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Abstract: Three friction identification methods, designated as the LuGre (LG) method, the
Non-Linear Regression (NLR) method, and the Dynamic Non-Linear Regression with direct
application of the eXcitation (DNLRX) method, are postulated. The first employs the LuGre
model structure, the second the basic Maxwell Slip model structure, and the third an extended
version of it. The Maxwell Slip model structure accounts for the presliding hysteresis with
nonlocal memory, but is confined to providing constant sliding friction. This limitation is
circumvented by the extended version postulated, where additional dynamics are introduced.
In all methods identification is based upon signals obtained from a single experiment, thus
circumventing the need for multiple experiments. The methods are assessed via laboratory
signals, and the DNLRX is shown to achieve the best overall performance, followed by the
NLR and, finally, the LG method. Copyright © 2005 IFAC
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1. INTRODUCTION

Friction is a major nonlinear phenomenon that may
lead to tracking errors, limit cycles, stick and slip mo-
tion, and so on. Its behavior may be distinguished into
two operating regimes: The presliding (micro-slip)
and the sliding regimes. In the first the adhesive forces
are dominant, and friction depends, among other fac-
tors, on the past extreme values of the displacement,
thus exhibiting hysteresis within nonlocal memory
(Swevers et al., 2000). This hysteresis disappears upon
switching from the presliding to the sliding regime.
Within the latter regime friction depends mainly on
the velocity, and various nonlinear phenomena (such
as the Stribeck effect, frictional lag and so on) are
exhibited (Armstrong-Hélouvry et al., 1994).
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Accurate friction modelling based upon the first prin-
ciples and material / surface properties is not possible
to date. Thus, identification methods based upon ex-
perimentally obtained signals are typically used. Clas-
sical methods relate friction directly to velocity and /
or displacement, and attempt identification via either
time domain (Armstrong-Hélouvry et al., 1994; Kim
et al., 1996) or frequency domain techniques (Chen
et al., 2002). The obtained models generally tend to
oversimplify the actual frictional behavior.

More elaborate methods relate friction to velocity
and/or displacement via internal (unobservable) state
variables. The underlying dynamics is better de-
scribed, but the identification becomes more challeng-
ing. In general, identification is achieved by separat-
ing the unknown parameters into static and dynamic,
corresponding to the sliding and presliding regimes,
respectively, and performing dedicated experiments in
each regime. A notable class of such methods relies
on the LuGre model (Canudas de Wit and Lischin-



sky, 1997; Hensen et al., 2002) and its extension,
referred to as the Elastoplastic friction model (Dupont
et al., 2002). An alternative method is based upon the
Leuven friction model (Swevers et al., 2000), which is
similar to the LuGre model, but extended for capturing
the presliding hysteresis with nonlocal memory.

The current study aims at identifying the combined
presliding / sliding friction dynamics based upon the
LuGre and Maxwell Slip model structures. Three
identification methods, designated as the LG method
(LuGre), the NLR (NonLinear Regression) method,
and the DNLRX (Dynamic NonLinear Regression
with direct application of the eXitation) method, are
formulated and assessed. The first employs the Lu-
Gre model structure. The second employs the basic
Maxwell Slip model structure, and is thus capable of
accounting for the presliding hysteresis with nonlocal
memory (Lampaert et al., 2002), but may only pro-
vide constant sliding friction. The third circumvents
this limitation by employing a presently formulated
extended form of the Maxwell Slip model structure
that makes use of two finite impulse response filters.

In all methods identification is based upon a single
pair of displacement — friction signals. The experi-
mental procedure is thus simplified, as the usual need
for several dedicated experiments is circumvented.

2. MODEL STRUCTURES
2.1 The LuGre Model Structure

The LuGre model structure (Canudas de Wit et al.,
1995) contains an unobservable state variable z, repre-
senting the average deflection of the elastic “bristles”
that are responsible for friction generation. It accounts
for most of the observed frictional dynamics, but the
presliding hysteresis with nonlocal memory is not rep-
resented (Swevers et al., 2000).

