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Abstract. Presented is a two step windup prevention scheme with proven stability for
observer based compensators possibly containing signal models for disturbance rejection.
If the undesired effects of input saturation can solely be attributed to badly damped or
unstable compensator dynamics (controller windup), they are prevented by simple
structural measures not increasing the compensator order. Only if the destabilizing
influence of input saturation is attributable to plant windup, additional dynamic elements
are added to the controller. Copyright © 2005 IFAC
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1. INTRODUCTION

In a well damped linear loop, where an input con-
straint is the only nonlinearity, saturation can cause
badly damped or unstable transients. This effect was
originally observed in the presence of integral con-
troller action. During saturation, the (stabilizing)
feedback is interrupted, and consequently, the inte-
grator output can attain enormous amplitudes: it is
winding up. This namesake effect appears not only in
integrating controllers but in all compensators con-
taining badly damped or unstable modes. Since it can
be attributed to the controller dynamics, it is a con-
troller windup. There is a considerable amount of
literature devoted to the prevention of this windup
and basically the approaches boil down to “stabilize
the compensator in case of input saturation” . This
stabilization can be achieved without augmenting the
controller order and nearly all the existing methods
are contained in the generalized treatment by Kothare
et. al (1994). But also in the absence of controller
windup, or if the controller has no dynamic elements
(as in proportional or constant state feedback con-
trol), input saturation can cause badly damped tran-
sients or closed loop instability. This effect is due to

system states that cannot be transferred to their stati-
onary values fast enough because of the input signal
limitation. Obviously in such cases the plant states
are winding up, so that this effect is a plant windup.

Whereas controller windup is removable without or-
der augmentation, plant windup prevention calls for
additional dynamic elements (Hippe and Wurmtha-
ler, 1999). So in a first step, controller windup pre-
vention can be achieved by structural measures. Only
if there is the possible danger of plant windup, additi-
onal dynamics for its removal have to be introduced
in a second step. In the framework of the Conditio-
ning Technique (Hanus et al., 1987), plant windup
was called “short sightedness of the conditioning
technique”, and the measure for its prevention is the
so-called “ filtered setpoint”  (Rönnbäck et al., 1991).
A one step windup prevention scheme was presented
in Teel and Kapoor (1997). It prevents controller and
plant windup at the same time by augmenting the
controller by a plant model.

When considering observer based controllers, the so-
called Observer Technique seems to be the most sys-
tematic approach to controller windup prevention,



since after an application of this observer technique
(Anderson and Moore, 1979, Hippe and Wurmthaler,
1999), the possibly remaining (plant) windup effects
are the same as if static state feedback control with-
out observer had been applied. If constantly acting
disturbances have to be attenuated, either a disturb-
ance observer (Johnson, 1971) or a disturbance mo-
del (Davison, 1976) can be incorporated in the obser-
ver based controller. Using Johnson’s approach, the
observer technique gives controller windup preven-
tion. Johnson’s disturbance observer approach, how-
ever, is not robust. Davison’s approach to compensa-
te constantly acting disturbances is both robust to
plant parameter variations and to changing input lo-
cations of the external disturbances. The standard
observer technique, however, does not give control-
ler windup prevention here.

In this contribution, the modifications necessary to
remove controller windup also in the presence of in-
ternal signal models for disturbance rejection are pre-
sented, and they assure, that the possibly remaining
windup effects are the same as if static state feedback
without signal models had been applied. Thus, the
measures for removing plant windup can be designed
independent of the fact, whether the controller con-
tains an observer and signal models for the robust
disturbance rejection or not. This is also the case in
the one step approach of Teel and Kapoor (1997).

In Section 2 the prevention of controller windup for
observer based controllers is investigated and in Sec-
tion 3, the same problem is solved for controllers
with signal models for robust disturbance rejection.
Plant windup prevention is discussed in Section 4
and Section 5 contains some concluding remarks.

2. CONTROLLER WINDUP PREVENTION FOR
OBSERVER BASED COMPENSATORS

Given a linear, time invariant, stable MIMO system
having state x ∈ ℜn, control input us ∈ ℜm, control-
led variables yC ∈ ℜm, measurements y ∈ ℜp, with p
≥ m, and a completely controllable and observable
state space representation
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where d ∈ ℜρ is a disturbance input. The measure-
ments y are supposed to be subdivided according to
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with y1 ∈ ℜp-κ and y2 ∈ ℜκ, p�0 ≤≤  and the

controlled variable Cy  is supposed to be measurable,

i. e. it is contained in the output vector y.

In view of tracking constant reference signals the
(square) transfer matrix
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is such that ))s(Ndet(  does not have zeros at s = 0.

