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Abstract: The convex analytic approach which is dual, in some sense, to dynamic
programming, is useful for the investigation of multicriteria control problems. It is
well known for discrete time models, and the current paper presents similar results
for the continuous time case. Namely, we define and study the space of occupation
measures, and apply the abstract convex analysis to the study of constrained prob-
lems. Finally, we briefly consider a meaningful example on a controlled bicriteria
Markovian queue. Copyright c©2005 IFAC
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1. INTRODUCTION

It is well known that dynamic programming ap-
proach, so effective in the standard optimal con-
trol theory, is inconvenient for the study of mul-
tiobjective problems. In such situations, the so
called ”convex analytic approach” proved to be
useful for discrete-time models (Altman, 1999;
Hernandez-Lerma and Laserre, 1999; Piunovskiy,
1997). The author does not know any system-
atic application of this method to the case of
continuous-time jump models, and the present re-
port has to fill partially this gap.

The convex analytic approach mainly deals with
occupation measures (see Section 3). We present
Theorem 1 where the key properties of those mea-
sures are formulated. Perhaps, the main result is
Lemma 2, because all the subsequent statements
can be proved based on the well known facts about
the discrete-time occupation measures. Section 4
contains the results about constrained problems,
and in Section 5, a new meaningful example is pre-
sented. Let us underline Remark 1 clarifying the
duality between the dynamic programming and
convex analytic approaches.

Note that some constrained discounted jump mod-
els were considered earlier (Feinberg, 2004; Guo
and Hernandez-Lerma, 2003; Lai and Tanaka,
1991; Piunovskiy, 1998). Several other con-
strained versions were studied in the papers by Pi-
unovskiy (2004a, 2004b). First linear programs for
jump Markov models were suggested by Mine and
Tabata (1970). At the same time, an exhaustive
mathematically coherent convex-analytical study
was absent so far.

Lai and Tanaka (1991) and Guo and Hernandez-
Lerma (2003) considered only Markov strategies
and developed the Lagrange multipliers technique
(cf. Theorem 3), without analysing the occu-
pation measures. Feinberg (2004) started with
general strategies and showed how to reduce the
model to discrete-time MDP. After that, one can
obviously apply the corresponding convex analytic
approach. The article (Piunovskiy, 1998) con-
tains some preliminaries, mainly for a non-Markov
model.



The theoretical results of the present report can be
deduced, in principle, from (Feinberg, 2004) and
old facts about discrete-time MDP (Altman, 1999;
Hernandez-Lerma and Laserre, 1999; Piunovskiy,
1997). But the reasoning is absolutely different.
First of all, we characterize occupation measures
in Lemma 2 and prove the sufficiency of station-
ary strategies in Corollary 1. After that, we study
linear programs (10), (11). All the statements
are formulated in terms of the original continu-
ous time model; results on discrete-time MDP are
invoked only to speed up the proof of Theorem 1
which states the main properties of the occupation
measures space. This approach seems to be more
natural and understandable for the readers, since
we avoid jumping from one model to another.

2. MATHEMATICAL MODEL

The model below is constructed by analogy with
(Kitaev and Rykov, 1995).

Let X be a countable states space and (A,B(A))

be a Borel actions space. Letting Ω0 △
= (X ×

IR+)∞ join to Ω0 all the sequences of the form
(x0, θ1, x1, . . . , θn−1, xn−1,∞, x∞,∞, x∞, . . .),
n ≥ 1, where ∀k = 1, 2, . . . , n − 1, θk 6= ∞
and xk 6= x∞; x∞ is an isolated point added to
X . As a consequence we obtain the basic mea-
surable space (Ω,F), where F is the natural σ-

algebra. Set T0
△
= 0, Tn

△
= θ1 + θ2 + . . . + θn,

T∞
△
= limn→∞ Tn, and

ξt
△
=

∑

n≥0

I{Tn ≤ t < Tn+1}xn + I{T∞ ≤ t}x∞.