The LuGre model features the nonlinear state equa-
tion:
dz [v]
i bl B 1
a s(v) @)
and an output equation for approximating the fric-
tional force as follows:

dz
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with v designating velocity, o an equivalent stiffness,
and o1, o9 the micro-viscous and viscous friction co-
efficients, respectively. s(v) designates a user-defined
function that models the constant-velocity behavior.
The following parametrization, similar to a typical
one (Armstrong-Hélouvry et al., 1994), is presently
adopted for s(v):
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Fig. 1. The basic Maxwell Slip model structure.

with F, and F designating the Coulomb and static
friction, respectively, v, the Stribeck velocity, and p a
parameter providing for extra modelling flexibility.

2.2 Structures Based Upon the Maxwell Slip Model

The Basic Structure. The basic Maxwell Slip model
structure consists of M elasto-slide operators in par-
allel configuration, which are subject to a common
displacement excitation x(¢t) [Fig. 1]. Each opera-
tor has negligible inertia, its own linear stiffness k;,
and maximum spring deformation A; (threshold). For
spring deformation smaller, in magnitude, than A;
(16:(t)] < A;) the operator sticks; otherwise it slips
(16:(t)] = A;). The whole system sticks (presliding
regime) iff at least one operator sticks (35 € [1, M] :
|0;(t)] < Aj;), and slides (sliding regime) iff all oper-
ators slip (]6;(t)| = A4, Vi).

In mathematical terms, the model is described by a set
of nonlinear state equations (Rizos and Fassois, 2004):

Gi(t+1) = sgnfa(t + 1) — =(t) + 6i(1)] -
-min{|z(t + 1) —x(t) + &), A} (4)

with ¢ = 1,..., M, while the friction is approximated
as the sum of the operators’ forces:
M
Far(t) = ki 6i(t) (5)
=1
with ¢ = 1,2,... referring to (normalized) discrete

time.

Among the main advantages of this basic structure is
simplicity, physical interpretation, and its capability
of describing the presliding hysteresis with nonlocal
memory (Lampaert et al., 2002). Yet, the model ac-
counts for constant sliding (Coulomb) friction only
[see Eq. (5) and recall that the system slides iff
[0; ()] = A, Vi, that is iff all operators slip]. It is
evident that this constraint may impair modelling ac-
curacy, hence a proper extension is introduced in the
sequel.



The Extended Structure. The extension is based upon
a suitable modification of the linear part [Eq. (5)] of
the basic structure. The frictional force is now allowed
to depend upon present and past values of the spring
deformations [d;(¢)’s], as well as upon values of the
displacement itself. This is accomplished by having
the displacement driven through a Finite Impulse Re-
sponse (FIR) filter of order n, [with coefficients ¢,
(r = 0,...,n,)] and the spring deformation vector
4(t) (note that bold face lower/upper case symbols
designate vector/matrix quantities, respectively), de-
fined as:

)2 [5:(t)...on ()",
through an M-dimensional FIR filter of order n [with

vector coefficients 8. (r = 0,...,n)]. The extended
structure thus is of the form:

Feu(t)=> co-a(t—r)+> 0F-8(t—r) (6)
r=0 r=0
subject to Eq. (4). The first part of Eq. (6) allows
for friction dependency upon the displacement history.
Since velocity may be obtained via numerical differ-
entiation of displacement, this part may be considered
as a discrete - time equivalent of the friction depen-
dency upon velocity and may account for the viscous
friction, as well as for frictional lag.

The second part provides for the friction dependence
upon the current and past values of the spring defor-
mations, and this may be also considered as a discrete
- time analogue of the existence of a micro - viscous
effect.

The extended structure retains the simplicity of its
basic counterpart, in the sense that the nonlinear part
of the model [Eq. (4)] remains unchanged. It also fea-
tures additional dynamics and flexibility owing to the
introduced Finite Impulse Response (FIR) filters. This
may (to a certain extent) account for discrepancies
between the basic structure and the actual friction dy-
namics. The price paid for this is that extra parameters
are introduced.

3. FRICTION IDENTIFICATION METHODS

The postulated identification methods are based upon
the previously mentioned model structures. The LG
method utilizes the LuGre model structure and is
mainly presented for purposes of comparison. The
NonLinear Regression (NLR) method employs the ba-
sic Maxwell Slip structure and has been previously
applied to pure presliding friction identification (Rizos
and Fassois, 2004). The Dynamic NonLinear Regres-
sion with direct application of the eXcitation (DNLRX)
method employs the extended model structure pre-
sented in the previous section.