Located at the plant input there is a nonlinearity
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Let the nominal state feedback be denoted by

)t(Mr)t(u~)t(u +−= (5)

with

)t(Kx)t(u~ = (6)

and
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The control (5), characterized by the feedback inter-
connection us = u, is supposed to give a desired refer-
ence and disturbance behavior, where (7) assures
vanishing tracking errors for step-like reference in-
puts m,,2,1i),t(1r)t(r sii �== .

If not all states are measurable (p < n), one needs a
(stable) state observer
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having order �nn0 −=  with p�0 ≤≤  (i. e it is as-

sumed that only the κ outputs y2 are directly used to
reconstruct the state x) yielding
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in steady state (and for d ≡ 0), if the equation

DCFTTA =−  (10)

holds, if the pair )C,A(  is completely observable, if

the pair )D,F(  is completely controllable, and if no

eigenvalues of A and F coincide (Luenberger, 1971).

When the rows of C2 and T are linearly independent,
the estimate x̂  for the state x is
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For simplicity introduce [ ]2
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= , so that (11)

can also be written as
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Substituting in (6) the state x by x̂  according to (12),
and using this in (5) and (8) one obtains the observer
based compensator
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The following example is chosen to demonstrate a
controller windup, which is not related to an integral
part in the controller or to other signal models for
disturbance rejection.

Example 1. Considered is an observer based state
control for a 3rd order SISO system with
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where 2
C CCC ≡= . The nominal state feedback

[ ]3042K =  assigns all system eigenvalues to s =

-3, and 85/270M =  assures vanishing steady state
errors for reference step inputs. The observer of order

2pnn0 =−=  is supposed to have eigenvalues at s

= -4, and it is easy to check that the matrices
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solve eqn. (10). With these parameters the observer
based compensator (13) is completely parametrized.
The broken line in Figure 1 shows the reference step
response for an unconstrained input signal.

Fig. 1. Reference step responses of the linear and of
the nonlinear loop

When there is an input saturation with 2.0u0 =  at

the plant input, the transient response shown in full
lines in Fig. 1 results. This is a consequence of a con-
troller windup, as the eigenvalues of 

�
TBKF−

(poles of the compensator transfer function) are loca-
ted near the imaginary axis at j8.205.0 ±− . Usually

(controller) windup is said to cause big and long
lasting overshoots. This one is different, but also due
to unfavourable compensator dynamics. ./.

Controller windup can e. g. be removed by the so-
called Observer Technique (Hippe and Wurmthaler,
1999). It consists of inserting a model )u(satu

0us =
of the input saturation at the compensator output, and
of feeding the limited signal )t(us  instead of )t(u

into the observer (8). Due to this, there are no obser-
vation errors triggered by the input saturation and
consequently, the reference behavior of the observer
based loop is the same as if a constant state feedback
(6), (5) of measurable states had been applied (see
also Fig. 2). In a constant state feedback loop there
are no compensator states, so that controller windup
is systematically removed by the observer technique.
The possibly remaining undesired effects of input
saturation are consequently a plant windup.

Example 1 cont.: Applying the observer technique
for controller windup prevention in Example 1 gives
the dotted reference transient in Fig. 1. The windup
effects are completely removed because the undesi-
red effects of input saturation can solely be attributed
to a controller windup in this Example. ./.

3. CONTROLLER WINDUP PREVENTION IN
THE PRESENCE OF SIGNAL MODELS

FOR DISTURBANCE REJECTION

The rejection of constantly acting disturbances mod-
eled by a known qth order signal process
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with unknown initial conditions v0, can be achieved
in two different ways. One is the disturbance observ-
er approach by Johnson (Johnson, 1971). When aug-
menting the plant by a model of the signal process,
its states can be observed and used to counteract the
effects of the disturbances in the controlled variables
yC(t). Controller windup is easily prevented in this
approach by feeding the limited input signal into the
state plus disturbance observer (i. e. by the observer
technique). Johnson’s disturbance accommodation,
however, is neither robust to changing disturbance
inputs nor to plant parameter variations.

Using Davison’s approach instead (Davison, 1976),
one obtains a robust disturbance rejection for all mo-
deled disturbances no matter where they actually at-
tack, and also for modified system parameters (pro-
vided they do not cause closed loop instability). But
applying the observer technique (to the usually ne-
cessary state observer as described above) does not
remove controller windup, since the signal model is
not driven by the plant input signal in Davison’s ap-
proach and thus it cannot be stabilized in case of in-
put saturation. However, when modifying Davison’s
approach as presented in this paper, this becomes
possible.

