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Abstract: Generalized predictive control with flexible constraints is investigated. To apply fuzzy 
technique, the flexible parts in the inequality constraints are fuzzified as fuzzy constraints. The 
optimization problem of the generalized predictive control with flexible inequality constraints is 
converted into two sub-problems to get the lower and upper bound of the objective values, and then 
the objective of generalized predictive control can be fuzzified too. When the constraints and 
objective of the control system are all in fuzzy uncertainty environment, fuzzy decision making 
method can be used to solve the problem. Simulation result proves the validity of this algorithm. 
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1. INTRODUCTION 

 
Generalized predictive control (GPC) (Clarke, et al, 
1987) which owes to its easy implementation and its 
ability to take into account key control objectives has 
become a popular means of controlling scalar 
systems. In the absence of input/output constraints, 
the main computational demand in GPC concerns the 
minimization of a simple quadratic cost function. 
The optimal solution obtained in this way, however, 
may be far from optimal in the presence of input and 
output constraints.  
 
There are many methods solving the constrained 
predictive control problem. The formulations of the 
constrained predictive control problem using linear 
programming (LP) have been proposed by Allwright 
and Papavasiliou (1992), and Dave et al (1997). The 
formulations using quadratic programming (QP) 
have been proposed by Ricker (1985), and 
Kuznetsov and Clarke (1994). Others, for example, 
Sarimveis and Bafas (2003) employ genetic 
algorithms to solve the optimization problem. 
Perhaps a more critical issue is with regard to 
potential infeasibilities in the LP/QP, that is, a 
combination of input/output constraints can easily 
result in LP/QP in which there is no feasible solution, 

so the control algorithm cannot compute any control 
move to be implemented at that sampling instance. 
Such behavior cannot be tolerated, so it has become 
common to use a soft constraint formulation in 
(Zheng, et al, 1995) and (Li, et al, 2000) to handle 
the constraints, in which penalty terms on the 
constraints are included in the objective function to 
avoid infeasibility problems in MPC. 
 
Obviously, there are excessive methods to deal with 
constraints, but all these investigation assume that the 
goal and constraints are definite and unchanged with 
their bounds.  However, there exist some cases that 
the constraint bound is not so rigid, but flexible. For 
example, the operator may moderately change the 
limitation on the use of resource to get better quality 
product. However, there is two-conflicted process: 
one is that we hope to save the resource as possible 
otherwise we hope products have the better quality as 
possible. Then, classical dynamic optimization 
techniques become unsuccessful to deal with 
problems that contain flexible bounds. To overcome 
this problem, Chen C.L., et al (2002) propose a 
solution strategy for optimising the dynamic system 
with flexible inequality constraint but is only 
consider the static optimisation of dynamic systems. 
 



 

     

Moreover, the flexible portion of the inequality 
constraints seems to be a stochastic or probabilistic 
problem. However, we consider the operator does 
not change the constraints bound randomly, but 
changes on preference that largely depends on the 
operator’s subjective consideration. One good way is 
to use fuzzy membership function to express the 
acceptability of the flexible portion of the inequality 
constraints. Fuzzy goal and fuzzy constraints have 
become a popular method to deal with systems with 
fuzzy uncertainty. This cost function is usually a sum 
of an error measure of one or more output variables. 
Alternatively, to get more flexibility for expressing 
the control goals, in which such flexibility in 
operation largely depends on the operator’s 
subjective consideration, techniques from fuzzy 
multi-criteria decision-making can be used (Sousa, et 
al, 2001), the optimization problem is formulated as 
a multi-criteria decision making problem with fuzzy 
goals and constraints. In these methods, goal and 
constraints are defined as fuzzy functions separately, 
however, for generalize predictive control with 
flexible inequality constraints, the goal is correlative 
with the constraint bound.  
 
In this paper, we present a new constrained 
generalized predictive control algorithm with flexible 
inequality constraints. The optimisation problem is 
converted into fuzzy decision making through the 
fuzzification of the constraint and objective of the 
system. 
 

