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Abstract: A system identification method for nonlinear systems with unknown structure 
by means of short input-output data is proposed. This method introduces more general 
model structure for nonlinear systems. Moreover, based on gray-box idea and its salient 
feature with expanding NARMAX (Nonlinear Autoregressive, Moving Average 
eXogenous) modeling, this method integrates different system information. Then GMDH 
(Group Method of Data Handling) method is employed to obtain the model terms and 
parameters. Effectiveness of the proposed method is illustrated by a typical nonlinear 
system with unknown structure and short input-output data. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Simple linear system models are used extensively in 
practice, but they are limited in nonlinear system 
with a dominant nonlinear behaviour. As a number 
of systems are characterized by nonlinear behaviors, 
many researchers were focused on nonlinear models 
developments in order to improve the accuracy and 
performances of models of nonlinear systems. There 
exist several mathematical representations describing 
nonlinear systems, such as the Hammer-stein model 
(Narendra, et al., 1966), the Wiener model (Ljung, 
1999), the feedback block-oriented model (Pottmann, 
et al., 1988), exponential time series models (Ozaki, 
1985), trigonometric and rational models (Billings 
and Chen, 1989), etc. For highly nonlinear processes, 
Eykhoff (1974) introduced a general discrete time 
model, Kolmogorov-Gabor polynomial model. A 
stochastic version was developed by Leontarities and 
Billings (1985). Moreover, GMDH method presented 
by Ivakhnenko (1971) is attractive and it employs the 
Ivakhnenko polynomial model to identify nonlinear 
system. Other selection techniques of the significant 
terms have also been proposed in (Kortmann and 
Unbehauen, 1988; Pottmann, et al., 1993; Boutayeb, 
et al., 1998). Most identification methods (Narendra, 
et al., 1966; Ljung, 1999; Pottmann, et al., 1988; 

Ozaki, 1985; Billings and Chen, 1989; Eykhoff, 1974; 
Leontarities and Billings, 1985; Ivakhnenko, 1971; 
Boutayeb, et al., 1998) have the salient feature in 
certain condition that each of them can be used in the 
system with similar dynamic behaviours. 
 
Among the above identification methods, NARMAX 
model (Leontarities and Billings, 1985) is the genera-
lized nonlinear system form. However, the number of 
estimated parameters in NARMAX model is so large 
that sometimes the identification result is inaccurate. 
Although the identification method of nonlinear 
system via Boutayeb, et al. (1998) can reduce the 
computational requirements to some degree, it is still 
very time consuming. Neural networks is proposed 
and become universal approximators in nonlinear 
system identification (Qin, et al., 1992; Sjöberg, et 
al., 1995; Burke and Ignizio, 1997). Nevertheless, 
neural networks can only resolve existing problems 
for nonlinear function approximation (Sjöberg, et al., 
1995; Burke and Ignizio, 1997). Schoukens, et al. 
(2003) presented a new identification method for 
nonlinear system with a dominant linear behavior 
and it can fast identify system at a low experimental 
cost instead of obtaining the best possible nonlinear 
model. Moreover, GMDH method (Ivakhnenko, 
1971) is attractive for system identification, however 



     

it has the same problem with NARMAX method that 
has a large number of estimated parameters. Genera-
lly, although there are various identification methods 
for nonlinear systems with known structure (Ljung, 
1999), there lack general and efficient methods for 
system identification with unknown system structure 
from short input-output data. Especially, it is 
necessary when a model is needed to approximate 
the actual system mechanism and measurements 
without known structure. Thus, a new identification 
method for nonlinear system with unknown structure 
by short input-output data is of importance. 
 
The aim of this paper is to model nonlinear systems 
with a dominant nonlinear behavior, approximating 
system mechanism and at the same time obtaining 
good measurements approximation. In the idea of 
exponential-trigonometric generalization, polynomial 
NARMAX model is modified. And GMDH method 
is used to estimate the parameters of the proposed 
model structure. The rest of the paper is organized as 
follows. Section 2 is dedicated to the presentation of 
the proposed model structure. In Section 3 the 
method of structure identification and parameters 
estimation is described. In Section 4 the proposed 
method is applied to a typical nonlinear system with 
unknown system structure and short input-output 
data. Finally, we make some conclusion in Section 5. 
 
