ENTIRELY LEFT
EIGENSTRUCTURE-ASSIGNMENT FOR
FAULT DIAGNOSIS OBSERVERS

Zdzislaw Kowalczuk * Piotr Suchomski *

* Department of Automatic Control, WETI,
Gdansk University of Technology, Poland,
e-mail kova@pg.gda.pl

Abstract: In this paper a unified geometrically-embedded methodology of synthesis
of static decoupled residual generators is presented that leads to a sub-optimal
solution to a robust eigenstructure assignment problem based on a predetermined
set of eigenvalues. Robustness of this design means that its eigenvector matrix is
sufficiently well conditioned. An original idea of a convenient parameterization
of corresponding attainable eigensubspaces is developed and new conditions
for disturbance decoupling are derived solely in terms of the left eigenvectors
of a system observation state-transition matrix. The resolved completely-static
disturbance-decoupling design problem can be treated as an effective preliminary-
design stage of an integral synthesis of residual generators. A numerical example
illustrates the effectiveness of the presented method. Copyright © 2005 IFAC
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1. INTRODUCTION

The problem of synthesis of robust state observers
for dynamic plants is considered to be an essential
point in the design of diagnostic systems for FDI
(failure detection and isolation, Chen and Patton,
1999; Gertler, 1998; Kowalczuk and Suchomski,
2004; Liu and Patton, 1998).

Intelligible analytical judgment shows that bene-
ficial attributes of such observers can be obtained
by appropriately designing the eigenstructure of a
system observation state-transition matrix repre-
sented by its eigenvalues and eigenvectors.

Most design procedures based on the eigenstruc-
ture assignment paradigm are principally con-
cerned with eigenvalue insensitivity graded by a
certain sensitivity measure (Kautsky, et al. 1985).
Unfortunately, as has been shown by Sobel et al.
(1994), even a small improvement in a practical

fault-sensitivity measure may result in a signifi-
cant degradation in a frequency-domain measure
of robustness. Thus, any eigenstructure synthesis
should be regarded as a multi-objective optimiza-
tion problem (Liu and Patton, 1998).

In this paper a unified methodology for synthe-
sis of static decoupled residual generators is pre-
sented that specifies how to achieve a sub-optimal
solution of the robust eigenstructure assignment
problem using a geometric approach and a pre-
determined set of eigenvalues. In the applied nar-
row sense, robustness means that an eigenvector
matrix is constrained to be as well conditioned
as possible (Kowalczuk and Suchomski, 2004). In
particular, we propose a convenient parameteri-
zation of the corresponding attainable eigensub-
spaces and derive new conditions for disturbance
decoupling solely in terms of left eigenvectors of
the observation state-transition matrix.



2. SYSTEM MODELING

Let the monitored system be described as

wo(k+ 1) = Aw(k) + Buu(k) + Bada(k) + Ef(k) (1)
y(k) = Ca(k) + Dyu(k) + Dndn(k) + Ff(k) (2)

where z(k) € R™ denotes a plant state, u(k) €

R™ means an input (controlling) signal, y(k) €
R™ is an output, dy(k) € R™ stands for an
immeasurable plant disturbance, d, (k) € R™ is
measurement noise, while the vector f(k) € RY
models pertinent faults. It is assumed that (A, C)
is completely observable, B, and By are of a full
column rank and C has a full row rank. Since the
number of independent disturbances that can be
decoupled cannot be larger than the number of
independent measurements, we infer that m >
ng. It is also presumed that the vector fault is
modeled by an unknown time function f(k), while
its influence on the state evolution x(k) and the
plant output y(k) is described by the constant
matrices E and F, respectively (Chen and Patton,
1999).

3. PRIOR SYNTHESIS OF RESIDUALS

A full-order observer has the following form (Chen
and Patton, 1999; Gertler, 1998)

#(k + 1) = Ao@(k) + (Bu — KoDu)u(k) + Koy(k) (3)

where Z(k) € R” is a state estimate and K, is an
observer gain. Let A, = A — K,C denote the ob-
server state transition matrix. It is assumed that
A, is a stable matrix, i.e. all its eigenvalues o(A4,)
belong to the open unit circle. The evolution of the
state estimation error z.(k) = z(k) — Z(k) can be
described by z.(k + 1) = Asze(k) + Bada(k) —
KoDndn(k) + (E - KOF)f(k)

An output estimate §(k) takes the form of §(k) =
Cz(k)+Dyu(k) leading to an original output error
Ye(k) = y(k) — 9(k). Let yu (k) = Wye(k) denote
a weighted residual, where W € R¥*™ is a design
matrix of a full row rank, rank (W) = w < m (Liu
and Patton, 1998; Chen and Patton, 1999).