(1)
Suppose a measurable function λ(j|i, a) ≥ 0 is de-

fined for j 6= i and put λ(i, a)
△
=

∑

j∈X\i λ(j|i, a).

θn play the role of inter-jump intervals or sojourn
times; Tn are the jump moments, xn is the state
of the controlled process on [Tn, Tn+1), and λ(·) is
the jumps intensity of ξt if action a is chosen.

Introduce the integer-valued random measure

µ(ω, dt, i) =
∑

n≥1

I{Tn < ∞}I{xn = i}δTn
(dt)

(where δy(·) is the Dirac measure concentrated at
the point y) and also the right-continuous family

of σ-algebras {Ft}t≥0: Ft
△
= σ{x0, µ([0, τ ]×i), τ ∈

[0, t], i ∈ X}; F∞
△
=

∨

t≥0 Ft. Let P be the σ-

algebra of predictable sets on Ω × IR0
+ related to

{Ft}t≥0.

Definition. A P-measurable transition probability
π(·|ω, t) on (A∞,B(A∞)) is called a strategy π;
also π(a∞|ω, t) = I{T∞ ≤ t} is a standing as-
sumption, a∞ being an isolated point added to

A; A∞
△
= A ∪ {a∞}. A strategy is called a se-

lector and denoted by ϕ whenever there exists a
predictable A∞-valued process ϕ(ω, t) such that
π(ΓA|ω, t) = I{ΓA ∋ ϕ(ω, t)} ∀ΓA ∈ B(A). A
strategy is called stationary if it has the form
π(·|ξt−(ω)). A selector ϕ(ξt−(ω)) is called station-
ary, too.

Evidently, for any control strategy π, the random
measure

νπ(ω, dt, i)
△
=

[
∫

A

π(da|ω, t)λ(i|ξt−(ω), a)

]

dt

(2)
is predictable and νπ(ω, {t} × X) = νπ(ω,
[T∞,∞)×X) = 0. So, for any strategy π and any
initial distribution P0 on X (which is supposed to
be given and fixed), there exists a unique proba-
bility measure P π

P0
on (Ω,F) such that P π

P0
{x0 =

i} = P0(i) and νπ is a predictable projection of
the measure µ (Kitaev and Rykov, 1995).

If a strategy π is chosen then we have a stochas-
tic basis (Ω,F , {Ft}t≥0, P

π
P0

) which is always as-
sumed to be completed, and the main controlled
random process ξt thereon. In what follows, Eπ

P0

denotes the mathematical expectation with re-
spect to P π

P0
. Since the initial distribution is as-

sumed to be fixed, we usually omit that index:
P π, Eπ.
Main Optimization Problem. Suppose the
measurable loss rates

r0(i, a), r1(i, a), . . . , rN (i, a)

are defined on X × A. For a fixed strategy π and
for any n = 0, 1, . . . , N we define Rn(π) as follows

Rn(π)

= Eπ

[
∫ ∞

0

e−αt

[
∫

A

π(da|ω, t)rn(ξt−, a)

]

dt

]

,

(3)
where α > 0 is a fixed discount factor. Here and
below, we assume that all the integrals are well de-
fined, e.g. each function r(·), sn(·), n = 1, 2, . . . , N
is bounded (below or above).

The multiple-objective optimization problem

Rn(π) −→ min
π

, n = 0, 1, . . . , N (4)

is usually inconsistent. In what follows, we intend
to investigate the constrained version

R0(π) −→ min
π

, Rn(π) ≤ dn, n = 1, 2, . . . , N,

(5)
under appropriate fixed constants d1, d2, . . . , dN .



3. OCCUPATION MEASURES AND THEIR
PROPERTIES

Definition. Two strategies π1 and π2 are called
equivalent if the equality

S(π1) = S(π2) (6)

holds for any bounded non-negative measurable
loss function s(x, a). (Here and below S(π) is de-
fined similarly to (3).)

