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Abstract: This paper considers the set-point optimisation problem under plant-model 
mismatch. Three iterative optimisation strategies, the two-step method, the integrated sys-
tem optimisation and parameter estimation (ISOPE) method and the gradient-
modification optimisation method are compared for a nonlinear chromatographic separa-
tion process using different structurally mismatched models as nominal process models. 
The gradient-modification optimisation method is proven to be very attractive when a 
large structural plant-model mismatch exists. Its ability to deal with disturbances is also 
shown.    Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
In the chemical, food, consumer care, and pharma-
ceutical industries, many production processes are 
performed in a repetitive fashion where a certain 
quantum of material (called a batch) is processed in a 
piece of equipment (for example a mixer, a reactor, 
or a crystalliser) for a certain period of time, then the 
products are transferred to another piece of equip-
ment, processed again, etc., until the product has the 
desired properties and shape. Similar processes are 
found in the metal industry, e. g. a blast furnace or 
the forming of large parts of specially shaped metal. 
Also the treatment of a number of parts of one type 
on a machine for a certain period of time, followed 
by operations on another type of parts can be consid-
ered as a sort of a batch or, more generally, repetitive 
process. 
 
Usually, continuous control of certain important 
process parameters over the course of one batch is 
performed. In order to operate the processes effi-
ciently, the set-points of the control loops should also 
be optimised. Due to the existence of model errors 
and of unmeasurable disturbances, pre-computed 

operation policies will not lead to an optimal opera-
tion, and the constraints on the process may be vio-
lated. This paper is concerned with the iterative (or 
batch-to-batch or repetitive) adaptation of the operat-
ing parameters of repetitive processes using both a 
process model and the data collected from previous 
batches. The focus of attention is on the issue of 
plant-model mismatch – an optimisation solely based 
upon a fixed process model will not lead to an opti-
mal performance of the real process. 
 
In the classical two-step approach, the model pa-
rameters are updated by a parameter estimation pro-
cedure so that the model represents the plant at cur-
rent operating conditions more accurately. The up-
dated model is used in the optimisation procedure to 
generate a new set-point. This method works well for 
parametric mismatch. However, it does not guarantee 
an improvement of the set-point when structural er-
rors in the model are present. A modified two-step 
method was proposed by Roberts (Roberts, 1979; 
Roberts and Williams, 1981), known as Integrated 
System Optimisation and Parameter Estimation 
(ISOPE). Beside the parameter estimation procedure, 
a gradient-modification term is added to the objective 



     

function of the optimisation problem. ISOPE gener-
ates set-points which converge towards the true op-
timum despite parametric and structural plant-model 
mismatch. Tatjewski pointed out that the parameter 
estimation is not necessary when a model-shift term 
is added to the objective function and redesigned the 
ISOPE to a new form (Tatjewski, 2002). It was ex-
tended recently to handle also process-dependent 
constraints and improved with respect to the estima-
tion of the gradients of the real system (Gao and 
Engell, 2004a, b).  
 
In this paper, we compare these three different itera-
tive optimisation strategies. The comparison is per-
formed for the example of batch chromatography, a 
widespread and economically important separation 
technology which is frequently applied in the produc-
tion of life-science products which are subject to 
strict purity requirements and tight regulations be-
cause it provides high product purities at moderate 
temperatures. The optimal operation of these proc-
esses with respect to throughput and solvent con-
sumption is an important factor to reduce the overall 
production cost in the life science industry. 
 

2. ITERATIVE OPTIMISATION STRATEGIES 
 
The general model-based set-point optimisation 
problem can be stated as 

                      

min max
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u y

y f u

g u

u u u

                      (1) 

where J(u,y) is a scalar objective function, u is a 
vector of optimisation variables (set-points), y is a 
vector of measurable output variables. The relation-
ship between u and y is represented by the model 
y=f(u,ß), where ß is a vector of model parameters. 
g(u) is a vector of constraints. We assume that the 
real mapping of the plant is y*=f*(u), which is differ-
ent from the model because of modelling errors and 
changes in the plant behaviour due to disturbances 
and degradation. Therefore, offline optimisation of 
the operating conditions using the nominal plant 
model may yield a set-point far away from the true 
optimum.  
 
