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Abstract: The paper deals with some specific feedback solutions to tracking problems
for discrete linear SISO systems, characterized by a finite length control sequences
(FLC) and by an infinite or a finite length error sequences. A complete set of all
2DoF FLC controllers for plants exposed to general disturbances (2DoF GFLC)
is determined and it is shown that this set embeds the set of deadbeat ripple-
free controllers (2DoF GDBRF), which moreover produce a finite length error
sequences.Copyright c©2005 IFAC

Keywords: Finite length control; Dead-beat ripple-free tracking; Disturbance
rejection; parametrization; optimization

1. INTRODUCTION

In an algebraic approach to controller design,
the plant is described by a transfer function and
external signals usually by a known polynomial
fractions characterizing a nominal situation. The
main goal is to find a controller that guarantees
the desired finite length sequences and internal
BIBO stability of the closed-loop system. In state
space formulation, this requirement corresponds
to finding a finite length sequence only for one
initial condition, though we usually require to
solve the problem globally, i.e. for all possible
initial conditions of the plant and generators of
external signals (Grasselli et al., 1995). This way
formulated problem appears in literature rarely,
e.g. in (Kučera and Kraus, 1995), where various
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initial conditions are modelled by an unknown
finite length external signal effecting on genera-
tors. In the presented paper, various initial condi-
tions are alternatively modelled by undetermined
polynomials in denominators of the polynomial
fractions of generators. Thus, respecting the glob-
ality, there can be formulated GFLC and GDBRF
tasks. If state space models are used, there is no
need to express the disturbance model explicitly,
since it is the uncontrollable part of the controlled
system. Generally, the whole surrounding of the
controller can be modelled without explicit mod-
els of its parts by means of an augmented system
with defined control input, error (controlled vari-
able) and output (measuring variable) (Kučera
and Kraus, 1995).

For a correct problem formulation, it is necessary
to specify the sets of controllers capable to attain
the desired goals. Causality, linearity and time
invariance of controllers may be viewed as natural
conditions. Leaving aside state controllers, two



basic controller’s structures 1DoF and 2DoF can
be used to solve the formulated tasks.

Solution to 1DoF and 2DoF FLC problems was
given in (Fikar and Kučera, 2000), however, with-
out considering disturbances. They obtained nec-
essary and sufficient conditions for the existence
of the solution to 1DoF and 2DoF FLC prob-
lems, however, they were incorrect in case of a
“non-causal” reference generator in the sence of
(Kučera, 1979). Further, the complete set of 2DoF
FLC controllers was not obtained and thus 1DoF
controllers surprisingly were not a special case of
2DoF controllers. The complete set of 2DoF DB
controllers for plants exposed to disturbances was
specified by Chang in (Chang, 1998). The design
of 1DoF DBRF controllers can be found e.g. in
(Barbargires and Karybakas, 1994; Mošna et al.,
2001). The algebraic solution to 1DoF GDBRF
problem is given in (Kučera and Kraus, 1995). In
the state space setting, the design of GDBRF min-
imum step controllers with measured error was
shown in (Grasselli et al., 1995; Jetto, 1994), how-
ever, with some incorrectness in derived necessary
and sufficient solvability conditions. Our paper
specifies the complete set of all 2DoF FLC con-
trollers and embeds into this set the parametrized
sets of all 2DoF GFLC and GDBRF controllers.

2. NOTATION

The notation and notions used in the paper are
standard and result from (Fikar and Kučera,
2000; Kučera, 1979). All systems are considered
to be single input–single output, linear, time–
invariant and discrete time, described by polyno-
mial fractions in indeterminate z−1, used in the
Z–transform as a delay operator. Polynomials in
z−1 are denoted by capital letters without indi-
cation of their argument. A polynomial X(z−1) is
called ”causal”, if and only if X(0) 6= 0 and stable,
if and only if the absolute values of all its roots
are greater than one. The greatest stable factor
of a polynomial X is denoted X+ and totally
unstable factor of a polynomial X is denoted
X−. Every stable polynomial X is a ”causal”
polynomial. The greatest common divisor of the
polynomials X , Y is marked by the parenthesis
(X, Y ). Remind that a recurrent sequence, given
by a polynomial fraction Y/X , (X, Y ) = 1, is
stable, if and only if the greatest causal factor of
the polynomial X is a stable polynomial. If a finite
length causal control sequence is desired, then the
Z–transform of u must be a polynomial U .