 

2. MODEL STRUCTURE 
 
According to Leontarities and Billings (1985), 
NARMAX structure is a general parametric form for 
nonlinear systems. This structure describes both the 
stochastic and deterministic components of a system.  
 
A NARMAX structure (Leontarities and Billings, 
1985) models the input-output relationship as a 
nonlinear difference equation of the form  
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where ny, nu and ne are the maximum lags for output, 
input and noise terms, respectively; d is the delay 
measured in sampling intervals, Ts; u(k) and y(k) are 
the input and output data respectively; e(k) accounts 
for uncertainties, possible noise, unmodelled 
dynamics etc; Fl(⋅) is a nonlinear function of y(k), u(k) 
and e(k), and the popular function of Fl(⋅) is a 
polynomial-type with nonlinearity degree l∈Z+. 
 
A multi-dimensional polynomial NARMAX with 
output r and input s can be modelled as  
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Here yt(k) is the output at time(or sample number) k 
for the tth degree of freedom, ut(k) is the input of the 
tth degree of freedom at time t, et(k) is the prediction 
error at time t for the tth degree of freedom, and       
m = (r×(ny+ne) +s×(nu+1)). 
 
If a nonlinear system with dominant behaviour is 
modelled by (2), the values of ny, nu and ne are 
assumed to be very large to approximate the factual 
system. Although computers are enough advanced to 
resolve the approximation, error resulted by the 
complex computation can lead to bad result. In order 
to reflect the factual system structure more accurately, 
the NARMAX model structure (2) is modified. 
 
Here, nonlinear multi-input-single-output systems are 
considered, thus (2) becomes 
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Here, m=(ny+ne+s×(nu+1)). Considering only two 
nonlinear terms of NARMAX, (9) reduces to 
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And can thus be transferred to 
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where g(⋅) is the function of y(k), u(k) and e(k); the 
total unknown numbers of  g(⋅) are (m2+2m).  
 
Considering the exponential-trigonometric generali-
zation, typical functions of g(⋅) always take the forms 

( ) { sin ( ), , }
1 exp( )

ib i
i i i i

i

a
g x a x a b x

b x
∈ + +

+ −
(12) 

 
In (10), there is a term θ0 and corresponding 
coefficients. So function gi(⋅) can be adjusted to more 
simple form as follows. 
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Thus, the number of estimated parameters is reduced 
without changing the form of (10). 
 
Compared with the original polynomial NARMAX 
model structure, the MP-NARMAX (modified 
polynomial NARMAX) model structure has fewer 
unknown parameters, which reduces identification 
complexity to a great extent. Therefore, good 
measurements approximation can be achieved. And 
the most important is the good approximation of 
system structure. As a result, the approximation 
ability of the factual system is improved greatly. 



     

3. STRUCTURE IDENTIFICATION 
 
With the obtaining of the general model structures of 
nonlinear system, the next step is to determine the 
model terms and model orders, and estimate the 
unknown parameters. 
 
 
3.1 Integration of Information Sources  
 
In order to obtain the best estimated model of the 
actual system mechanism and the system input- 
output behavior, different information sources are 
used. Four types of information sources are 
considered in this paper, and they are prior theory, 
measurements, expert experience, and researchers’ 
extense experience. 
 
Considering the complexity of nonlinear system with 
dominant behaviour, generally, prior theory is not so 
accurate, expert experience is also hard to collect and 
use. So much attention should be paid to the 
available measurements and our researchers’ 
experience.  
 
The believable degrees of information sources are 
suggested and given in Fig.1. The believable degree 
for each information source is an approximate scope, 
and it should be determined via simulation. 
According to the analysis of information sources, a 
more real model structure can be constructed. And it 
can also provide relative right measurements for 
structure identification.  
 
