]. Upon the occur-
rence of the next observable event the algorithm will
proceed in the same manner to update the respective
diagnoser states.

An examination of the fault labels in the correspond-
ing columns of the above diagnoser states reveals
that: (i) x1

f ,0, x1
f ,1 and x1

f ,2 are bothF1,1− uncertain
(stuckopen1 or stuckopen2 could have happened
but we do not know for sure) andF2,1−uncertain, (ii)
x2

f ,0, x2
f ,1 andx2

f ,2 are bothF1,2−uncertainandF2,2−
uncertain, and(iii) x3

f ,0, x3
f ,1 andx3

f ,2 are normal.

3. RESULTS

We define an operation calledmergethat combines the
diagnoser states of the modules.

Definition 3.(Merge). Given the set of place-bordered
netsM , and the set of corresponding diagnosersMd,
let {xm

d : m = 0,1,2, . . . ,M} be the set of diagnoser
states of the modulesMd,m∈Md after some sequence
of observable events. We define the merge operation
on these states recursively as follows:

(1) Merge of two diagnoser states,Md,m,Md,n ∈
Md. There are two cases:
(a) Pm,n = /0. In this case for all rowsim, in of xm

d
andxn

d, respectively,

(xm
s (im,Pm),xn

s(in,Pn) | xm
f xn

f) ∈
Merge(xm

d ,xn
d)(Pm∪Pn | ∆ f ,m∪∆ f ,n).

(b) Pm,n 6= /0. In this case for all rowsim, in of xm
d

andxn
d, respectively, such thatxm

l (im,Pm,n) =
xn

l (in,Pn,m),

(xm
s (im,Pm),xn

s(in,Pn\Pm) | xm
f xn

f) ∈
Merge(xm

d ,xn
d)(Pm∪Pn | ∆ f ,m∪∆ f ,n).

(2) Let Md,m,Md,n,Md,q ∈Md. Then,

Merge(xm
d ,xn

d,x
q
d) = Merge(Merge(xm

d ,xn
d),x

q
d).

The intuition behind the merge of two diagnoser states
for modules with common places is that composed
states are formed by concatenating rows whose mes-
sage labels match (case (1)(b)). This constraint is
waved when the modules are not coupled, since all
combinations of rows are possible (case (1)(a)).

Theorem 4.DDC-M is correct in the sense that the
merge operation recovers the corresponding mono-
lithic diagnoser state.4

4. SOFTWARE IMPLEMENTATION OF DDC-M

We developed a software implementation of DDC-M
and of themergeoperation5 . All the analysis results
of the examples in this paper were performed using
the software tool.

The software interacts withGraphVizdeveloped by
AT&T to plot the labeled Petri nets and show the di-
agnoser states. Petri nets are loaded by their incidence
matrices using either graphical tools or user created
files. Users can also compose several Petri nets with
a controller as was done for the example in this pa-
per using a graphical interface. The software exploits
MATLAB ’s matrix manipulation functions and search
algorithms together with internal data types such as
structure and cell arrays in order to efficiently imple-
ment thefor-loopsin Algorithms 1 and 2.

Our plan is to use the software tool on comprehensive
Petri net examples in order to get further insight into
the performance of DDC-M.

5. CONCLUSION

We have presented a new algorithm, DDC-M, for on-
line monitoring and diagnosis of modular systems
modeled as a set of place-bordered Petri nets. DDC-
M exploits the distributed nature of the system to
avoid the combinatorial explosion of the state space,
but it requires communication among modules on
the occurrence of events that affect common places.
Many issues remain to be investigated. Among those
we mention: tuning of DDC-M to reduce the size
of messages (labels) and deal with communication
delays; proper partitioning of a system into modules
in order to enhance the performance of DDC-M; and
performance analysis of DDC-M on comprehensive
examples. Regarding the reduction of the size of the
message labels, we make three observations. First,
message labels can be reset to “null” each time the
merge operation is performed. Second, it is possible
to shorten message labels by truncating prefixes that
are the same for all rows. Third, encoding techniques

4 The proof of this result is available at http://www.eecs.umich.edu/
∼sgenc/ifac05/proofthm.pdf.
5 The reader is referred to http://www.eecs.umich.edu/∼sgenc/
ifac05.html.

that keep the message labels at a fixed-size are being
developed.

REFERENCES

Benveniste, A., E. Fabre, S. Haar and C. Jard (2003).
Diagnosis of asynchronous discrete event sys-
tems, a net unfolding approach.IEEE Trans. Au-
tomatic Control48(5), 714–727.

Boel, R. K. and G. Jiroveanu (2004). Distributed con-
textual diagnosis for very large systems. In:Proc.
of the 2004 International Workshop on Discrete
Event Systems - WODES’04. Reims, France.

Contant, O., S. Lafortune and D. Teneketzis (2004).
Diagnosis of modular discrete event systems.
In: Proc. of the 2004 International Workshop
on Discrete Event Systems - WODES’04. Reims,
France.

de Queiroz, M. H. and J. E. R. Cury (2000). Modular
control of composed systems. In:Proc. 2000
American Control Conf.. Chicago, USA.

Debouk, R., S. Lafortune and D. Teneketzis (2000).
Coordinated decentralized protocols for failure
diagnosis of discrete-event systems.Discrete
Event Dynamic Systems: Theory and Applica-
tions10(1/2), 33–86.

Genc, S. and S. Lafortune (2003). Distributed diag-
nosis of discrete-event systems using Petri nets.
In: Application and Theory of Petri Nets, 2003
(Series Lecture Notes in Computer Science). Vol.
2679. Springer-Verlag. pp. 316–336.

Giua, Alessandro (1997). Petri net state estimators
based on event observation.IEEE 36th Int. Conf.
on Decision and Controlpp. 4086–4091.

Hadjicostis, Christoforos N. and George C. Verghese
(1999). Monitoring discrete event systems using
Petri net embeddings.Application and Theory of
Petri Nets 1999 (Series Lecture Notes in Com-
puter Science)1639, 188–207.

Lafortune, S., D. Teneketzis, M. Sampath, R. Sen-
gupta and K. Sinnamohideen (2001). Failure di-
agnosis of dynamic systems: An approach based
on discrete event systems. In:Proc. 2001 Ameri-
can Control Conf.. pp. 2058–2071.

Sampath, M., R. Sengupta, S. Lafortune, K. Sinnamo-
hideen and D. Teneketzis (1996). Failure diag-
nosis using discrete event models.IEEE Trans.
Control Systems Technology4(2), 105–124.

Sifakis, Joseph (1979). Realization of fault-tolerant
systems by coding Petri nets.Journal of Design
Automation and Fault-Tolerant Computing Vol. 3
pp. 93–107.

Su, R., W.M. Wonham, J. Kurien and X. Koutsoukos
(2002). Distributed diagnosis for qualitative sys-
tems. In:Proc. of the 2002 International Work-
shop on Discrete Event Systems - WODES’02
(M. Silva, A. Giua and J.M. Colom, Eds.). IEEE
Computer Society. pp. 169–174.