3. PROBLEM FORMULATION

Consider a plant with output y, input u and
disturbance v described by
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Fig. 1. Feedback closed-loop configuration

y =
B

A
· u + v (1)

where (A, B) = 1, A(0) 6= 0, B(0) = 0 and the
generator of a general disturbance v, given by

v =
C

z−qAH
(2)

where q is a non-negative integer, H(0) 6= 0. In
case (A, C) = A, the disturbance corresponds to
an output plant disturbance and in case (B, C) =
B the disturbance is an input plant disturbance.
In case H = 0, the disturbance can be viewed
either as a finite length disturbance acting on
the plant or as an infinite length disturbance,
if its character complies with the internal model
principle. The generator of a reference signal w is
given by

w =
G

z−rF
(3)

where r is a non-negative integer, F (0) 6= 0. Here-
after we denote D = (A, F ) and polynomials A0

and F0, so that A = A0D and F = F0D. Further
we denote (F0, H) = F00 and polynomials F01 and
H0, so that F0 = F00F01 and H = F00H0. Remark
that the augmented system, obtained by aggre-
gation of the plant(1) and generators (2), (3),
is a complete model of controller’s surrounding.
Polynomials C resp. G of external signals genera-
tors can also be interpreted as the Z–transforms
of an initial state of the augmented system. An
important point to be noticed is that the part of
the state representation of the augmented system,
which is observable by error e = w − y, is stabi-
lizable resp. controllable if and only H = H+,
F0 = F+

0 resp. H = 1, F0 = 1.

Now, consider the set of 2DoF causal controllers
(Fig.1), described by u = df ·w − db · y where df

and db are polynomial fractions. Note that the
controller (4) is causal, if and only if there exists
a causal polynomial P , (P (0) 6= 0), such that

df =
R

P
db =

Q

P
(4)

We will investigate three fundamental variants of
a finite length stabilizing control problem, differ-
ing by requirements on closed–loop system be-



havior. The least demanding is a standard formu-
lation of the problem (Fikar and Kučera, 2000).
The solution to a standard finite length stabilizing
control problem consists in finding a 2DoF causal
controller such that the closed-loop system is in-
ternally BIBO stable, and, in a nominal situation,
i.e. for a given G = Gnom and C = Cnom = 0,
the controller produces a finite control sequence
u = U and a stable error sequence e = w −

y. Without loss of generality, we suppose that
(Gnom, z−rF ) = 1. Such controller is denoted as
the 2DoF FLC controller. A finite length con-
trol sequence and a stable error sequence are
guaranteed just for a nominal situation, however,
if reality differs from this situation, a generic
fulfilment of the closed–loop system properties
cannot be awaited. Thus a natural question ap-
pears, whether there exists a 2DoF FLC controller
generating a finite length control sequence and a
stable error sequence globally, i.e. for all G and C.
Such controller will be denoted as a 2DoF GFLC
controller.

The important subset of 2DoF GFLC controllers
are such controllers which besides a finite length
control sequence moreover produce also a finite
length error sequence for arbitrary polynomials G
and C. This version of dead–beat control plays
an important role in sampled data control. Recall
that in the discrete control of continuous systems,
sampled with the frequency which is not in reso-
nance with any of the damped frequencies of the
plant, the ripples, caused by the controller at the
controlled output, vanish in a finite time if and
only if a finite length error sequence is guaranteed.
Such controllers are called deadbeat ripple-free
(DBRF) controllers and 2DoF GFLC controllers
showing this properties globally for all G and C
are called 2DoF GDBRF controllers.