3.1 Two Step Method 
 
The two step method is also called Real-Time Opti-
misation (RTO). The measured output of the plant 
after the last set-point has been applied is used to 
update the model. Let y*(k) denote the plant output at 
set-point u(k) ,where k is the iteration index. The up-
dating of the model can be written as an optimisation 
problem: 

                 
( )
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β
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Then the updated model is used in the optimisation 
procedure. A bound ( ) ( )k k− ∆ ≤ ≤ + ∆u u u u u is usu-

ally added to the optimisation problem to avoid 
overly aggressive changes of the set-points. 
 
3.2 ISOPE 
 
The Integrated System Optimisation and Parameter 
Estimation strategy was proposed first by Roberts 
(Roberts, 1979). Besides the model updating, the 
objective function in the optimisation problem (1) is 
adjusted by a gradient modification term  
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where 

( )

( ) * ' ' '( ) ( , )
k

k Jλ = −  u u y u
y y u y . 

 
Let ( )ˆku  denote the solution of (3), then the next set-
point is chosen as 

                 ( 1) ( ) ( ) ( )ˆk k k kD+ = + −  u u u u ,              (4) 

where D is a damping term. ISOPE generates set-
points which converge towards the true optimum 
despite parametric and structural model mismatch. 
Theoretical optimality and convergence of the 
method were proven by Brdys (Brdys et al., 1987). 
 
3.3 Gradient Modification Method 
 
The optimality of the result of ISOPE results from 
the gradient modification term. Tatjewski redesigned 
the ISOPE method resulting in a new algorithm that 
does not require parameter estimation (Tatjewski, 
2002). The key idea is to introduce a model shift 
term ( ) *( ) ( )k k k= −a y y in the modified objective func-
tion:  

                
( ) ( )min ( , )

s. t. ..

k T kJ λ+ +
u

u y a u
                (5) 

As the optimality of the result is solely due to the 
gradient-modification in the optimisation problem, 
the redesigned ISOPE could be better termed “itera-
tive gradient-modification optimisation method”.  
 
Handling of Constraints 
If the constraints involve the behaviour of the real 
process (not only the inputs to the plant), they cannot 
be assumed to be met using a model for the computa-
tion of the constraint functions. In the original deri-
vation of the ISOPE method, constraints were as-
sumed to be process-independent. An extension of 
the ISOPE strategy which considers output-
dependent constraints can be found in (Brdys et al., 
1986 ). Tatjewski proposed to use a follow-up con-
straint controller which is responsible for satisfying 
the output constraints (Tatjewski et al., 2001 ).  
 
A new method to handle the process-dependent con-
straints was proposed recently (Gao and Engell, 
2004a, b). It is based on the idea to use information 
acquired at the last set-point to modify the model-
based constraint functions at the current iteration. 



     

The modified constraint functions approximate the 
true constraint functions of the process in the vicinity 
of the last set-point. Let ( )g u  denote the model-

based constraint function and ( )∗g u  denote the ac-
tual constraint function of the process. Then the 
modified constraint function is formulated as:  

     
( )

( ) ( ) ( )

( ) ( ) ( )

ˆ ( ) ( ) ( ) ( )

( ( ) ( ) ( ) .)
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k k k

∗

∗

= + −

′ ′+ − −u u
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g u u u ug
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The modified constraint function has the following 

properties at ( )ku : 

• The modified constraint has the same value as the 
real constraint function: 

( ) ( ) ( )ˆ ( ) ( )k k k∗= .u g ug  
• The modified constraint has the same first order 

derivative as the real constraint function 

( ) ( ) ( )ˆ( ( ) ( ( )) )k k k∗′ ′= .u uu g ug  

Therefore, the modified constraint function approxi-
mates the real constraint functions in the vicinity of 
the last set-point. The bound which is used to avoid 
aggressive changes also guarantees that the real con-
straint is not violated greatly. The optimisation prob-
lem in the gradient modification method can thus be 
stated as:  
           

( ) ( )min ( , )k T kJ λ+ +
u

u y a u
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The value of ∆u should be chosen according to the 
quality of the model. If the model is reliable, the 
bound can be loosened by increasing the value of ∆u. 
 
