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Abstract: Over the last few years, recursive extensions to multivariate statistical process 
control (MSPC) techniques have gained attention for their ability in monitoring large-
scale, time-varying processes.  Although recursive MSPC techniques have been success-
fully applied in detecting faulty conditions, little interest has been shown in utilising them 
for diagnosis purposes.  This paper addresses this issue and introduces new fault diagno-
sis charts that rely on recursive MSPC models.  The utility of these is demonstrated using 
an application study on a simulation of a complex chemical process. Copyright  2005 
IFAC 
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1. INTRODUCTION 
 
Modern industrial processes often present a large 
number of measured variables, which are frequently 
sampled and usually highly correlated.  MSPC meth-
ods are known to be effective in detecting and diag-
nosing abnormal operating conditions in such cir-
cumstances (MacGregor et al., 1991; Martin and 
Morris, 1996; Wise and Gallagher, 1996).  Two of 
the most commonly used MSPC methods are Princi-
pal Component Analysis (PCA) and Partial Least 
Squares (PLS), (Kresta et al. 1991; MacGregor and 
Kourti, 1995; Kourti and MacGregor, 1995).  
 
Gallagher et al. (1997) highlighted the fact that most 
industrial processes are time-varying and thus require 
an adaptive rather than a fixed model.  For the 
monitoring of such processes, it is required that the 
model can be updated to accommodate time-varying 
behaviour, whilst still being able to detect abnormal 
conditions which violate the confidence limits, which 
themselves may also have to vary with time (Wang et 
al., 2003).  
 
1Corresponding Author, Email: uwe.kruger@ee.qub.ac.uk; Tel: 
+44(0)2890 974059; Fax: +44(0)2890 667023 

Whilst, several authors (Helland et al., 1991; Qin, 
1993, 1998; Dayal and MacGregor, 1997) have intro-
duced recursive extensions to PLS, Li et al. (2000) 
showed how to establish recursive PCA.  When a 
new observation becomes available, the PCA/PLS 
models are updated using this new observation to-
gether with the old model rather than the old data set.  
The adaptation of the PCA/PLS model also leads to 
adjustment of the monitoring statistics and their con-
fidence limits, as discussed by Li et al. (2000) and 
Wang et al. (2003). 
 
If the monitoring statistics indicate abnormal process 
behaviour, it is important to diagnose such behaviour 
in order to determine the root cause of this event.  
This can aid an experienced process operator to re-
spond correctly and promptly in removing, or at least 
reducing, the impact of the abnormal event.  The 
identification of potential root causes typically relies 
on contribution charts that describe the contribution 
of individual variables to the statistical monitoring 
statistics (MacGregor et al., 1994; MacGregor and 
Kourti, 1995; Morud, 1996).  Miller et al. (1998) 
suggested plotting the process variables at particular 
sampling intervals in form of a bar chart.  Despite 
numerous applications of contribution charts in con-



ventional PCA/PLS applications, little interest has 
been shown in developing charts that take advantage 
of the adaptive models generated in recursive 
PCA/PLS. 
 
The contribution of this paper is the development of 
two new fault diagnosis charts that are designed for 
the application of recursive PCA/PLS.  As these 
charts rely on the adaptation of the PCA/PLS models, 
they display changes in the model coefficients.  Note 
that although only recursive PCA/PLS are considered 
here, the new charts are not restricted to recursive 
applications only.  The new charts can also be inte-
grated in alternative adaptation techniques relating to 
the application of moving window PCA/PLS. 
  
Recursive PCA and PLS are briefly reviewed in the 
next section.  This is followed by an introduction to 
the new fault diagnosis charts and their applications 
in Sections 3 and 4 respectively. The conclusions of 
this work are finally given in Section 5. 
 
 

2. REVIEW OF PREVIOUS WORK 
 

This section provides a brief review of recursive PCA 
and recursive PLS, which explains the notations used 
in the derivation of the fault diagnosis charts.  
 