All methods attempt identification based upon a single
pair of displacement (excitation) — friction (response)
signals, thus circumventing the usual need for a series

of dedicated experiments. This is done by minimizing
a quadratic cost function of the form:

N
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with NV designating the length of the available signals,
while A = 1 for the LG and NLR methods and A =
max{n,n,} + 1 for the DNLRX method. e(¢) is the
error defined as the difference between the measured,
F(t), and the model provided, F(t), friction:

e(t) = F(t) — F(t) (8)

As is conventionally done, this error is assumed to be a
stationary zero mean and white sequence with variance
o2 (relaxation of these assumptions is possible, but is
beyond the scope of the present study).

3.1 The LG ldentification Method

The LG(g,01,c) model is of the form [see Eq. (2)]:

LG(g,0Lc): F(t) = ggg_ Z(t) dz(tt)

T

o(t):1] He(t)

9)

subject to Egs. (1) and (3). The vectors g and ;¢
incorporate the model parameters:

g [2(0) a1 as vs M]T , O 2 [o0 01 02 b]T (10)

where z(0) designates the initial value of the unmea-
surable state variable z(¢), and b an extra parameter
for compensating for the experimental friction offset
that may appear due to potential sensor bias.

Obviously, the model is nonlinear with respect to g
[Egs. (1) and (3)], hence the minimization of the cost
function 7 leads to a nonlinear regression type esti-
mator. Yet, the model remains linear with respect to
0r¢ [Eq. (9)]. Thus, the complete estimator may be
realized via a succession of nonlinear and linear re-
gression operations (see subsection 3.3 in the sequel).

Remark: The z(¢) evolution may be obtained by ei-
ther integrating numerically the nonlinear differential
equation [Eq. (1)], or applying a proper discretization.
The former procedure is presently adopted.

3.2 Maxwell Slip Based Identification Methods

The NLR Method. The NLR(M) model is of the form
[compare to Eq. (5)]:

T
NLR(M;d,8y): F(t) =07, - {5%) : 1} + e(t)

(11)
subject to Eq. (4), with 8, and the threshold vector d
being defined as follows:

d2[A ... Ay)", O 2k kb (12)

Like before, b is an extra parameter accounting for
potential sensor bias. Due to the nonlinear part of the



model [Eqg. (4)], minimization of the cost function
J leads to a nonlinear regression procedure. Since
the model is nonlinear only with respect to d, while
remaining linear with respect to 8,,, estimation may
be achieved similarly to the previous case.

The DNLRX Method. The model is of form [see Eq.
©)I:

DNLRX(M, 1, 155d,05r) : F(t) = 6%y,

[m(t)...x(t—nx)féT(t) 0Tt —n)i1] +e(t)

(13)
subject to Eq. (4), with @ g, being the [(n+1) - M +
n, + 2] — dimensional composite parameter vector:

T
Oy 2 [co... Cn, 0] ... Offb} (14)

Since the model is nonlinear in d and linear in 8z,
model estimation may be accomplished as before.

Initial Spring Deformations. In order to get the cost
function 7 calculated, the initial spring deformation
vector §(0) is required. As this is not available, the
following procedure may be adopted [also see (Rizos
and Fassois, 2004)]. Since both the presliding and
sliding regimes are considered, the system should
slide when the displacement x(¢) attains (at time,
say, t..) a “dominant” extreme. Thus, at time ¢,
all operators slip in the same direction with z(t.,).
If the data corresponding to ¢ > ¢, are used for
identification, then the initial deformations are known
[0:(0) = sgn[z(te,)] - A; (Vi)].

NLR / DNLRX Order Selection. Since the main ob-
jective of friction identification is simulation and con-
trol, model selection is tailored to these needs and is
primarily judged in terms of the identified model’s
simulation ability. This is evaluated via a normalized
quadratic function of the model error and is referred to
as the Normalized Output Error (NOE):

2
NOFE =

N _
F(t)— F(t
2oy (F(t) —mr)
where mp is the sample mean of the actual friction
signal and A is defined in Eq. (7).

NLR(M) model order selection (selecting the num-
ber M of superimposed operators) is based upon the
successive estimation of models for increasing M and
evaluation of the error criterion. On the other hand,
DNLRX(M,n,n,) model order selection is based
upon the estimation of models for various values of
n and n, for any given M. The final model is se-
lected following consideration of various values of M.
Model validation relies upon the model’s simulation
performance within a subset of the data, referred to as
the validation set, that has not been used in estimation
(cross validation principle).