Definition. The occupation measure for the strat-
egy π is the probability measure ηπ(i, da) on the
space X×A which is defined in the following way:

ηπ(i, ΓA)

= αEπ

[
∫ ∞

0

e−αtI{ξt− = i}π(ΓA|ω, t)dt

]

.

(7)

Lemma 1. Two strategies π1 and π2 are equiva-
lent if and only if the corresponding occupation
measures coincide: ηπ1

= ηπ2

.

Our goal is to prove that any occupation measure
is generated by some stationary strategy meaning
that many different strategies are indeed equiva-
lent.

Condition 1. λ(i, a) ≤ K < ∞.

Lemma 2. Let Condition 1 be satisfied. Then a
measure η(i, ΓA) on X ×A is an occupation mea-
sure if and only if equality

αη(i, A) −
∑

k∈X\i

∫

A

λ(i|k, a)η(k, da)

+

∫

A

λ(i, a)η(i, da) = αP0(i)

(8)

holds for each i ∈ X .

Corollary 1. Under Condition 1, for any strategy
π, there exists a stationary strategy πs such that
the corresponding occupation measures coincide:
ηπ = ηπs

. Moreover, πs can be found from the
representation

ηπ(i, ΓA) = ηπ(i, A)πs(ΓA|i). (9)

Let D be the space of all occupation measures in
the model, endowed with the weak topology.

Theorem 1. Let Condition 1 be satisfied.

(a) The space D is convex.

(b) A point η is extreme in D if and only if there
exists a stationary selector ϕ such that η = ηϕ.

(c) If the jumps intensity λ(i|j, a) and the total
rate out of j, λ(j, a), are continuous (in a) then D
is closed in P(X × A).

(d) If, additionally, A is compact then D is a
metrizable compact and coincides with the closed
convex hull of the set Dϕ of the occupation mea-
sures generated by stationary selectors.

The (indirect) proof is based on the following rea-
sonings. Let introduce denotation

pij(a)
△
=







λ(j|i, a)/K, if j 6= i;

K−λ(i,a)
K

, if j = i.

Obviously, p defines the transition probability for
a (discrete time) MDP with the same state space
X , initial distribution P0, and action space A.
Suppose β = K

α+K
is the discount factor. Then

the space of occupation measures D̃ in this model
coincides with the space of probability measures η
satisfying equation

η(i, A) − (1 − β)P0(i)

−β
∑

k∈X

∫

A

pki(a)η(k, da) = 0

(see e.g. (Piunovskiy, 1997)), which is identical
with (8). Hence D̃ = D. Now properties (a)–
(d) follow from the corresponding theorems proved
for discounted MDP. (See the books by Altman
(1999), Hernandez-Lerma and Lasserre (1999),
and Piunovskiy (1997), and references therein.)

4. MAIN OPTIMIZATION PROBLEM:
SOLVABILITY AND SUFFICIENT CLASSES

OF STRATEGIES

In view of Corollary 1, when analysing problem
(4), it is sufficient to consider only (randomized)
stationary strategies. It is convenient to rewrite
(4) and (5) in the form

∑

i∈X

∫

A

rn(i, a)η(i, da) −→ inf
η∈D

, (10)

n = 0, 1, . . . , N ;


























∑

i∈X

∫

A

r0(i, a)η(i, da) −→ inf
η∈D

,

∑

i∈X

∫

A

rn(i, a)η(i, da) ≤ dn, n = 1, . . . , N.

(11)

In acordance with Lemma 2, η ∈ D iff equality (8)
is satisfied. Hence (11) is a linear program (LP)



on the space of finite measures which will be called
primal.