2.1 Recursive Principal Component Analysis 
 
As a well-established MSPC technique, PCA has 
been widely used in process monitoring (Kourti and 
MacGregor, 1995; Wise and Gallagher, 1996).  The 
PCA model can be calculated either directly from the 
data matrix that stores the recorded reference data, 
denoted here as Z in which the observations at differ-
ent time instant k are stored as row vectors in con-
secutive order, or from the corresponding correlation 
matrix, referred to here as SZZ.  Using the PCA 
model, the data matrix approximated as follows: 
 

 ETRZ += T  (1) 
 
where T and R are score and loading matrices respec-
tively and E is residual matrix.  Li et al. (2000) 
showed computationally efficient ways of recursively 
updating the correlation matrix.  For the (k+1)th ob-
servation, this update procedure relies on the previous 
correlation matrix kSZZ and a new observation, i.e. the 
(k+1)th observation zk+1 and involves (i) the adapta-
tion of the mean and standard deviation of the re-
corded process variables, (ii) the subsequent adapta-
tion of the correlation matrix, (iii) the determination 
of the parameters of the (k+1)th PCA model, (iv) the 
adaptation of the confidence limits for the univariate 
monitoring statistics and (v) the updating of the 
monitoring statistics using the previously updated 
monitoring model.   
 
2.2 Recursive Partial Least Squares 
 
The PLS technique decomposes the predictor or input 
matrix X , including M predictor variables, and the 

response or output matrix Y , including N response 
variables, as follows (Geladi and Kowalski, 1986): 
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where T and Û are score matrices, P and Q are load-
ing matrices and E and F are residual matrices.  Note 
that the predictor matrix X includes a set of variables 
that predicts the variation encapsulated in the re-
sponse matrix Y.   
 
The above decomposition generates an “inner model” 
and an “outer model”.  The inner model describes the 
relationship between the u-score matrix U and the t-
score matrix T.  In contrast, the outer model shows 
the relationship between the predictor and response 
matrices.  The inner and outer models are defined in 
Equations (3) and (4), respectively: 
 
  GTBGUU +=+= ˆ   (3) 
  FXCFYY +=+= ˆ   (4) 
 
where G is a residual matrix of the inner model, B is 
a diagonal regression matrix, � is the prediction of Y 
and C is a regression matrix. 
 
In order to update the current PLS model at sample 
instant k, when a new sample { }11 , ++ kk yx  becomes 
available, PLS regression can be performed with 
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 since these produce the same in-

ner and outer regression model (Qin, 1998).  This 
allows a computationally more efficient adaptation 
technique that is applicable to large-scale processes 
(Qin, 1998). 
  
2.3 Monitoring statistics for PCA/PLS related 
  approaches 
 
The monitoring of industrial processes usually relies 
on univariate statistics such as (Hotelling’s) T2 and 
the squared prediction error (SPE) (Wise and Galla-
gher, 1996; Martin and Morris, 1996).  Li et al. 
(2000) and Wang et al. (2003) showed how a recur-
sive version of these monitoring statistics, and their 
confidence limits, may be obtained for PCA and PLS.  
Note that PLS produces two SPE statistics, i.e. one 
residual statistic for the predictor variables (SPE(X)) 
and one residual statistic for the response variables 
(SPE(Y)).  Further, the model obtained at the previous 
sample instant should be used in calculating the cur-
rent statistics. This is essential for increasing the sen-
sitivity of the monitoring model in detecting abnor-
mal process behaviour.   
 



The contributions to individual plant variables to the 
statistics can be obtained as discussed in Russel et al. 
(2000) using contribution charts.  These enable the 
variables which contribute most to abnormal plant 
behaviour to be identified.  Our new fault diagnosis 
charts are similar but incorporate changes in the 
model coefficients resulting from the recursive adap-
tation of the PCA/PLS model. 
 