Estimation of the Gradients 
A key element of the iterative gradient-modification 
optimisation method is to estimate the gradient of the 
plant mapping. A novel method was proposed by 
(Gao and Engell, 2004a, b). It uses the previous set-
points as a basis for the finite difference approxima-
tion of the gradient at the current set-point. Addi-
tional set-point perturbations at optimised locations 
are added to decrease the influence of measurement 
errors. 
 

3. BATCH CHROMATOGRAPHY 
 
The principle of batch chromatography in the elution 
mode is shown in figure 1. A mixture is periodically 
injected into a column filled with solid adsorption 
particles. Due to different adsorption affinities, the 

components in the mixture migrate at different ve-
locities and therefore they are gradually separated. At 
the outlet of the column, the purified components are 
collected between the so-called cutting points t1 - t4. 
The locations of t1 and t4 are determined by a mini-
mum concentration limit. The locations of t2 and t3 
are determined by the purity requirements on the 
products as follows: 
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where c1(t) and c2(t) are the elution profiles. Pur1 and 
Pur2 are the purity requirements, cf,1 and cf,2 the feed 
concentrations. The flow rate Q and the injection 
period tinj are considered as the manipulated variables 
here. The cycle period tcyc is fixed to the duration of 
the chromatogram (t4-t1).  
 
The set-point optimisation is based on the general 
rate model (Guiochon, et al., 1994), abbreviated as 
GRM(Q, tinj): 

2

2

2
2 .

3(1 )
( ( ))

1(1 ) ( )

l ii i i
i p i p ax i

p

p i p ii
p p p p i

kc c c
u c c r D

t x r x

c cq
D r

t t r rr

ε
ε

ε ε ε

,
, ,

, ,
,

 
 
 

−∂ ∂ ∂
+ + − =

∂ ∂ ∂

∂ ∂∂ ∂− + =
∂ ∂ ∂ ∂

 (9) 

These two partial differential equations describe the 
concentrations in the mobile phase (ci) and in the 
stationary phase (qi and cp,j). The adsorption iso-
therms are used to relate the concentrations qi (sub-
stance i adsorbed by the solid) and cp,j  (substance i in 
the stationary liquid phase). A commonly assumed 
isotherm functional form is the Bi-Langmuir iso-
therm: 

        1 2
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q
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     (10) 

The set-point optimisation of batch chromatography 
can be formulated as 
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Fig. 1. Illustration of a chromatographic batch separation process. 



     

The constraint on the recovery yield Rec is a process-
dependent constraint while the other constraints are 
input constraints. 
 
An efficient numerical solution of the general rate 
model (9) incorporating arbitrary nonlinear isotherms 
was proposed by Gu (1995). The mobile phase and 
the stagnant phase are discretised using a Galerkin 
method on finite elements for the mobile phase and 
orthogonal collocation for the stagnant phase. The 
resulting ode system is solved using a solver which is 
based on Gear’s method for stiff odes. 
 
The numerical solution yields the concentrations of 
the components in the column at different locations 
and times. The concentration information at the out-
let of the column is used to generate the chroma-
togram from which the production rate and the re-
covery yield can be computed. 
 