The z—transform of y,, (k) takes the form

ﬂw(z) = Grf(z)f( ) + Grd(z)dd(z)"i' (4)
rn(2)dy (2) + Gra(2)ze(0)

where: Grf(z2) = WF + HIy(2)(E — K,F),
Gra(z) = HTo(2)Ba, Grn(2) = WD,, — HTy(z)
KoDy,, Grz(2) = 2HTo(2), To(2) = (21, — Ap) ™1,
and H =WC € R“’X” A computational form of
the residual is y (W HTO( VKo)y(z) —
(WD, + HTy(z ?”B Ju(z). B

4. EIGENVECTORS ATTAINABILITY

Since (A,C) is completely observable, YA € R
there exists such a K’ € R™*™ for which det (AI,, —
(A — KC)) = 0. Assume that K is settled and
consider a real A € 0(A — KC). A synopsis of
basic notions associated with A is given below.

e o\ —algebraic multiplicity of A\, 1 < ay < n;

e ~yy—geometric multiplicity (degeneracy) of A,
1 < v < a, i.e. the number of Jordan
blocks (eigenchains) associated with A, v\ =
dim (Ker (A, — (A — KC))) = n — rank (\],, —
(A= KC));

e 1) ,;—size of the ith Jordan block, i € {1,...,v},
containing one left distinct eigenvector associated
with A and corresponding (7,;—1) left generalized
eigenvectors (left principal vectors), 1 < my; < ax
and Y ™ mni = ax, 1y are also called the
partial multiplicities of A and the largest of them
is called the index of );

o [ ; —ith left distinct eigenvector associated with

Adie{l,....,n} l{i(A —KC) = )\l{i;
e [y;; — jth left generalized eigenvector (left

principal vector) corresponding to the ith left
distinct eigenvector associated with A, j € {1,.

M — 1} and my; > 1, 15, (A~ KC’) = )\lfu
l{i, j—1, where the following notational convention

is used x50 = I -

4.1 Parameterization of attainable eigensubspaces

Let A € R. A vector [y € R™ belongs to an
attainable (assignable) left \—eigensubspace of
(A, C), denoted as Ly(A4,C) C R", if and only
if the equality (A, — AT)l, = CTv) holds for
a certain parameter vy € R™ satisfying vy, =
—KTl) with a K € R™™. A convenient way
for parameterizing L)(A,C) can be shown with
the use of a basis of the null space Ker (T)) C
R™™ of the matrix Ty = [(M, — AT) —CT] €
Rnx(n+m)‘

The assumed observability of (A, C) implies that
VYA € R we have rank (7)) = n. It follows
that dim (Lx(A4,C)) = m, and that the maximal
attainable geometric multiplicity of a given real
eigenvalue of A — K C' is equal to m. Two ways of
parameterizing Ly (A, C) are derived below.

Separation case: \ ¢ o(A)

Assume that for a given A € R we have \ ¢
o(A). This implies that det (A, — A) # 0
and consequently Ker (7) = Im([S} I1,,]7),
where S, € R™*™ is defined as a full column
rank matrix Sy = (M, — AT)"!CT. The at-
tainable left A—eigensubspace of the pair (A4, C)
can thus be recognized as the range subspace of



Sx: La(A4,C) = Im (Sy). An orthonormal basis
for the subspace Ly(A,C) = Im (Ug) can eas-
ily be obtained by the singular value decompo-
sition (svd) of Sy: Sy = [Ug Us |XsVZ, where
Us e R, Y5 = [X5 Opmx(n—m) ¥ with a non-
singular diagonal submatrix Xg € R™*"™, and a
unitary Vg € R™*™_ On the basis of the above
we conclude that by taking auxiliary parameters
Uy € R™ we obtain the following preliminary
characterizations of the set of parameters vy and
the set of corresponding attainable left distinct
eigenvectors [y: vy = Vszgli,\ and [y = UgUx.

Common case: X\ € o(A)

Let A € o(A) for a given A € R. This implies
that det (AI,, — A) = 0. An orthonormal basis for
Ker (7)) can be derived from the svd of Th: T) =
UrXr [Vy Vr]T, where Yp = [X7 Opxm | has
a non-singular diagonal submatrix ¥, € R"*",
Vy € Rtmxnand Vi € RHm™xm Hence
Ker (Ty) = Im (V7). The following lemma de-
scribes submatrices of [V Vr| partitioned con-
formally to n x m.