Remark 1. Suppose N = 0, i.e. there are no con-
straints, and assume for simplicity that function r0

is bounded. If we consider η as a (non-negative)
element of the linear space of finite signed mea-
sures then the dual space consists of real bounded
functions on X × A. In this framework, the dual
program to (11) looks as follows:

find a bounded function w(i) on X such that

(1 − β)
∑

i∈X

w(i)P0(i) −→ sup

r0(i, a) + β
∑

j∈X

w(j)pij(a) − w(i) ≥ 0.
(12)

One can easily check that LP (12) is equivalent to
solving the following problem

αw(i) = inf
a∈A

{(α + K)r0(i, a)

+
∑

j∈X\i

w(j)λ(j|i, a) − w(i)λ(i, a)}, i ∈ X,

which, up to the constant (α + K), gives the Bell-
man function for the (scalar) problem (4) (Guo
and Hernandez-Lerma, 2003; Kitaev and Rykov,
1995). The value α

α+K

∑

i∈X w(i)P0(i) coincides
with the value of LP (12). Therefore, the convex
analytic approach and dynamic programming are
represented by the couple of dual linear programs.

Definition. A model is called semicontinuous if
Condition 1 is satisfied, all the assumptions
of Item (d) of Theorem 1 hold, and ∀n =
0, 1, . . . , N function rn(·) is lower semicontinuous
and bounded below. To put it different,
λ(i, a) ≤ K < ∞;
λ(j|i, a) and λ(i, a) are continuous functions;
A is compact;
rn(i, a) are lower semicontinuous and bounded be-
low functions.

Theorem 2. In a semicontinuous model, if there
exists η̂ ∈ D satisfying all the inequalities in (11),
then constrained problem (11) is solvable, and the
solution can be found in the class of occupation
measures generated by stationary strategies.

Condition 2. (Slater) There exists a point η̂ ∈ D
such that all the inequalities in (11) are strict.

Theorem 3. (Kuhn-Tucker) Suppose a model sat-
isfies Condition 2. Then a point η∗ ∈ D is a so-
lution to (11) if and only if there exists a vector
Y∗ ∈ (IR0

+)N for which one of the following two
equivalent assertions holds:

(a) the pair (η∗, Y∗) is a saddle point of the La-
grange function L defined on D × (IR0

+)N :

L(η, Y )
△
=

∑

i∈X

∫

A

r0(i, a)η(i, da)

+

N
∑

n=1

Yi

[

∑

i∈X

∫

A

rn(i, a)η(i, da) − dn

]

.

To put it differently,

L(η∗, Y ) ≤ L(η∗, Y∗) ≤ L(η, Y∗)

at any (η, Y ) ∈ D × (IR0
+)N .

(b) All the inequalities in (11) are fulfilled,
L(η∗, Y∗) = minη∈D L(η, Y∗), and the condition
of complementary slackness

N
∑

n=1

Y∗i

[

∑

i∈X

∫

A

rn(i, a)η∗(i, da) − dn

]

= 0

is satisfied.

A vector Y∗ ∈ (IR0
+)N exhibits the above proper-

ties if and only if Y∗ provides the maximum

g(Y )
△
= inf

η∈D
L(η, Y ) −→ max

Y ∈(IR0
+

)N

.

Theorem 4. Suppose a semicontinuous model sat-
isfies Condition 2 and the functions rn(·), n =
1, 2, . . . , N are continuous and bounded. Then
there exists a solution to problem (11) which has
the form of a mixture of (N + 1) stationary selec-
tors:

η∗ =
N+1
∑

n=1

γnηϕn , γn ∈ [0, 1],
N+1
∑

n=1

γn = 1.

(Here ηϕ is the occupation measure generated by
a stationary selector ϕ.)

All these theorems (and many other) follow from
the corresponding statements for discounted (dis-
crete time) MDP presented e.g. in the books
by Altman (1999), Hernandez-Lerma and Lasserre
(1999), and Piunovskiy (1997): see the end of Sec-
tion 3.