3.3 Parameter Estimation

In all methods, minimization of the cost function J
[Eq. (7)] leads to a nonlinear regression type estimator.
Moreover, all models are nonlinear with respect to
certain of their parameters, generally designated as
0,,;, while remaining linear with respect to the rest,
designated as 6,. Hence, the estimator may be realized
via a succession of nonlinear and linear regression
operations (the hat designates estimator / estimate):

. N T
{9:1 Bﬂ =arg min J(0,, 0;)

nls Y1

=arg Igin {Héin J(Bl/Hnl)} (16)

nl l

in which 0, and 6; are defined according to the
particular method (for instance 6,,; = dand 8, = 6,
for the NLR method).

The nonlinear regression operation is based upon
a postulated two-phase hybrid optimization scheme.
The first (pre-optimization) phase utilizes Genetic Al-
gorithm (GA) based optimization (Nelles, 2001, p.
126) in order to explore large areas of the parameter
space and locate regions where global or local min-
ima may exist. The second (fine optimization) phase
utilizes the Nelder-Mead Downhill Simplex algorithm
(Nelles, 2001, p. 86) for locating the exact global or
local minima within the previously obtained regions.

This two-phase scheme has been shown (Rizos and
Fassois, 2004) to be effective in locating the true
global minimum of the cost function and circumvent-
ing problems associated with local minima, which
are quite severe especially for the NLR and DNLRX
methods. Furthermore, the Nelder-Mead algorithm
utilizes only cost function evaluations but no deriva-
tive evaluations, which are not defined everywhere as
the cost function is nonsmooth in certain areas of the
parameter space (NLR and DNLRX methods).

4. FRICTION IDENTIFICATION RESULTS

The results are based upon data obtained from a lab-
oratory device (Lampaert et al., 2004) and have been
provided by the Katholieke Universiteit Leuven (Bel-
gium). The exerted displacement is wideband random,
and the signals are sampled at f, = 2.5 kHz. The
available displacement — friction force signals are di-
vided into three disjoint sets: A 10,000 sample-long
estimation set exclusively used for parameter estima-
tion, a 34,933 sample-long validation set used for
model validation, and a 35,170 sample—long test set
used for independent evaluation and assessment of the
estimated models. Note that the displacement obtains
a “dominant" local extreme at time ¢.. = 45, 068.
Thus, the estimation set is selected to start at that time
instant.
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Fig. 2. NOE criterion versus model order: (a) Esti-
mation set; (b) validation set (NLR and DNLRX
models).

The pre-optimization phase requires the setting of
bounds on the elements of vectors d [LR and DNLRX
methods - Eq. (12)] and g [LG method - Eq. (10)], re-
spectively. For the NLR and DNLRX methods bound
selection is done following the guidelines prescribed
in Rizos and Fassois (2004). For the LG method the
bounds on z(0) are set considering that at time ¢,
(the instant that the estimation set begins) the system
slides, then, from a physical point of view, the initial
average bristle deflection z(0) has the same sign with
x(te-) and cannot exceed, in amplitude, |z(t..)|. a1
and a, are positive [since F,,o¢ > 0 and in general
Fy — F. > 0-Eq. (3)]. However, their upper bounds
are arbitrary selected, since without performing ded-
icated experiments (Canudas de Wit and Lischin-
sky, 1997) no a priori information for o, F,. and Fy is
available. v, is by definition positive. Moreover, since
it provides information regarding the velocity at which
the system enters the sliding regime, its value is small
compared to the maximum absolute velocity achieved
during operation (Armstrong-Hélouvry et al., 1994).
The 1 bounds may be selected as i € (0, 5]. Note that
in general » = 2 is considered (Armstrong-Hélouvry
etal., 1994).

4.1 The LG Method

The LG method requires the velocity signal [Egs. (1)
- (3)], which is unavailable. Thus, before applying the
LG method, the velocity is estimated by first-order dif-
ferencing a low-pass filtered (cut-off frequency f. =
0.4 kH z) version of the displacement signal (Dupont
et al., 2002).