Lemma 1. Submatrices of

¥ _ KTJ ‘ZT,l
[KT VT} - |:KT72 VT,2:|

have the following properties:

_ n if A¢o(A)
rank(KT,l) = { nx=n—7anx if A€o(A)
where 7y 4, is the geometric multiplicity of \ as the
eigenvalue of A, Vrohasa full row rank, Vr 1 has
a full column rank, while Vr s is singular. O

The range of VT,l establishes the attainable left
A—eigensubspace L)(A,C) = Im (Vr1). An or-
thonormal basis for this subspace, Ly(A,C) =
Im (Ug), can easily be derived by the svd V1 =
[Ur Up ]ETVTT, where Urs € R™™ Y5 =
[XF Opmx(n—m) ]* has a non-singular diagonal
submatrix ¥ € R™*™ and V7 € R™*™. Taking
auxiliary parameters as vy € R™, we obtain a
preliminary description of the set of parameters vy
and the set of attainable left distinct eigenvectors

Ih: v\ = VT,ZVTZ%lﬁ/\ and [y = Us05.

4.2 Parameterization of attainable eigenflats

Let A € R. A vector [,;; € R" belongs to an
attainable (assignable) left A\—eigenflat of (A, C),
denoted as Ly ; ;j(A,C) C R", if and only if the
equality ()\]n—ATﬂ)\’i,j = CT’U)\’Z"]'—Z,\’Z"J'_l holds
for a certain parameter v);; € R™ satisfying
UNi,j = 7KTI)\7Z',]' with a K € Rnxm’ NS
{15"'7’7)\}7 J € {1""777>\,i - 1} and i > 1.
The flat Ly ; ;(A, C) can be described as

Ly,i,j(A,C) = LA(A, C) © 0xi g (6)

where for convenience it is assumed that the offset
Uxi,; € R™ is orthogonal to Ly (A4, C). Below, two
ways for parameterization of Ly ; j(A,C) will be
considered.

Separation case: \ ¢ o(A)

In the separation case ¥y,;; = —UsUL (NI, —
AT)71, ;-1 leading to the following preliminary
characterization of the set of parameters vy ; ;
and the set of attainable left generalized eigen-
vectors [y ; j: Urij = Vszgl(f),\’i’j + Qg()\]n —
AT)ill)\’i,jfl) and l)\,i,j = Qsﬁk,i,j + ’L:)>\77;7j with
an auxiliary parameter 7y ; ; € R™.

Common case: \ € o(A)

In the common case Uy;; = —UpULV, 57 'UF
Inig-1, Uniy = —VoXp'UFlaij 1+ V?VTZ;
(Onig + URV Z7 UF i 1), i = Uptoaig +
Uyi,j, where vy;; € R™ denotes an auxiliary
parameter.

4.8 Observer gain

Let L, = [ Ixn. - Ix.. ---] € R"™ denote
a left modal matrix with columns constructed of
linearly independent attainable left (distinct Iy .
and, if necessary, generalized [y ..) eigenvectors
of Ao and V,, = [+~ wr. -+ vp.. o] € R
denote a matrix with columns of their correspond-
ing parameters. Pairs of the related columns of
these matrices can be arbitrarily ordered. Hav-
ing completed L, and V,,, the observer gain can
be determined as K, = —(V,,L,,!)T (Chen and
Patton, 1999; Liu and Patton, 1998). Note that
columns of L, (and the corresponding columns
of V,,) can be ordered with respect to various
purposes, therefore the similarity relation J,, =
LTA,L,T € R"*" generally yields a (permuted)
Jordan canonical form of A,.

5. DISTURBANCE DECOUPLING
5.1 Necessary condition for decoupling

Lemma 2. (Necessary condition for decoupling,
Liu and Patton, 1998) If Gr4(z) = Owxn, then
HBy =WCBy = 0yxn, which can be interpreted
as o design constraint on the weighting matriz W .
O

The above lemma advises the following convenient
rule for the choice of w: w = dim (Ker ((CBy)T)) =
m — r, where r = rank (CBy). In the sequel, it
is assumed that w > 1. To ensure WCBy; =
Owxn, we can take a linear combination of vec-
tors from Ker ((CB4)T) as columns of W7. An
orthonormal basis of this subspace can be estab-
lished by columns of a submatrix Uy € R™*™ of



rank (Uy) = w found by means of the svd OBy =
U, Ug]2qV,]. Consequently, a useful rule for
parameterizing W can be stated as W = W.UT,
where W,, € R**" of rank (W,,) = w is a non-
singular matrix parameter.