Moreover, according to Pearson (1995), in taking the 
approach of nonlinear input-output data modeling, 
the primary focus is on goodness of fit. In practice, it 
is important to note that other criteria may be of 
equal or greater importance. For example, an 
extremely important related issue is the sensitivity of 
the model prediction errors to change in the problem 
formulation. This issue has two aspects: the 
sensitivity of the algorithms used for model 
identification to errors in the data, and the region of 
validity of the model as an approximation of some 
factual systems.  
 
So, even measurements has a high believable degree, 
estimation is still necessary to get proper values of 
the unmerited data by major observation and minor 
induction from the believable degrees of measure-
ments when pretreat measurements.  
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Fig.1. The believable degrees of information sources  

Look for the outliers by plotting the measurements 
because of the complex nonlinearity and the shortage 
of the measurements. 
 
Although the believable degrees of measurements are 
not the same, the original Least-squares (LS) method 
instead of weighted least-square (WLS) method is 
employed to identify system because of the complex 
nonlinearity and the shortage of the measurements. 
 
 
3.2 Structure Identification 
 
Here, GMDH (Ivakhnenko, 1971) method is used to 
identify MP-NARMAX model structure.  
 
Ivakhnenko (1971) models the input-output 
relationship of a complex system by using a 
multilayered perception-type network structure. Each 
element in the network implements a nonlinear 
function of its inputs. The function is usually a 
second-order polynomial of the inputs and it 
implemented by an element in one of the layers is 

2 2
2 0 1 1 2 2 3 1 4 2 5 1 2( )A x a a x a x a x a x a x x= + + + + +   (14) 

where the subscript in A2 denotes a second-order 
transformation of the inputs. Fig.2. illustrates the 
structure of the overall input-output transformation.  
 
Here, by (14) GMDH method is used to estimate the 
unknown parameters in the modelled structures. 
 
 
3.3 Identification Procedure 
 
In this Section GMDH method is described to 
estimate the parameters of the MP-NARMAX model.  
 
The basic steps of GMDH method to calculate the 
MP-NARMAX model parameters are as follows: 
 
Step (1) Partition the data with the first N rows 
designated as the training set and the remaining rows 
as the testing set. In this paper, just assume the 
quadratic nonlinear terms are 1 and both the lags of 
the input and output of nonlinear terms are 1, since 
the case with shortage of measurements is considered.  
 
From the training set, a matrix of N observations of 
MP-NARMAX model terms is formed like the ones 
in (15) shown below that ignore the prediction error 
terms e(N) in (11).  
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Fig.2. The GMDH structure 
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Here considering the shortage of the measurements, 
select as much samples as possible, and these measu-
rements selected for training need be pretreated. Also, 
with respect to the analysis of robustness, the 
remaining measurements are purposely made for test 
non-pretreated data. 
 
Step (2) Take all variables in the columns of Matrix  

1 1 1{ ( ( 1), , ( ), ( ( )), }
y yn y ng y k g k n g u k+− −R … … two 

columns at a time and for each of these s(s-1)/2 com-
binations find the RLSE regression that best fits the 
observation (vector) Y’s. Here, s is the total number 
of input variables. For each of the combinations 
evaluate the least squares of the N data points. After 
evaluating N values, store these N values in the first 
column of a new array Z.  
 
The remaining (s(s-1)/2-1) columns are constructed 
in a similar manner. The array Z contains the new 
variables, which replace the original variables. The 
objective is to retain those Z’s that best estimate the 
output vector Y and the insignificant variables. To 
determine which columns of Z replace the old 
variables in the matrix R, select the Mean Squares 
Errors (MSE) criteria and calculate MSE dj  
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And order the columns of Z according to increasing 
LS by the data of testing set. One can place a 
restriction as to some prescribed number of new 
variables to replace the old variables in the matrix R, 
i.e., dj <M, where M is some prescribed number.  
 
Step (3) From Step (2) takes the smallest of the dj. 
The value of dj is smaller than the previous dj (in the 
first iteration this is assumed to be true) go back and 
repeat steps (2) and (3). If the value of dj is greater 
than the previous dj stop the process. It is our 
observation, however, that the value of dj becomes 
smaller than the previous dj as the number of 
iterations is increased.  
 
Step (4) Calls for LS method to find the coefficients 
of the retained variables.  
 