2. INTRODUCTION FORMULATION of 
COSTRAINED PREDICTIVE CONTROL 

 
2.1 Model-based predictive control 
 
In essence it utilizes systems predictive information 
to optimize the performance index within a finite 
horizon. In order to overcome the uncertainty, we 
take the receding horizon strategy in predictive 
control. The predictive output ˆ( )y k i+ , 

1 2, ,i N N=  is derived from the information at 
current time t  and the future control signal 

( )u k i+ , 1, , ui N= , where 1 2[ , ]N N  is the 
predictive horizon. The objective to be optimized is: 
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where ˆ( )e k i+  is the predictive error, ( 1)u k i∆ + −  is 
the control increment, iλ  is the weight coefficient of 
the control signal. 
Although the complete sequence of optimal control 
signals within the predictive horizon is computed, 
only the control signal ( )u k  is applied to the process. 
At the next sampling instant, the process output 

( 1)y k +  becomes known and the prediction horizon 
is shifted by one sampling period so that the 
optimization and the prediction can be repeated with 
the updated values. This is called the receding 
horizon principle. 

Since the objective function reflects the control goals, 
it is advantageous to have additional freedom for 
specifying more complicated control goals. This 
additional freedom can be achieved by choosing a 
different representation of the objective function, e.g. 
as a combination fuzzy goals and constraints. 
The CARIMA model can describe the system: 

1
1 1 ( ) ( )( ) ( ) ( ) ( 1) C q tA q y t B q u t ξ−

− −= − +
∆

 (2) 

where 
1 1

1( ) 1 p
pA q a q a q− − −= + + +  

1 1
0 1( ) m

mB q b b q b q− − −= + + +  
1 1

1( ) 1 l
lC q c q c q− − −= + + +  

 
The predictive equation is: 

ŷ Gu f= +  
where 

( )2 2ˆ ˆ( 1 | ), , ( | ) , 1
TT Ty t t y t N t N p + + ×   
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f ( )
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The control law without constraints can be obtained: 
( ) ( 1) ( )Tu t u t g= − + −w f               (3) 

where Tg  are the former m lines of the matrix 
1( )Iλ −+T TG G G , significance of parameters seeing 

also (Clarke, et al, 1987). 
 
2.2  Fuzzification of flexible constraints 
 
In the traditional constraint programming, the 
constraint conditions cannot be exceeded and 
changed, but in the practical control process, some of 
constraints are adjustable, called 'soft constraints'. 
Thus, every constraint variable can be adjusted 
within a limit boundary and has a function to reflect 
the fuzziness of constraint variable boundary defined 
by decision-maker. We can use the fuzzy variable to 
describe this case. For fuzzy variable b , we define 
the membership function ( )bµ 0 1µ≤ ≤ , which 
express the degree of membership. 1µ =  Indicates 
the corresponding fuzzy variable belongs to this set, 
conversely for 0µ = . In fact, we can understand µ  
as the degree of satisfactory degree. Fig. 1 is a kind 
of fuzzy boundary, where the membership function is 
linear function (of course, we can assume other 
function) to simplify the computation. Then the 
degree of membership is expressed as follows: 
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where 1p , 2p  is called fuzzy width or tolerant width, 

minb , maxb is the expected boundary of fuzzy variable 

b . Obviously, when the fuzzy width is zero, it 
corresponds the 'hard constraint'. 
 
Adjusting the 'soft constraint' is based on the man-
machine interaction, which is actuarially the 
interaction of the experience decision and the 
knowledge base and rules base with computer. It is 
natural to set soft constraint bounds according to the 
specified industry process, and make the decision on 
various inputs and output states real-time and at the 
same time adjust the boundary, so as to realize the 
receding-horizon optimization. The decision-maker 
takes part in the control only in a special case. In 
other words, at this time, decision-maker makes 
proposal and order to the whole system at a higher 
level (such as change the production plan, implement 
a new completely standard, etc), while the simple 
logical, the knowledge base and rule base needed for 
this kind of expert system are not very large because 
they are designed for a special industry environment, 
and the cost of building and operating is also very 
feasible. 
 