The main goal is to find the set of all 2DoF FLC
controllers and its practically important subsets
of 2DoF GFLC and 2DoF GDBRF controllers.
If the control sequence u = U has the minimum
length, we investigate the minimum step versions
of these controllers.

Note that the accepted problem formulation ad-
mits that the denominator in (2), (3) can be
chosen as a noncausal polynomial (q, r > 0). In
such cases the reference signal or a disturbance
takes non-zero values even at the time instants
with negative indices, in which, however, the re-
quirement u = U necessitates zero control. In this
respect the paper (Fikar and Kučera, 2000) comes
to a wrong conclusion that there exists no solution
to the problem. This mistake is obviously caused
by the simplification of the relationship between
the stability of a polynomial and the stability of
corresponding (noncausal) recurrent sequence. It
is shown that the solution exists even in such a

case, i.e. when a 2DoF controller responds with a
r-step delay to a reference signal and with a q-step
delay to a disturbance.

4. SET OF ALL 2DOF FLC CONTROLLERS

The following theorem specifies the set of all 2DoF
FLC controllers, guarantees causality of controller
and for internally BIBO stable closed-loop system
a finite length control and stable error sequences
in nominal situation, characterized by Gnom = G,
Cnom = 0 and (Gnom, z−rF ) = 1.

Theorem 1: (2DoF FLC controller) A 2DoF
controller (4) is a 2DoF FLC controller if and
only if there exist polynomials L, X , Y , V and
Z satisfying the relations

L = L+ (5)

A−

0 DX + BY = G+L (6)

F−V + z−rBF0Z = A+

0 G+ (7)

and giving identities

df =
z−rF0LZ

X
db =

A+

0 Y

X
(8)

The finite length control sequences and stable
error sequences are then given in a nominal sit-
uation and for all arbitrary stable polynomials L
by

U = A−

0
G−Z e =

G−V

z−rA+

0 F+
(9)

Proof: Assume (A, B) = 1 and B(0) = 0. It is
known that a 2DoF controller (4) is causal and
the closed-loop system is internally BIBO stable
if and only if there exist polynomials P , Q a M
such that

AP + BQ = M, M = M+ (10)

Denoting (A0, M) = A1 and (G, M) = G1, we
may assume without loss of generality that

M = A1G1L (11)

The polynomial M is stable if and only if

A1 = A+

1 , G1 = G+

1 , L = L+ (12)

hold. It is obvious from (12) that there always ex-
ist polynomials A2 resp. G2 such that A+

0
= A1A2

resp. G+ = G1G2. Using the polynomial A2G2

for the extension of the controller’s polynomial
fractions (4) and for multiplication of the identity



(10), the necessary and sufficient conditions (10)
can equivalently be expressed as

AP + BQ = A+

0 G+L, L = L+ (13)

Since (A, A+

0 ) = A+

0 and (A, B) = 1 hold,
the polynomial Q satisfies the identity (13) if
and only if there exists a polynomial Y such
that Q = A+

0 Y . Substiting Q into (13), using
A = DA−

0 A+

0 and dividing the equation by the
polynomial A+

0
, we obtain equivalently to (13)

relations (5) and (6), where X = P . After the
substitution of P and Q into (4), it is clear
that a 2DoF controller is causal and the closed-
loop system is internally BIBO stable if and only
if there exist such polynomials X , Y , and L,
satisfying (5) and (6), such that identities (8) are
fulfilled.