A model-based online optimisation strategy was pro-
posed for batch chromatography in (Dünnebier et al., 
1999, 2001). In their approach, online parameter es-
timation is performed to improve the model accuracy 
and to track changes in the plant. It is thus a repre-
sentative of the two-step approach. This technique 
has been tested experimentally at pilot scale plants 
and works well for separations with linear adsorption 
isotherms (Dünnebier et al., 1999). However, most 
chromatographic separation processes are character-
ised by nonlinear adsorption isotherms which are 
often not reproduced exactly by the standard iso-
therm models (e.g. Langmuir, Bi-Langmuir). One 
important reason for this is the presence of additional 
components in the mixture. If a mismatch between 
the model and the plant occurs, model-based optimi-
sation may not give good results and the constraints 
must be established by an additional control layer 
(Hanisch, 2002), causing a loss of performance. 
 

 
4. COMPUTATIONAL STUDY 

 
The iterative optimisation strategies were tested in a 
simulation study of a batch chromatographic separa-
tion of enantiomers with highly nonlinear adsorption 
isotherms which has been used as a test case in labo-
ratory experiments before (Hanisch, 2002). A GRM 
model with Bi-Langmuir isotherm (12) that was fit-
ted to measurement data is considered as the plant in 
the simulation study: 
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Three different isotherm forms were used in the 
nominal optimisation model: 
 
a) Langmuir isotherm with common saturation 

capacity (3 parameters) 
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b) Langmuir isotherm with different saturation ca-
pacities (4 parameters) 
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c) Asymmetric Langmuir isotherm (6 parameters) 
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Fig. 2. Elution profiles of the plant (solid lines) and 
the model with different isotherms, a)  b)  
c) . 

 
Fig. 2 shows the elution profiles of the plant and of 
the optimisation model for the same set-point. Con-
siderable mismatch exists between them, especially 
for the first two isotherms.  
 
In the study, only the second component was consid-
ered to be a valuable product. The aim of the set-
point optimisation was to maximise its production 
rate at 98% purity. The recovery yield should be 
greater than 80%, i.e. no more than 20% of the valu-
able component should be present in the waste frac-
tion. The maximal permitted flow rate is 2.06 cm3/s, 
corresponding to a maximal velocity of 0.42 cm/s. 
The length of the column is 10.8 cm. 
 
We used the fluid velocity instead of the flow rate in 
the set-point optimisation and normalised it as well 
as the injection period to the interval [0, 1], which 
represents [0, 0.42]cm/s for the velocity and [50, 
150]s for the injection period. The bound ∆u  was 
set to 0.08. There was no damping, i.e. 1D = . The 
starting set-point was (0.20, 100). The iterations were 
stopped when the distance of sequential set-points 
was less than 0.01. For the two-step method and the 
ISOPE method, the parameters of the isotherms were 
estimated by a least squares method to minimise the 
difference of the elution profiles between the plant 
and the nominal model:  
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where i is the index of the components, j is the index 
of the sampling points.  

Table 1 Simulation results: final set-point. 
 

Isotherm form Optim. strategy 
a b c 

Two Step 0.37, 116 0.33, 131 0.42, 99  

ISOPE 0.42, 100 0.42, 99 0.42, 100  
Gradient 
Modif. 0.42, 99 0.42, 100 0.42, 100  

The simulation results are summarised in table 1. The 
optimum for the “real” plant is (0.42, 100). The two-
step method stopped at different set-points in the first 
two cases because the structural mismatch between 
the plant and the model can not be eliminated by the 
parameter estimation procedure. In case c, it arrived 
at the real optimum because the estimation procedure 
improved the model efficiently. Actually, the mis-
match in case c is nearly parametric. The final esti-
mated isotherm is shown below (17), the difference 
to the true isotherm (12) is very small. 
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The ISOPE method and the gradient modification 
converged to the real optimum in all three cases. This 
is due to the influence of the gradient modification 
term. It corrects the mapping used by the optimisa-
tion problem in each iteration by using the gradient 
information of the plant. Therefore, although there 
exists a large plant-model mismatch, the true opti-
mum was attained. A drawback is that additional 
batch runs with perturbed set-points are required in 
order to estimate the true plant gradient. Table 2 
shows the number of iterations and the overall num-
ber of batch experiments for each of the methods. 