2.3  Fuzzification of objective function 
 
In this section, we discuss in detail how to deal with 
the fuzzy boundary optimization. Firstly, consider 
the control variable u  and output variable y  in 
constraint equation. They are all decided by the 
control increment u∆  during the receding horizon 
optimization in GPC algorithm. The boundary 
condition (4) can be expressed as: 
 

( ) ( )t t∆ ≤A u b                         (5) 
 

where 
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The matrixes are defined as follows: 
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Notice that for the constraint of control variable and 
its change rate, we should consider the future uN  
cycles, whereas for the output constraint, the cycles 
are from 1N  to 2N . However, from the perspective  
of computing, the computation complexity of solving 
the optimization with constraints has much to do with 
the number of constraint conditions. Therefore, 
sometimes we only consider the constraints in the 
near cycles to decrease the computation. 
What's more, as ( )tb  in equation (7) is transformed 
from the boundary expression (4), and this  

 
transformation is only a series of displacement and 
inverse, thus under the fuzzy boundary condition, the 
derived ( )tb  still has the same form as the nonfuzzy 
constraints, and the fuzzy width of all fuzzy variables 
are not changed. It can be expressed as: 

( ) ( ) ( )t t t∆ ≤ +A u b p b              (10) 
And the vector p  represents the fuzzy width of 

various fuzzy variable of ( )tb : 
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where xp  stands for the fuzzy width of fuzzy 
variable x . 
 
So, the constrained predictive control problem can be 
formulated as follows: 
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( ) ( )
min J
s .t . t t


 ∆ ≤ A u b

           (11) 

Here, the so-called fuzzy flexible constrained 
optimization means that when the reasonable limiting 
value kb  and the acceptable maximal tolerance kp  
can be preliminarily defined, all those values that are  
smaller than k kb p+ . The optimization result will 
vary with the flexible parameter kp , therefore, two 
new sub-problems are solved at first: one is restricted 
by constraints with optimistic boundary k kb p+ , 
while the other one is confined by the constraints 
‘with pessimistic boundary kb , that is: 

0

0 :
( ) ( )

min J J
S

s .t . t t



∆ ≤ + A u b p
             (12) 

and 
1

1:
( ) ( )

min J J
S

s .t . t t



∆ ≤ A u b
                   (13) 

Because the constraint domain of optimization 
problem: 0S  contains that of problem: 1S , the 
minimum of optimization problem: 0S  must be less 
than or equal to 1S , i.e. 0 1J J≤ . Obviously, the 
optimization problem 0S  and 1S  must be feasible, 
otherwise we could not implement the present 
algorithm. In case of the infeasibility, the constraints 
can be violated temporarily with the algorithm in 
(Zheng, et al, 1995), and simultaneously, the 
corresponding constraints bound also need to be 
modified temporarily. 
 
Problem 0S  and 1S  can be solved using standard 
constrained optimization approach online (Garcia, 
C.E, et al). 0J and 1J  represent the global optimal 
for the two sub-problems, respectively. Moreover, 
owing to various acceptability for constraints 
changed from kb  to k kb p+ , it will have different 
satisfaction for the cost function J  as it changes 
from 0J  to 1J . It means that values closer to 1J  
have the lower satisfaction and values closer to 

0J have higher satisfaction. For objective values in 
between 0J  and 1J , lower J  value results in 
increased degree of satisfaction. 

 
As the constrained optimization computation has  

great burden, and the receding horizon used in MPC 
need online optimization, so we pre-defined the 
fuzzy goals as follows for the online applications as 
Eq.(14) and Fig. 2. 
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The following two functions are frequent to use as 
membership function, which are listed as 

1

0 1
0 1

1 0 11 exp[ ( )/( )]
1-exp[ ]

J J
J Jg( J ,J ,J )
J J J J

 −
 −= 

− − α − −
 − α

     (15) 

Here, α is an adjusting factor and 0α ≠ . For 
simplicity, we will employ the linear type function as 
the membership function of fuzzy goal. 
 