Davison (1976) suggested to drive a model of the as-
sumed signal process by the tracking error yC(t) – r(t)
and to stabilize the plant augmented by this process
model. This gives robust disturbance rejection for all
modeled signals but also a robust tracking of all such
reference signals. However, the joint disturbance at-
tenuation and tracking for all modeled disturbance
and reference signals may have undesired conse-
quences. If, e. g., constant reference signals and sinu-
soidal disturbances had to be accommodated, the
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standard Davison approach would call for a signal
model with )�s(s)SsIdet( 2

0
2

d +=− . This assures

vanishing tracking errors for step-like reference
inputs and the rejection of sinusoidal disturbances of
frequency 0

� . It would also assure, however, a sup-

pression of step-like disturbances and a vanishing
tracking error for sinusoidal reference signals of fre-
quency 0

� . At one hand, the latter is not required,

and on the other hand, this may have disastrous con-
sequences on the transients for step-like inputs (for a
demonstrating example see Hippe and Wurmthaler,
1985). Therefore, a modified approach is suggested,
yielding the following properties:

(i) Disturbance rejection of all signals modeled by
(14)

(ii) Tracking of constant reference signals such that
only the controlled plant dynamics, characte-
rized by )BKAsIdet( +− , are influential

(iii) Controller windup prevention such, that the re-
maining windup effects of the closed loop are
again the same as if constant state feedback con-
trol without observer had been applied (see also
the block diagram in Fig. 2).

Assume the acting disturbances can be modeled by
(14) with a characteristic polynomial =− )SsIdet( d

0
1q

1q
q �s�s +++ −

− �  and the system (1) is augmen-

ted by the signal model

[ ])t(u)t(u~B)t(yB)t(Sv)t(v s�C� +−+=� (15)

with the (mq,mq) matrix )S(diagS d=  and the

(mq,m) matrix )b(diagB �� =  where, for simplicity
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and �B  as defined in Lemma 1. Assume that the aug-

mented plant with state [ ]TTT vx is completely con-

trollable and observable and that no zero of )s(Ndet

in (3) coincides with a zero of )SsIdet( d− . Since the

state v is directly obtainable from the model (15),
only an observer (8) for the state x is required and it
is assumed for the following, that the observer tech-
nique has been applied, i. e. that )t(u  in (8) is re-

placed by )t(us .

Lemma 1: Given a “nominal”  state feedback (6), (5)
for the non augmented plant (1). With X a solution to
the Ljapunov equation
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define
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and compute the state feedback )t(vK v  such that

v� KBS−  has stable eigenvalues. Then with
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the feedback (5) with
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and M according to (7) gives the above stated proper-
ties (i) through (iii), and the characteristic closed
loop polynomial is

)BKAsIdet( +− )KBSsIdet( v�+− . ./.

Proof: First consider the linear case, i. e. uus = . In-

serting the control (5), (20) in (1) and in (15), one ob-
tains
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Applying the similarity transformation
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to (21) it becomes obvious, that the closed loop char-
acteristic polynomial is indeed )BKAsIdet( +−

)KBSsIdet( v�+− , and that with M according to (7),

there is a tracking of constant reference signals as if
static state feedback (6) and (5) had been applied
(which shows (ii)). Using Rosenbrock’s system
matrix for the disturbance inputs dj in (21) it can be
shown, that all transfer functions from the disturb-
ance inputs dj , j = 1,2,...,ρ to the controlled variables
yCi(t) m,,2,1i �=  contain the polynomial det(sI –
Sd) in the numerator, so that asymptotic disturbance
rejection is assured for all modeled disturbance sig-
nals (i. e. (i) holds).

In the nonlinear case, i. e. when input saturation is
active, the behavior between the output us of the
saturation element and its input u~  (see (20)) is char-
acterized by
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When applying the similarity transformation (22) to
(23) it obtains a form which directly shows that (iii)
holds. ./.

Thus, when applying Lemma 1, the controller wind-
up is also systematically prevented for Davison‘s ap-
proach to disturbance rejection, and the possibly re-



maining plant windup effects are the same as if the
nominal control (5), (6) without state observer and
without disturbance model had been applied.

4. PLANT WINDUP PREVENTION

Using the above controller windup prevention, the
reference behavior of the closed loop is the same as
if constant state feedback without observer had been
applied, i. e. the possibly remaining effects of input
saturation can be investigated by inspection of the
closed loop shown in Fig. 2.

Fig. 2. State feedback with input saturation

Due to the absence of controller states, all possibly
remaining undesired effects of input saturation are
now attributable to the dynamics of the controlled
plant, i.e. they depend on the feedback matrix K.

The loop in Fig. 2 is globally asymptotically stable if
the transfer matrix

B)AsI(K)s(G 1
L

−−= (24)

meets the circle criterion (Vidyasagar, 1993). Here
with the input nonlinearity limited by the sectors 0
and 1, this is the case, if )�j(GL  stays right of a ver-

tical line passing through –1 for SISO systems. If,
however, GL(s) violates the circle criterion, stability
of the nonlinear loop is no longer guaranteed, i. e.
there is the danger of plant windup.