Table 2 Simulation results: number of  
iterations /number of experiments. 

 
Isotherm form Strategy 

A b C 
Two Step 16 / 16   6 / 6 10 / 10  

ISOPE 11 / 21 11 / 22 10 / 20  
Gradient Modi-

fication. 11 / 21 11 / 22 10 / 19 

Fig. 3 and Fig 4 show the trajectories of the set-point 
for the ISOPE method and the gradient modification 
method for casea a and b. The cross and star symbols 
denote the set-point perturbations for each method. 
The contours of production rate and recovery yield of 
the plant are also depicted. The recovery limit was 
kept well by using the new method (Gao and Engell, 
2004b). Compared with the gradient modification 
method, the ISOPE method did not improve the op-
timisation by additionally performing parameter es-
timation. This demonstrates that the gradient modifi-
cation term is the key ingredient in both methods. 
When the structural mismatch between plant and 

model is large, the parameter estimation does not 
help much any more. By avoiding the model update, 
the computation time is decreased considerably.  
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Fig. 3. Trajectories of the set-point for case a. ISOPE 

method , perturbations ; gradient 
modification method , perturbations . 
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Fig. 4. Trajectories of the set-point for case b. ISOPE 

method , perturbations ; gradient 
modification method , perturbations . 

When unmodelled disturbances are present, the gra-
dient modification method can also adjust the set-
point to a new optimum. Fig. 5 and Fig. 6 show the 
set-point trajectory when ±10% disturbances of the 
feed concentrations cf,1 and cf,2 were added. At the 
beginning there was no disturbance. The iterative 
optimisation arrived at the optimum in 7 iterations. 
Then the feed concentrations were changed to 110% 
of the initial values. This increased the overlap of the 
elution profiles, and therefore decreased the recovery 
yield to 70% at the original optimal set-point. The 
constraint violation activated the iterative optimisa-
tion procedure. Two set-point perturbations were 
applied to estimate the new gradient of the plant at 
the former optimum. The process was moved to the 
new optimum in 3 iterations. The production rate 
decreased slightly and the recovery yield returned to 
80%. When the feed concentrations were changed to 
90% of the initial values, the overlap of the elution 
profiles decreased. The recovery yield (now 92%) 
was too high for a cost optimal operation. Again the 
iterative optimisation was activated and converged to 
the new optimum in a few iterations. The recovery 
decreased back to 80% while the production rate 
increased from 6.38*10-4g/s to 7.32*10-4g/s. 
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Fig. 5. Trajectories of the set-point for feed concen-

tration disturbances. cf,0  , 1.1* cf 0 -  -, 0.9* cf,0 
. 
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Fig. 6. Trajectories of the production rate and of the 

recovery yield for feed concentration distur-
bances. 

 
CONCLUSIONS 

 
In many batch processes, e.g. in chromatographic 
separations, the identification of a precise model for 
process optimisation requires considerable efforts 
and costly experiments and often even is practically 
impossible. Inaccurate models can be used together 
with an iterative optimisation method to operate the 
real plant at the optimum. We compared different 
iterative optimisation strategies in this paper. The 
two-step method works well for a parametric plant-
model mismatch. Its application in cases with a struc-
tural plant-model mismatch fails due to the impossi-
bility of improving the model by the parameter esti-
mation. The ISOPE method and the gradient modifi-
cation methods give good results for both parametric 
and structural plant-model mismatch. The latter 
method does not require a parameter re-estimation, 
and therefore it is a better choice when large struc-
tural mismatches exist. Also time-varying distur-
bances can be dealt with efficiently. The price paid in 
both methods is that they require additional set-point 
perturbations and hence batch runs at suboptimal 
operating points to estimate the plant gradient, which 
may also be sensitive to measurement errors. 
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