 

4. AN EXAMPLE 
 
In this Section, the proposed MP-NARMAX-GMDH 
method is applied to model radar-land-clutter 
reflectivity (RLCR). The RLCR at low grazing angle 
owes complex nonlinearity to its dependence on 

many parameters (Skolnik, 1990; Long, 1975; Barton, 
1988). And the information about RLCR is hard to 
collect and organize. Considering the importance of 
RLCR model in engineering, it is necessary to model 
RLCR accurately.  
 
 
4.1 Integration of Information Sources 
 
 Prior Theory 

Referring to literatures (Skolnik, 1990; Long, 1975; 
Barton, 1988), RLCR mainly relates to radar 
frequency, terrain type, grazing angle and 
polarization. From Barton (1988), the available 
RLCR data are summarized, and they can provide a 
good base for performance prediction of common 
radar. According to Blake (1980), polarization has no 
influence on RLCR, or it has little; RLCR ordinarily 
increases with the increment of radar frequency f and 
it depends on f between f 0 and f 1.  
 
 Observation data 

Highlights about RLCR data have been summarized 
by Nathanson, et al. (1991) and Skolnik (1990) while 
more extense information has been compiled by Long 
(1975) and Barton (1988). Among them, the 
statistical measurements in (Nathanson, et al, 1991) 
are authoritative relatively. Here, the measurements 
from Nathanson, et al., (1991) are referenced. 
 
 Expert Experience 

1) CG Model  
sinlσ γ ψ=  

where σl is RLCR; γ is the parameter describing refl-
ectivity of land surface; ψ is grazing angle. 
 
2) Morchin Model  
Morchin (1990) give a RLCR model 
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where A = –29 for desert, –24 for farmland, –19 for 
wooded hill, –14 for mountain; u = 10log ( / 4.7)f ; 
B = π/2 for all terrains except mountain, 1.24 for mo-
untain; β0 ≈ 0.14 radians for desert, 0.2 for farmland, 
0.4 for woodlands, 0.5 for mountain; σc =10log(ψ/ψc) 
desert only as ψ<ψc; ψc = arcsin(λ/4πhe); he≈9.3 2.2

0 .β  
 
3) GIT Model 
GIT researcher Currie (1987) propose 



     

( ) exp( (1 0.1 ))B
l hA C Dσ θ σ λ= + − +  

where σh is the surface standard deviation and related 
with terrain type; λ is radar wavelength; A,B,C and D 
are the constants obtained by experience, and related 
with radar frequency, and terrain type. 
 
4) Extense Experience  
To low altitude target at low angles, there has a 
definitely difference about the grazing angle when 
land-based radar is engaged in against the target. 
This is because the noises influence. From this it can 
be obtained that the data from the relatively-large 
grazing angle has the relatively reliable degree. 
 
 Integration of information sources 

Considering the complexity of RLCR system, gener-
ally, prior theory is not so accurate, expert experie-
nce is also hard to collect and use. So much attention 
should be paid to the available observation data and 
our prior extense experience.  
 
The believable degrees of all information sources 
have been given in Fig. 3. Here, the general 
believable degree scope is used too. Observation data 
has a high believable degree, however, they need to 
be made pretreatment. And the comparison between 
data (Nathanson, et al., 1991) and the pretreatment 
data are shown in Fig.3. 
 
 
4.2 Structure of RLCR 
 
According to (Skolnik, 1990; Long, 1975; Barton, 
1988; Barton, 1975; Blake, 1980; Nathanson, et al., 
1991; Morchin, 1900; Currie, 1987), RLCR σl is 
known mainly related to radar frequency, terrain type, 
and grazing angle. So the proposed RLCRσl model 
can be written as 

( , , )l lT fσ ψ γ=                        (17) 

where f∈X1, X1=(0.03,12.5); ψ∈X2, X2=(0,0.174); γ ∈ 
X3, X3=(0, +∞); Tl is function defined in X1, X2 and X3. 
 