5.2 Sufficient conditions for decoupling

The following lemma, is an extension of a generic
lemma of Liu and Patton (1998), who considered
a slightly less general case (solely distinct eigen-
values of A,).

Lemma 3. (Sufficient condition for decoupling)
Disturbance decoupling Grq(z) = Owxn, 18 achieved
if the following triple condition is satisfied

HBd = wand
(wt) { T (L) ~ L (H7) @
Jn = diag {Jw, Ju }

where L,, = [ Ly Ew] is an attainable left modal
matriz with Ly, € R™ ™ while J,, € RY*" and

Jp € RO=w)x(n=w) gre diagonal blocks of the
corresponding (permuted) Jordan form of A,. O

Remarks:

1) Let Ju = Owxw. This means that all columns
of L, are composed of attainable left distinct
eigenvectors corresponding to zero-valued eigen-
values. Hence, the corresponding sufficient con-
dition for disturbance decoupling takes the form
HA, = 0Oyxn. Consequently, HTy(z) = 2 'H,
which means that y,(k) can be implemented
as a first-order parity equation (Chen and Pat-
ton, 1999). Moreover, taking into account that
H=WZIY,LL = [WIY, Opx(nw) LL we have

HK, = -WZIYy,[vi -+ vy) T 1t thus follows that
for a decoupled residual generator G,f(z) and
Grn(z) do not depend on the eigenstructure as-
sociated with .J,,.

2) Let x'(Lw) = ||Pim (m7)+ Luw|| denote a distur-
bance decoupling index of L, for the condition
(wl), where Py, (gryr € R™™™ is a projection ma-
trix. Considering the svd CTU, = [U, U.]%.V.]
with U, € R™* =) yields x/(Ly,) = ||UUT Ly
It follows that for (w1) one should minimize:

- the angular distance between a unity-norm at-
tainable left eigenvector [; corresponding to a
given )\; and the subspace Ker (UZ)NIm (L; 1)+ =
Im([U. U, ,])*, Vi€ {l,...,w}, and

- the angular distance between a unity-norm at-
tainable left eigenvector [; corresponding to a
given )\; and the subspace Im (U, ,)*, Vi € {w+
1,...,n}, where U; € R"* is obtained from the
svd Ly = [l - 1] = [U; U ][ST Ope oy [TV
O

Consider yet another sufficient condition for such
a left eigenstructure-assignment that nullifies the
transfer function Grq(z).

Lemma 4. (Sufficient condition for decoupling)
Assume that n — ng eigenvalues of A, are as-
signed to u € R and the corresponding attainable
left eigenvectors constituting columns of Ly, €
R™*(n=n10) gre distinct, where n —m < ng < n —
ng. Disturbance decoupling Grq(z) = Owxn, 1S
achieved if the following triple condition is sat-

isfied

HBd = wand
(w2) ¢ Im (Ly,) C Ker (BY) (8)
Jn = diag {Jny, Jno }

where L, = [Ly, Ln,] € R™", with L,, €
R™*™0 45 an attainable left modal matriz, Jp, €
R™*™0  denotes a diagonal block of the corre-
sponding (permuted) Jordan form of A,, and
jno _ //'Infng c R(nfno)x(nfno).

Remarks:

1) In general, there is no requirement for A, to be
diagonalisable (nondefective). However a diagonal
structure of .J,, should be recommended, mainly
from the sensitivity point of view.

2) The minimal ng = n —m seems to be the most
convenient, choice. In the case of ng > n — m,
several p—valued eigenvalues can appear in J,,.

3) By assuming that HBy = Oyxn,, We can
conclude that the condition (w2) can be achieved
when the columns of By are assigned as attainable
right distinct eigenvectors of A, corresponding to
the zero-valued eigenvalues, i.e. A;Bg = Opxn,
(Liu and Patton, 1998). Condition (w2) can thus
be regarded as a generalization of the above ap-
proach solely in terms of the left eigenstructure
assignment.

4) The resulting transfer function G,s(z) is not
of the dead-beat form. Consequently, the residual
signal has a recursive structure and does not cor-
respond to a parity relation. On the other hand,
the response of the decoupled residual generator
can be speeded up be shifting the free eigenvalues
close to zero. This, however, can degrade the con-
ditioning of the corresponding left modal matrix
L.