5. EXAMPLE

Let us consider a switch (router) transforming in-
formation. Packets (file segments sent from re-
mote terminals) arrive to the router one after
another and, following rapid consideration, are
stored in the router buffer. After that, they are
transmitted further using the First In – First
Out basis, transmission time depending on the



length of the packet. In the absence of conges-
tion, the intensity of the input stream increases
until λ which is connected with the so called ’win-
dow size’. In the case of congestion, the switch
can send feedback signals to the terminals asking
them to decrease the window size; which results in
the decrease of the input intensity, up to the low
boundary λ. The service rate µ remains constant.
Therefore, we intend to consider the M/M/1/∞
queueing system with a controlled input stream.

In the terms of Section 2, X = {0, 1, 2, . . .},
A = [λ, λ̄]; for j 6= i ∈ X , λ(j|i, a) =






a, if j = i + 1,
µ, if j = i − 1,
0, otherwise .

The random process ξt de-

scribes the number of packets in the system. Put
r0(x, a) = x and r1(x, a) = −a. Now problem (5),
for a negative value −d on the right side, coinsides
with the following:

minimize the discounted queue length

R0(π) = Eπ

[

∫ T

0

e−αtξt−dt

]

→ min

under the constraint on the discounted through-
put R1(π) ≤ −d, i.e.

S(π) = Eπ

[

∫ T

0

e−αtλ(t)dt

]

≥ d.

(Here λ(t) =
∫

A
aπ(da|ω, t) is the intensity of the

input stream at time moment t.)

Application of the theory developed above leads
to the following qualitative result. Solution to the
constrained problem stated is given by the thresh-
old stationary selector

ϕ(ξt−) =







λ, if ξt− < i∗,
γλ̄ + (1 − γ)λ, if ξt− = i∗,
λ, if ξt− > i∗.

The values of the parameters i∗ ≥ −1 and γ ∈
(0, 1] can be effectively calculated, but the expres-
sions are cumbersome.

6. CONCLUSION

The convex analytic approach is particularly use-
ful for the study of multiple-criteria control prob-
lems. We managed to obtain all the main the-
orems because, after Lemma 2 is established,
one can easily use many known results from the
discrete-time theory. It should be emphasized that
the jumps intensity was assumed to be uniformly
bounded. If this condition is not satisfied, the the-
ory becomes much more complicated.

If there are no constraints (N = 0) then Theorem
2 gives the well known result on the suffieciency of
stationary strategies. Moreover, Theorem 4 says
that the solution can be found in the class of sta-
tionary selectors. These facts are known long ago
(Yushkevich, 1980).

The example considered in Section 5 is of its own
interest. Similar model with long-run average
losses was studied in depth in (Piunovskiy, 2004b).
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8. APPENDIX

Sketch of the proof of Lemma 2. Let us fix a
strategy π and the corresponding occupation mea-
sure ηπ. As is known (Kitaev and Rykov, 1995),
the measures

Kπ(t, i, ΓA)
△
= Eπ[π(ΓA|ω, t)I{ξt− = i}] and

pπ
i (t)

△
= P π{ξt = i} = P π{ξt− = i} = Kπ(t, i, A)

on X × A and on X correspondingly, satisfy the
forward Kolmogorov equation

pπ
i (t) = P0(i)+

∫ t

0

∑

k∈X\i

∫

A

Kπ(s, k, da)λ(i|k, a)ds

−

∫ t

0

∫

A

Kπ(s, i, da)λ(i, a)ds.

Hence, using the Fubini theorem and omitting the
algebraic calculations, we have

ηπ(i, A) = α

∫ ∞

0

e−αtpπ
i (t)dt = P0(i)

+
∑

k∈X\i

∫

A

λ(i|k, a) ×

∫ ∞

0

e−αtKπ(t, k, da)dt

−

∫

A

λ(i, a)

∫ ∞

0

e−αtKπ(t, i, da)dt

and equality (8) follows.



Suppose now that a measure η satisfies (8) and
disintegrate it:

η(i, ΓA) = η(i, A)πs(ΓA|i),

where πs is a certain stochastic kernel. After that,
one can show that η = ηπs

.
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