RLCR ordinarily increases with the increment of f 
(Currie, 1987) and RLCR depends on f between f 0 

and f 1 (Blake, 1980). Refrering from (Nathanson, et 
al., 1991), it can be obtained the influences by desert 
and city on RLCR are the least and the most respecti-
vely. The values of γ from (Barton, 1975) are a good 
generalization and are used to describe the influence 
on RLCR by different typical terrains. With regard to 
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Fig.3. Comparison between data (Nathanson, et al., 

1991) and pretreatment data 

the grazing angle, generally, RLCR increases with its 
increment according to (Barton, 1975; Blake, 1980). 
By CG model and Morchin model (Morchin, 1900), 
RLCR is known to have a linear relation with the sine 
of the grazing angle to a great extent. There are four 
typical terrain types, and they are desert, crops, hill, 
and mountain (or city). Here, for the limitation of 
paper length just desert terrain type is considered 
when γ is equal to 0.01. And the MP-NARMAX 
model of RLCR can be obtained and be written as  
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(18) 
Here, the s input is 3. The reference data (Nathanson, 
et al., 1991) are twelve groups. ny, nu and ne are 
assumed to be 2, 2, and 2, respectively. Thus m is 13. 
And function gi(⋅) is thus 

1( ) (sin( ), ,
1 exp( )ig x x x

x
⎧ ⎫

∈ ⎨ ⎬+ −⎩ ⎭
        (19) 

And when pi (i=1,2, …m) is related to γ, set gj 
(j=1,2, …m2+m) to be pi ; when pi is related with ψ, 
set gj is sin(pi ); when pi is related with f, set gj to be 
1/(1+exp(-pi ). 
 
 
4.3 Identification of RLCR 
 
Here, the newly-developed modified GMDH is used 
to identify RLCR structure. 
 
The reference data (Nathanson, et al., 1991) are 12 
groups. Partition the data with the first 8 groups 
designated as the training set and the remaining ones 
as the testing set. These data selected for training are 
pretreated, however the remaining ones are not. Take 
all the variables in the columns of the Matrix 

1 1 1{ ( ( 1), , ( ( )), ( ( )), }
y yn y ng y k g y k n g u k+− −R … … . 

 
By using GMDH method, once recursion is finished, 
and the calculation is simplified for the nonlinear 
RLCR system after the general identification model 
structures is obtained. The final identification result 
of RLCR is  
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Part 1–the error for the proposed model, part 2–for Morchin 
Model (Morchin, 1990), and part 3–for CG model.  

 
Fig.4. The squares errors comparison  
 



     

Table 1 Total squares errors of several methods of 
system identification  

 

MP-NARMAX-
GMDH GMDH NARMAX 

183 315 –– 
 

Fig.4. shows the squares errors comparison among 
the commonly used RLCR models and the proposed 
RLCR model obtained by using MP-NARMAX-
GMDH method. Table 1 shows the squares error of 
MP-NARMAX-GMDH, GMDH, and NARMAX. 
for RLCR modeling.  
 
GIT Model (Currie, 1987) is accurate, however it is 
inconvenient for its variety of pertinent parameters. 
So in Fig. 4. GIT Model (Currie, 1987) is absent. 
From Fig. 4. the proposed model (20) of RLCR for 
desert terrain is preferable because it reflects RLCR 
mechanism to a great degree and fits measurements 
well. From Table 1, although GMDH method can 
obtain RLCR model, it cannot fit measurements well. 
According to expectation NARMAX cannot obtain 
RLCR model for its limitation with a large number 
estimated parameters. 
 
 

5. CONCLUSION 
 
In this paper a new identification method is proposed 
for nonlinear system with shortage of nonlinear 
input-output data, named MP-NARMAX-GMDH 
method. The method expands the application of 
NARMAX by means of absorbing the idea of 
exponential-trigonometric generalization and the ide-
ntification ability and robustness of GMDH method.  
 
The proposed method gives reasonable application of 
information integration of complex system with a 
dominant nonlinear behavior. The most important for 
the proposed method is combining two excellent 
methods of NARMAX and GMDH. As a result it can 
obtain the efficacy of system identification with 
unknown system structure and short nonlinear input-
output measurements. The proposed method was 
verified through a typical nonlinear system with 
unknown structure and short input-output data. 
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