5) Let X" (Ln,) = || Pger (87~ Lno|| denote a dis-
turbance decoupling index of Ly, for the condition
(w2), where Py, (B7)+ € R™™ is a projection
matrix. Performing the svd By = [U, Uy S, VX
with Uy € ™M gives X" (Lny) = [UpUT L.
It follows (Kowalczuk and Suchomski, 2004) that
we should minimize:

- the angular distance between a unity-norm at-
tainable left eigenvector [; corresponding to a



given )\; and the subspace Ker (BY)NIm (L;_;)* =
Im([U, U;_1])*, Vi€ {l,...,n0}, and

- the angular distance between a unity-norm at-
tainable left eigenvector [; corresponding to the
a— valued )\; and the subspace Im (U;_,)*, Vi €
{no+1,...,n}. O

Taking into account the above development of
(w2), we are going to obtain a dead-beat resid-
ual generator. It can be done by constructing a
suitable Jordan form of A, with the zero-valued
eigenvalue of the maximal algebraic multiplicity
Q) = nN.

Let us consider a class of systems described by (1)
and (2) with n < 2m. Assume that m eigenvalues
of A, have been assigned to zero and the corre-
sponding attainable left eigenvectors {/;}, are
distinct. Let for the properly ordered eigenvectors
{t:}7°, C {li}i*, with ng = n — m it hold that
l; € Ker (BT), Vi € {1,...,n0}. Next, assume
that each [; forms a two-element eigenchain associ-
ated to the zero eigenvalue and let /; ; € R” denote
the corresponding first attainable left generalized
eigenvector, Vi € {1,...,no}. Taking into account
the presumed orthogonality of the parameteriza-
tion (6) and observing that {l;}" ; forms a basis in
R™, we can conclude that all auxiliary parameters
{v;1}1°, describing the set {l;1};°; should be
zeroed. It follows that each attainable left gen-
eralized eigenvector is uniquely determined solely
by the offset of the corresponding flat [; 1 = v; 1,
Vi € {1,...,n0}. Clearly, {l;1};°, can ’truly’ be
accepted as a set of attainable left generalized
eigenvectors if and only if {v;1};°; are all non-
zero (i.e. if all required two-element eigenchains
can be effectively established).

Lemma 5. (Sufficient conditions for a decoupled
dead-beat observer) Consider a class of systems
with n < 2m. Assume that m eigenvalues of A,
have been assigned to zero and corresponding at-
tainable left eigenvectors {1;}1" | are distinct. Dis-
turbance decoupling Grq(z) = Oyxn, is achieved if
the following triple condition holds

HBd = wand
Im (Lp,) C Ker (B]) (9)

rank (L,,) = ng

(w2’)

where ng =n —m, Ly, = [l1 -+ ln, | and Ly, =

[1171 R lng,l] with

. UsUYATL,, if 0¢o(A)
L'no = _TT_T7 T —177T .
UrUp Vi 57 UpLn, if 0 € o(A)
Attainable left generalized eigenvectors I?no are

characterized by parameters Vp, = [V11 +* Ung,1]

Vg =

—VS%;]QEA*T Lng if 0¢o(A)
(VoVa2Z ULV, — V)27 Uf Lng if 0 € o(A)

Remarks:

1) Considering the resulting left modal matrix
L, = [Ly, lng+1 = lm Lng ], we obtain a per-
muted Jordan form of A,

Ome

O’ITLXno (10)

Jn =
Inoxno Onox(m—no) Onoxno

2) The objective disturbance decoupling index of
L, takes the form x”(Lyn,) = |UpU% L, |-

3) In fact, the full row rankness of UTA-TL,, or
UrV 5" UF Ly, should be tested for (9).

4) Since A, is nilpotent, it follows that Tp(z) =
27, + 272A,, which gives G,¢(z) = WF +
2 YH(I, + 27 'A)(E — K, F) and G,,(z) =
WD, — z*H(I, + 27 *A,)K,D,,. Thus vy, (k)
takes the form of a second-order parity equation.