So far, for online control application based on the 
receding horizon in MPC, the optimization problem 
with fuzzy constraints (4) and fuzzy goals (14) is 
formulated. To the fuzzy optimization problem, Liu 
in (Liu, et al, 1999) and (Liu, 2002), and Lu and 
Fang in (2001) have developed some efficient 
algorithm, but these approach are fit to use offline. 
So far, for online control application based on the 
receding horizon in MPC, the optimization problem 
with fuzzy constraints (4) and fuzzy goals (14) is 
formulated. To the fuzzy optimization problem, Liu 
in (Liu, et al, 1999) and (Liu, 2002), and Lu and 
Fang in (2001) have developed some efficient 
algorithm, but these approach are fit to use offline. 
 

3. FUZZY GOAL PRGRAMMING AND 
SATISFYING DECISION MAKING  

 
In a standard goal programming formulation, goals 
and constraints are defined precisely. In fact, to ask a 
decision-maker (DM) what attainments are desired 
for each objective function is a difficult job. 
Applying fuzzy set theory into goal programming at 
this junction has the advantage of allowing for the 
vague aspirations of DMs, which can then be 
quantified by some natural language rules. In this 
paper, we will present a fuzzy satisfying solution to 
the goal programming. 
 
In Bellman and Zadeh’s (1970) setting fuzziness of 
the environment is modeled by fuzzy goals, fuzzy 
constraints, and a fuzzy decision. 
A fuzzy goal is defined as a fuzzy set in X : ( )G xµ ; 
and a fuzzy constraints is similarly defined as a fuzzy 
set in X : ( )C xµ . The general problem formulation is: 
attain G  and satisfy C , which leads to a fuzzy 
decision: 

( ) ( ) ( )D G Cx x xµ µ µ= ∧                      (16) 

for each x X∈ , where min( , )a b a b∧ = , “ ∧ ” may 
be replaced by another appropriate operation as, a t-
norm, such an operation may reflect various relevant 
attitudes and aspects of the decision. 
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Fig.2  Fuzzy membership for control goals
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The optimal decision is defined as an x X∗ ∈ , such 
that 

( ) max ( )D Dx X
x xµ µ∗

∈
=                      (17) 

This basic framework can be extended to handle 
multiple fuzzy goals and fuzzy constraints. Namely, 
if we have 1p >  fuzzy goals 1 , , pG G , defined in 
Y , 1q >  fuzzy constraints 1 , , qC C , defined in 
X , and a function : , ( )f X Y y f x→ = , we have 

1 2

1

( ) [ ( )] [ ( )] [ ( )]

( ) ( )
p

q

D G G G

C C

x f x f x f x

x x

µ µ µ µ

µ µ

= ∧ ∧ ∧

∧ ∧ ∧
  (18) 

and the maximizing decision is (17), i.e. 
( ) max ( )D Dx X
x xµ µ∗

∈
= .In this paper, the branch and 

bound search technique(Sousa, J.M.， Babuska R. and 
Verbruggen H.B., 1997) is used to solve the non-
convex optimisation problem. For what concerns the 
practical the optimum of the fuzzy decision making 
problem, the interested reader is referred to Sousa 
and Kaymak, (2001) and Lai and Hwang (1994).  
 
By the way, in present paper we name the constraint 
condition like ( ) ( )t t∆ ≤A u b as inner constraint, the 
constraint condition like ( ) ( )t t∆ ≤ +A u b p as outer 
constraint and the constraint ranging from 

( ) ( )t t∆ ≤A u b  to ( ) ( )t t∆ ≤ +A u b p as fuzzy 
flexible constraint. 
 

4. SOLUTION STEPS 
 
The on-line constrained predictive control algorithm 
based on fuzzy constraints and fuzzy goal are 
summarized as follows: 
 
1. Preliminary preparations (offline): 
Step 1. Select suitable flexible boundary for the 
constraints for ( ), ( ),u t u t∆ and ( )y t ; 
Step 2. Define the fuzzy membership function 

iCµ for ( ), ( ),u t u t∆ and ( )y t  as Eq. (4) according to 
the operation conditions, the trapezoid-type functions 
will be used in this paper. 
Step 3. Select the MPC parameters 1N , 2N , and uN . 
 