 

3 NEW FAULT DIAGNOSIS CHARTS 
 
This section introduces two new charts that allow 
changes in the loading matrix (recursive PCA) and 
the outer regression matrix (recursive PLS) to be dis-
played.  They are therefore tailored for use with re-
cursive versions of PCA and PLS.  The effectiveness 
of these new charts is demonstrated in a simulated 
application study of a complex chemical process.  
The derivations of both charts are given below. 
 
3.1 Changes in the loading matrix for RPCA 
 
The loading matrix Rk contains the information about 
how the variables relate to each other at time instant 
k.  The elements of this matrix clearly change in 
value if the PCA model is updated and the process 
behaviour changes. Given that Rk is an n by m ma-
trix, with n = M + N recorded process variables and m 
the number of retained principal components, the ith 
column of Rk explains how the ith principal compo-
nent contributes to the original n process variables.   
 
In order to determine the impact of a particular proc-
ess variable on the remaining ones, the projection 
matrix T

kkk RRD =  is applied here rather than using 
Rk.  The latter only determines the impact of a par-
ticular principal component on the process variables.  
The resultant updated PCA model allows following 
matrix be constructed to,  
  
 kkk DDD −= ++ 11∆   (5) 
 
The elements of 1+kD∆  can be displayed in a 3-
dimensional bar chart, where the first and second axis 
refers to individual process variables and the third 
axis relates to the corresponding element in kD∆ .  
Since 1+kD∆  is symmetric, it is sufficient to plot the 
upper or lower triangular elements together with the 
diagonal elements.  This allows an easier interpreta-
tion of the plotted results. 
 
3.2 Changes in the regression matrix for RPLS 
 
Under the assumption that the process is time-
varying, the elements in the coefficient matrix C, 
defined in Equation 4, change when the PLS model is 
updated.  Such changes can be used to provide infor-
mation on how the relationships between the predic-
tor and response variables vary over time.  For in-

stance, if the ith predictor variable encounters a severe 
change at sampling point k+1, elements in the ith row 
of 1+kC  differ significantly from those in Ck as a re-
sult of model adaptation.  By comparing the differ-
ence between 1+kC  and kC , i.e.: 
 
 kkk CCC −= ++ 11∆  (6) 
 
The changes in the ith row can be detected and used to 
trace this abnormal event back to the ith predictor 
variable.   
 
Similarly, the change of a particular column in 

1+kC∆  reflects a change in the corresponding re-
sponse variable.  Examination of significant elements 
in 1+kC∆  again allows determining potential root 
causes, responsible for such an abnormal event, to be 
determined.  
 
The elements of 1+kC∆  can also be plotted on a 3-
dimensional bar chart, where one axis corresponds to 
the predictor variables, one axis relates to the re-
sponse variables and the third axis is associated with 
the elements in 1+kC∆ . 
 
 

4 APPLICATION STUDY 
 
This section shows the utility of the two new contri-
bution charts using data that stems from a realistic 
simulation of a fluid catalytic cracking unit (FCCU).  
Both charts are contrasted with each other on the ba-
sis of the information content provided to process 
operators.  A description of the FCCU is given prior 
to results from the detection and diagnosis of a simu-
lated fault scenario. 
 
4.1 Process description 
 
A fluid catalytic cracking unit is an important eco-
nomic unit in refining operations. It typically receives 
several different heavy feedstocks from other refinery 
units and cracks these streams to produce lighter, 
more valuable components that are eventually 
blended into gasoline and other products. The 
particular Model IV unit described by McFarlane et 
al. (1993) is illustrated in Figure 1. The principal feed 
to the unit is gas oil, but heavier diesel and wash oil 
streams also contribute to the total feed stream. Fresh 
feed is preheated in a heat exchanger and furnace and 
then passed to the riser, where it is mixed with hot, 
regenerated catalyst from the regenerator. Slurry 
from the main fractionator bottoms is also recycled to 
the riser. The hot catalyst provides the heat necessary 
for the endothermic cracking reactions. The gaseous 
cracked products are passed to the main fractionator 
for separation. Wet gas at the top of the main frac-
tionator is increased to the pressure of the down-
stream separation by the wet gas compressor. Separa-



tion of light components occurs in this downstream 
separation section. 
 