5) Similar results can easily be obtained for high
order systems with n > 2m. For example, in
the case of 2m < n < 3m the following three-
and two-element eigenchains should be consid-
ered: {li, li71, l@gHZﬁm and {li, li,l};’in72m+17 re-
spectively. O

6. EXAMPLE AND CONCLUSION

By taking [|Glloc = suppe(_n,q [|G(e?)] We can
define the following convenient indices of detecting
abilities of the examined observers

Na/f = IGralloe and 7 — Grnlloo
d/f = TG (e))py n/f = (G (@) g2,

Consider the discrete model of an unstable plant

1.5 0.0 0.0 0.05 1
A=1001000|,Byu=|-020|,B;=|1

0.0 0.0 0.2 0.70 0

110 0 10

governed by a state controller u(k) = —K.z(k)
with the gain K, = [14.7973 0.2847 —0.1893 ]
corresponding to a set of closed-loop poles {0.7165,
0.7165, 0.7165}. The disturbance dy4(k) € R and
measurement noise d,, (k) € R? are both Gaussian
processes obtained by shaping prototype white-
noise processes of dispersions of 1.5 and 0.1, re-
spectively, with the aid of first-order shaping fil-
ters of time constants of 3 s and 1 s, respectively.

The following model of a fault in the control
channel is assumed: F¥ = B,,, F' = D,,, and

0 for t <100 s
0.5 for 100 s <t <120 s
0 for t > 120 s

ft) =



6.1 Decoupled non-dead-beat residual generator

Employing the condition (w2) for ng = 1, A\ =
0.4 and Ay = A3 = 0 gives the gain

1.3571 —1.2143
0.0952  0.8095
—0.0190 0.0381

K, =

The generator is described by: x”(Ly, ) = 9.81 x
10718, K(Ly) = 7.31, n,/p = 13.65 dB, |[HA,|| =
0.77 and || A,Bq|| = 8.93 x 10715, As can be seen,
the disturbance decoupling has been achieved
but the generator does not possess the dead-
beat attributes. Moreover: & (G s(e/?))|,_, =
0.410, ||Grf(2)]lee = 0.910, ||Grn1(2)]|cc = 0.958,
|IGrn2(2)|lec = 1.725, and ||Grp(2)|lec = 1.973.
Some additional time and frequency properties of
this decoupled non-dead-beat residual generator
are shown in Fig. 1.

Yar 5[dB]

O ] 5(G4)

0
4 sl 200
0 50 100 150 200 10° 10°
Fig. 1. Time and frequency domain characteristics of a

decoupled non-dead-beat residual generator.

For this plant a decoupled dead-beat residual
generator with A\ = Ay = 0 and A3 = 0.4 can not
be obtained by using (w1). This condition yields

1.5233 —1.1105
—0.0155 0.7403
0.0031 0.0519

K, =

The resulting generator is now characterized by:
X (Lw) = 0.47, k(L) = 7.02, 1,/; = 14.49 dB,
and 74,y = 1.52 dB. Hence, the disturbance de-
coupling has not been achieved. Moreover, we
observe that ||HA,|| = 0.74 and ||A,Bql| = 0.53.
The plots given in Fig. 2 as well as the fol-
lowing numerical quantities o(Gyz(ei?))|,_ =
0.382, [|Grs(2)llcc = 0.898, [|Gra(z)]lcc = 0.455,
|Grn1(2)|lee = 1.144, [|Grn2(2)|lee = 1.669, and
|Grn(2)|loo = 2.024 confirm the above criticism.

1 10
Y | S[dB]

0 MWWN W‘\w Mﬂ\w /lw_‘u»{ﬁum\ﬁ,w‘,«'\.‘;’:

tis] | 20 0

-1
0 50 100 150 200 107" 10°

Fig. 2. Time and frequency domain characteristics of a
non-decoupled non-dead-beat residual generator.

6.2 Decoupled dead-beat residual generator

Consider the same plant as in the previous section.
Employing (w2’) with ng =1 we get

1.6429 —1.7857
—0.0952 1.1905
0.0190 —0.0381

K, =

The resulting generator is now described by the
indices: X" (Ly,) = 3.93 x 10717, k(L,) = 2.17,
and 7,y = 21.01dB as well as by norms
|HA,| = 1.13 and ||A,By| = 3.36 x 10716, It
is clear that the disturbance decoupling has been
achieved. Moreover: &(Gyp(e??))|,_ = 0.246,
1G ()l = 1275, |Gl = 1342,
|Grn2(2)|loo = 2.415 and ||Grp(2)||ec = 2.763.
Some properties of the residual generator can be
examined by inspecting the plots given in Fig. 3.

1
Yw

4 ths] 20l
0 5 100 150 200 10° 10°

Fig. 3. Time and frequency domain characteristics of a
decoupled and dead-beat residual generator.

In conclusion, new conditions on complete static
disturbance decoupling have been formulated in
terms of left eigenvectors. The issue of parameter-
ization of the attainable subspaces (flats) of the
eigenvectors of the state-transition matrix of the
residual generator has been proposed.
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