2. Dynamic Programming (online): 
Step 1. Within the time horizon [ , ]t t N+ , solve Eqs. 
(12) and (13) by any existing constrained predictive 
control method to determine 0J  and 1J ; 
Step 2. Define the fuzzy membership function  

iGµ for control objective as Eq. (14), the line-type 
functions will be used in this paper; obtain the 
control action ( )u t∆ by Eq.(18); 
Step 3. 1t t= + , with the receding horizon 
[ 1, 1]t t N+ + + , repeat the Step 1 to get the ( 1)u t∆ +  
using the new measurable system’s inputs and 
outputs. 
 

 

5. SIMULATION 
 

Consider a dynamic system whose transfer function 
is 

2

( ) 1
( )

y s
u s s s

=
+

                      (19). 

The constraint conditions are listed as two groups. 
The first constraint group are 0 5 ( ) 0 5. u t .− ≤ ≤ , 

0 3 ( ) 0 3. u t .− ≤ ∆ ≤ , and 0 ( ) 1 2y t .≤ ≤ , corresponding 
flexible parts are (0.2,0.2), (0.15,0.15), (0.2,0.2). The 
second constraint group are 0 2 ( ) 0 3. u t .− ≤ ≤ , 

0 25 ( ) 0 25. u t .− ≤ ∆ ≤ and 0 ( ) 1y t≤ ≤ , corresponding 
flexible parts are (0.2,0.2), (0.15,0.15), (0.2,0.2). In 
the following, we define the acceptability 
membership function of constraints according to the 
Equation (4), and set 1 1N = , 2 5N = , 3uN = , 

1Q = , and 1R = . According to the algorithm 
presented in this paper, at every sampling time 
instant, two sub-optimal problems are solved firstly, 
i.e. under inner constraint and outer constraint, and 
then the trade-off solution under fuzzy flexible 
constraint is solved by fuzzy decision-making. 
 
In order to show the validity of present algorithm, the 
simulation is implemented under inner constraint, 
outer constraint and fuzzy flexible constraint 
conditions. For the first constraint group, the control 
objective is to let the output ( )y t  track the step input 
and for the second constraint group, the control 
objective is to let the output ( )y t  track the sin 
reference input. The trajectory of the controlled 
variable ( )y t and the control profile of manipulate 
variable ( )u t  are shown in the fig.3 and fig.4, 
respectively.    
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Fig.3 Controlled variable trajectory and control profile for 

tracking step input 
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Fig.4 Controlled variable trajectory and control profile for 

tracking sin reference input 
From the results of simulation, we can see it is 
deficient for the control ability of the solution 
derived by generalized predictive control under the 
inner constraint because the tight constraints confine 
the control action, however it is superfluous and 
overdoing for the control ability of the solution under 
the outer constraint. In fact, we need a compromised 
solution under flexible constraint, i.e. at every 
sampling time instant generalize predictive control 
algorithm need tradeoff between the constraint 
acceptability and optimality of performance index. 
From fig.3 and fig.4, we can see the present 
algorithm have good effect and satisfy the operator’s 
request. 
 

6. CONCLUSION 
 
Based on the fuzzy constraints and fuzzy goals, we 
present a generalized predictive control algorithm 
with flexible constraints. To apply fuzzy technique, 
the flexible parts in the inequality constraints are 
fuzzified as fuzzy constraints. The optimization 
problem of the generalized predictive control with 
flexible inequality constraints is converted into two 
sub-problems to get the lower and upper bound of 
the objective values, and then the objective of 
generalized predictive control can be fuzzified too. 
When the constraints and objective of the control 
system are all in fuzzy uncertainty environment, 
fuzzy decision making method can be used to solve 
the problem to obtain the control action. In this way, 
at every sampling instant, the control action is the 
most acceptable and most satisfying one to the 
operator.  
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