Fig. 1: Schematic diagram of the fluid catalytic 
  cracking unit (McFarlane et al., 1993) 
 
As a result of the cracking process, a carbonaceous 
material, coke, is deposited on the surface of the cata-
lyst, which depletes its catalytic property. For this 
reason, spent catalyst is recycled to the regenerator 
where it is mixed with air in a fluidised bed for re-
generation of its catalytic properties. Oxygen reacts 
with the deposited coke to produce carbon monoxide 
and carbon dioxide. Air is pumped to the regenerator 
with a high-capacity combustion air blower and a 
smaller lift air blower. In addition to contributing to 
the combustion process, air from the lift air blower 
assists with catalyst circulation. Complete details of 
the mechanistic simulation model for this particular 
model IV FCCU can be found in (McFarlane et al., 
1993).  
 
The selected process variables for the FCCU case 
study are given in Table 1. In order to produce typical 
signals that exhibit non-stationary and time varying 
character, different ARIMA and ARMA signals were 
superimposed on the predictor variables and the pa-
rameters in the simulation. 
 
The set of faulty data under investigation in this pa-
per considers a 1% degradation in the flow of regen-
erated catalyst between the regenerator and riser, 
which is typically caused by partial or complete 
plugging of steam injectors located in this line 
(McFarlane et al., 1993).  A data set was simulated 
containing 1150 data points at sampling intervals of 1 
minute. The fault in the form of a step, was injected 
after 950 samples. Physically, any change in regener-
ated catalyst flow will primarily affect catalyst-to-
feed ratio in the riser, resulting in a change in the 
amount of coke deposited on the spent catalyst and 
subsequently the level of oxygen usage in the regen-
erator. Further consequences are related to the mate-
rial balance in the standpipe, and hence its level, as 
well as the reaction conditions in the reactor. 
 
4.2 Fault detection using monitoring charts 
 
Wang et al. (2003) demonstrated the need for using 
recursive  techniques  to  monitor  this  process. Given   
 

Table 1: Considered variables of FCCU Simulator 
 

Variable No. Description 
 1 Wash oil feed flowrate 
 2 Total fresh feed flowrate 
 3 Slurry flowrate 
 4 Preheater outlet temperature 

 5 Fresh feed temperature to riser 
Predictor 6 Furnace firebox temperature 
Variables 7 Comb. air blower suct. flowr. 

 8 Comb. air blower throughput 
 9 Combustion air flowrate 
 10 Lift air blower suct. flowrate 
 11 Lift air blower speed 
 12 Lift air blower throughput 
 13 Riser temperature 
 14 Wet gas compr. suct. pressure 
 15 Wet gas compr. suct. flowrate 
 16 Wet gas flowrate to rec. unit 
Response 17 Regenerator bed temperature 
Variables 18 Reg. stack gas temperature 
 19 Regenerator pressure 
 20 Standpipe catalyst level 
 21 Stack gas O2 concentration 
 22 Comb. blower discharge press. 
 23 Wet gas comp. suct valve pos. 

 
that fault diagnosis using recursive MSPC techniques 
is the focus here, the fault detection results are only 
described briefly.  Figure 2 shows the application of 
RPLS to this data set.  It can be seen that the SPE(Y) 
statistic from the RPLS approach is giving the 
strongest response to this event, which is understand-
able since most of the response variables are affected 
by the fault.  
 
However, an increase in both the T2 and the SPE(X) 
statistic can also be seen. This is explained by the 
pressure change in the regenerator as a consequence 
of the excess production of carbon monoxide and 
carbon dioxide, which leads to a reduction of the air-
flow of the combustion as well as the lift air blower. 
A change in the relationship between the predictor 
variables is the consequence, which leads to a signifi-
cantly changed SPE(X) statistic. Since the variation in 
the air blower variables is excessive, the T2 statistic 
variation is also significant.  
 
The results from applying RPCA are shown in Figure 
3, where both statistics were severely affected by the 
event at time instant 950. Given the above explana-
tions, these results coincide with those from RPLS. 
 