4.2 The NLR and DNLRX Methods

The order selection procedure for the NLR method is
shown in Fig. 2, which depicts the NOE criterion as
a function of the number of operators included in the
model. Within the estimation set, the NOE decreases
as the order increases [Fig. 2(a)]. However, negative
stiffness estimates are reported for A > 5; therefore
the NLR(4) model is selected. Negative stiffness es-
timates should be due to the model’s attempt to ac-
count for extra friction dynamics, that the model is not
actually prepared to cope with (recall that this model
provides only constant sliding friction). This effect is
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Fig. 3. Model based friction simulation (thick line)
contrasted to the actual friction (slim line), and
the corresponding error for each estimated model
[part of the test set; vertical dashed lines indicate
presliding / sliding regime transitions].

clearly demonstrated within the validation set [Fig.
2(b) — the NOE gets increased for M > 4].

Concerning the DNLRX method, Fig. 2 presents the
FIR orders n and n, (for each M) beyond which the
NOE decrease is practically insignificant. Notice that
the FIR order n, = 2 is selected for all examined
DNLRX models. As before, the NOE criterion within
the estimation set, is a decreasing function of the
order [Fig. 2(a)]. However, the NOE is decreasing
for M < 4, remains almost unchanged for M = 5,
and continues its decrease for M > 5. Thus the
DNLRX(4, 3, 2) is selected. This model is confirmed
as a valid representation of the friction dynamics via
examination of its behavior within the validation set
[Fig. 2(b)], within which the DNLRX(4, 3, 2) model
achieves the globally minimum NOE.

4.3 Model Performance Assessment and Comparisons

The assessment of the obtained models is based upon
their ability to simulate the measured friction. There-
fore, the comparisons are in terms of the achieved
NOE and MAX (model error absolute maximum) val-
ues. Additionally, the parametric complexity (number
of estimated parameters) is also provided.

All selected models capture, though at different de-
grees, the underlying friction dynamics. This is con-
firmed by the results presented in Fig. 3, in which the
measured friction is compared to the friction obtained
by driving each one of the estimated models by the
measured excitation (part of the test set is shown). The
corresponding model error signal is, for each model
case, also presented. A closer observation of these
results (Fig. 3) reveals that the LG and NLR(4) mod-
els provide very good friction simulation within the



Table 1. Characteristics of the estimated
models (test set).

Model LG  NLR(4) DNLRX(4,3,2)
NOE? (%) 0.67 0.42 0.24
MAX® 0.22 0.17 0.15
Parametric complexity 9 9 24

@Simulation starting at ¢, = 45, 068.

presliding regime, while excellent fit is reported by the
DNLRX(4, 3, 2) model. Regarding the sliding regime,
the LG model gives, in general terms, good simu-
lation. The NLR(4) successfully predicts the regime
transitions (presliding to sliding and opposite), but
provides constant sliding friction. This is overcome
by the DNLRX(4, 3, 2) model, which achieves almost
excellent fit within the sliding regime.

A comparative performance assessment of the three
models within the test set is presented in Table 1. As it
may be readily observed, the DNLRX(4, 3,2) model
achieves a NOE value which is 43% and 64% less
(approximately) than that of the NLR(4) and LG mod-
els, respectively, combined with the overall best MAX
value. This indicates that the proposed extension of
the Maxwell Slip model structure, although incapable
of reproducing the constant velocity friction charac-
teristics like the LuGre model does [see Eq. (3)], pro-
vides extra flexibility, which significantly improves
its overall performance. The price to be paid for this
benefit is increased complexity (more parameters to
be estimated — see Table 1). Nevertheless, this may not
be necessarily a concern as the additional parameters
enter the model in a linear fashion.

5. CONCLUSIONS

The problem of friction identification was addressed
and three identification methods, referred to as LG,
NLR and DNLRX, were postulated. The former is
based upon the LuGre model, while the second em-
ploys the basic Maxwell Slip structure. A novel ex-
tended form of this was introduced within the third
method. This extended structure combines the advan-
tages of its basic counterpart, that is simplicity and
capability of accounting for the presliding hystere-
sis, with the extra flexibility of two FIR filters. In
all methods the model parameters are simultaneously
estimated based upon a single experiment, thus over-
coming the usual need for multiple dedicated experi-
ments.

The main conclusions may be summarized as follows:

(i) The proposed methods appear capable of captur-
ing, though at different degrees, the actual fric-
tion dynamics.

(#4) The best overall performance was unambigu-
ously attained by the DNLRX model (with NLR
scoring second and the LG third), indicating the
effectiveness of the introduced extended form of
the Maxwell Slip model structure.
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