Remark 1. The circle criterion has been chosen as it
gives less conservative results than the requirement
that GL(s) is positive real. Of course also the Popov
criterion could be used to discuss the stability of the
loop in Fig. 2. ./.

Theorem 1. Assume a nominal state feedback (6) s.
th. GL(s) violates the circle criterion. Then linear per-
formance recovery and closed loop stability are guar-
anteed when substituting )t(Mr)t(u~)t(u +−=  in

Fig. 2 by
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where
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and SK  is a “safe”  state feedback such that

B)AsI(K)s(G 1
SLS

−−=  meets the circle criterion. ./.

Proof: Linear performance recovery results, as the
additional dynamics (26) are only excited when satu-
ration becomes active. If so, the transfer behavior
from us to -u is given by
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which shows that (27) contains a stable subsystem
not controllable from us and that the transfer behavior

)s(u)s(G)s(u sL=−  is characterized by the “safe”

state feedback, i. e. one has

== )s(Gˆ)s(G LSL B)AsI(K 1
S

−− . ./.

Thus, windup prevention can be achieved in a two
step procedure.

1.) Remove a possibly existing controller windup (by
the observer technique, and if there is a signal
model for disturbance rejection, by using Lemma
1) and then

2.) If there is the danger of plant windup (i. e. (24)
violates the circle criterion), it can be prevented
by additional dynamics according to Theorem 1.

Remark 2. The suggested two step procedure and
the Teel/Kapoor (1997) approach give identical re-

sults, provided the (linear) feedback �K  for the mod-

el states in the latter approach coincides with the safe

state feedback SK  above (In the Teel/Kapoor ap-

proach, the transfer behavior of the linear part in case

of input saturation is B)AsI(K)s(G 1�L
−−= ). In the

light of this, the two step procedure has the advan-
tage, that additional dynamics are only required if the
danger of plant windup exists, whereas in the Teel/
Kapoor approach, a plant model is always used with
the compensator. If there is no danger of plant wind-
up, K would be a “safe”  state feedback and (26)
shows that for KK S =  the additional dynamics can

be removed from the windup prevention scheme ./.

Example 2. Considered is again the system of Exam-
ple 1, but with an output vector [ ]011CC C −== .

There is an input saturation with 3u0 =  and the

observer based compensator is required to suppress
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sinusoidal disturbances with 9s)SsIdet( 2
d +=− .

The nominal state feedback [ ]71426602702K −=
with M = 3375 gives the reference transfer function
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With the solution X of the equation (17) one obtains
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B �  where [ ]120006150390K v =

assures 2
v� )10s()KBSsIdet( +=+− . With this (19)

gives [ ]17251906419126K x −= . But also after

applying the above measures for controller windup
prevention, the closed loop reference step response
for )t(1)t(r =  is oscillating (dashed lines in Fig. 3).

This is due to a plant windup, indicated by a severe
violation of the circle criterion, since the frequency
response )�j(GL  intersects the negative real axis

left of -1. However, with additional dynamics accor-
ding to (25), (26), and [ ]3042K S =  the step res-

ponse in full lines in Fig. 3 results.

Fig. 3. Example 2 before and after plant windup pre-
vention ./.

5. CONCLUSIONS

Presented is a two step approach to windup preven-
tion in observer based controllers possibly incorpo-
rating signal models for robust disturbance rejection.
This two step technique has the advantage of using
additional compensator dynamics only when there is
the danger of plant windup, indicated by the open
loop frequency response of the nominal state feed-
back loop. Controller windup prevention uses the ob-
server technique and a modification of Davison’s ap-
proach to robust disturbance rejection (Lemma 1).
This facilitates plant windup prevention, as it is now
independent of whether one has a constant state
feedback control with measured states, with observed
states or with signal models for disturbance rejection.

Zaccarian and Teel (2004) demonstrate, that the
Teel/Kapoor approach to windup prevention also
constitutes a systematic solution to the bumpless
transfer problem. The arguments are based on the
target response, characterizing the ideal behavior of
the system after the switch. The bumpless transfer
design goal is formally stated as “ the goal of recover-
ing that response (in an L2 sense) with a bound de-
pendent on the size of the mismatch between the ac-
tual plant state and the ideal target plant state at the
switching time” . In other words, the closed loop
transients after the switching are the same as those
resulting with the nominal controller, given the initial
states at the switching time. Since the presented
scheme gives the same results as the Teel/Kapoor ap-
proach (see Remark 2), it also constitutes a sys-
tematic solution to the bumpless transfer problem
when switching at the input of the saturating element.
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