4.3 Application of fault diagnosis charts 
 
The fault was introduced at sampling point 950.  The 
new fault diagnosis charts were applied to determine 
which of the variables were most affected by the re-
duced flow of regenerated catalyst.  The matrices, 

1+kD∆  for recursive PCA and 1+kC∆  for recursive 
PLS were both obtained for k = 949.   



 
Fig. 2: RPLS monitoring charts FCCU catalyst 
  faulty data 
 

 
Fig. 3: RPCA monitoring charts on FCCU catalyst 
  faulty data 
 
The elements of 1+kD∆  at sampling point k = 949 are 
plotted in Figure 4.  The most affected variables refer 
to the 20th process variable, which is the standpipe 
catalyst level.  More precisely, the following combi-
nations involving the standpipe catalyst level pro-
duced significant changes in 950D∆ : standpipe cata-
lyst level → (i) slurry flowrate, → (ii) preheater out-
let temperature, → (iii) lift air blower suction 
flowrate, → (iv) lift air blower speed and → (v) lift 
air blower throughput.  These variables have been 
correctly identified, as the reaction conditions are 
affected including the material balance in the stand-
pipe and hence its level.  More precisely, the lift air 
blower assists the catalyst circulation and the feeds, 
particularly the slurry feed, which all contribute to 
the reaction.  Moreover, the preheater outlet tempera-
ture is the temperature with which the input feed en-
ters the reactor.  Consequently, this temperature also 
affects the reaction conditions. 
 
For RPLS, the changes in the regression matrix Ck 
for k = 949, i.e. 950C∆ , are shown in Figure 5.  The 
most dominant contributions are noticeable for the 8th 
response variable, i.e. the standpipe catalyst level.  In 
addition, the same variable pairs as those previously 
seen with 950D∆  were also significant in 950C∆ .    

 
Fig. 4: Changes in matrix D of RPCA model for k = 

949  
 
Consequently, both fault diagnosis charts offer the 
same information to the process operator.   The next 
subsection compares the number of elements in the 
matrices 1+kD∆  and 1+kC∆ . 
 
 

 
Fig. 5: Coefficient changes in RPLS model for k = 
  949. 
 
4.4 Number of elements in 1+kD∆  and 1+kC∆  
 
The total number of elements 1+kD∆  is equal to (N + 
M)2.  Given that only the upper or lower triangular 
elements along with the diagonal elements are re-
quired, the number of elements that are displayed, 
pPCA, in general is given by: 
 

 
( )( )

2
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In contrast, the total number of elements in 1+kC∆ , 
pPLS, is: 
 NMp =PLS  (8) 
 
Comparing these, it is apparent that in general the 
regression matrix for recursive PLS includes fewer 
parameters than in the projection matrix for recursive 
PLS when: 
 



 NMNM +>+ 22  (9) 
 
Consequently, the elements displayed in 1+kD∆  con-
tain redundancy if M or N > 1, although both matrices 
produced the same information regarding the fault in 
the regenerated catalyst.  This analysis provides fur-
ther evidence that, recursive PLS is probably to be 
preferred to recursive PCA for detecting and diagnos-
ing abnormal process behaviour. 
 
 

5 CONCLUSIONS 
 

This paper introduced two new fault diagnosis charts 
that are tailored to recursive PCA and PLS based 
condition monitoring.   These display changes in the 
projection matrix for PCA and the regression matrix 
for PLS, resulting from the updating of monitoring 
models.   
 
Application to a realistic simulation of a fluid cata-
lytic cracking unit, where a fault in the regenerated 
catalyst line was simulated, showed that this event 
was correctly diagnosed.  More precisely, the vari-
able pairs that were mostly affected by this event 
were identified and would have assisted an experi-
enced operator in narrowing down potential root 
causes of this event. 
 
A general analysis pf the number of parameters that 
both techniques display revealed that recursive PLS 
is to be preferred over recursive PCA. 
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