Using (5), (6) for internally BIBO stable closed-
loop system with a feedback resp. feedforward
controller (8) resp. (4), we obtain the control
sequence

u =
A−

0 RG−

z−rLF0

(14)

in a nominal situation. Since A0(0) 6= 0 and
(A0, F0) = 1, we deduce that (A−

0 , z−rF0) = 1.
Since L = L+, (A−

0 , L) = 1 and (G−, L) =
1 hold. Finally, (G, z−rF ) = 1 implies that
(G−, z−rF0) = 1. Thus a finite length control
sequence u = U can be obtained if and only
if (R, z−rF0) = z−rF0 hold and the controller
(8) produces u = U if and only if there exist
polynomials R and Z such that

R = z−rF0LZ (15)

Substituting necessary and sufficient condition of
a finite length nominal control sequence (15) into
(14) and into feedforward controller (4), we obtain
feedforward controller (8) and control sequence
(9).

Using (5), (6) and (8), we find that each closed-
loop internally BIBO stable system, producing
a nominal finite length control sequence, gives
rise to a nominal, though possibly unstable error
sequence

e =
A+

0 G+ − z−rBF0Z

A+

0

G−

z−rF
(16)

Recalling that (A+

0 , G−) = 1, (G−, z−rF ) = 1,
F (0) 6= 0, the error sequence e is stable if and
only if there exists a polynomial V such that the
nominator in the first polynomial fraction in (16)
equals F−V . This condition directly yields (7).
We then obtain from (16) a nominal finite length
control sequence (9). 2

Corollary 1: A 2DoF FLC controller exists if
and only if the polynomial F0 is stable (F0 =
F+

0
). This contradicts the statement in (Fikar and

Kučera, 2000) that the solution to FLC problem
exists if and only if ( in our notation) z−rF0

is stable. This statement is evidently false for
r > 0, since this polynomial is non–causal and
thus unstable in such case.

Our statement follows from Theorem 1. A FLC
controller exists, if and only if there exist solu-
tions to equations (6) and (7). The equation (6)
has always solution for assumed (A, B) = 1. In
order the equation (7) may have a solution, it
must hold F−

0 = 1, since (F−, F0) = F−

0 and
(F−

0 , A+

0 G+) = 1. If this is the case, then F− =
D− and (F−, B) = 1. Therefore, the solution to
the equation (7) always exists for F−

0 = 1.

Remark 1: The 2DoF FLC controller guarantees
a finite length control sequence and stable error
sequence only for a nominal situation. If this
supposition is not fulfilled, we obtain for the
closed-loop system from (5)–(8)

u =
A−

0 GZ

G+
nom

−
CY

z−qG+
nomHL+

(17)

e =
GV

z−rA+

0 F+G+
nom

−
CX

z−qA+

0 G+
nomHL+

(18)

It follows from (17) and (18) that each 2DoF
FLC controller guarantees stable error and control
sequences globally for all G and C, if H = H+.

5. SPECIFIC SUBSETS OF THE SET OF
2DOF FLC CONTROLLERS

In consequence of Theorem 1, we have obtained a
tool for the specification of some specific subsets
of the set of 2DoF FLC controllers. At first, we
determine the subset of all 2DoF FLC controllers
guaranteeing a finite length control sequence and
stable error sequence globally for all polynomials
G and C. These controllers are denoted 2DoF
GFLC controllers.

Theorem 2: (2DoF GFLC controller) A
2DoF controller is a 2DoF GFLC controller, if and
only if there exist polynomials X1, Y1, V1 and Z1

satisfying the relations

A−H−X1 + z−qBHY1 = 1 (19)

F−V1 + z−rBF0Z1 = A+

0 (20)

and giving identities

df =
z−rF−

0 F+Z1

H−X1

db =
z−qA+HY1

H−X1

(21)

Thus, we obtain for all polynomials G and C



U = A−

0 GZ1 − CY1

e =
GV1

z−rA+

0 F+
−

CX1

z−qA+H+

(22)

Proof: It follows from (17) that control sequence
is finite and causal for all G and C if and only if
there exist polynomials Z1 and Y1 (for arbitrary
chosen Gnom and L) such that Z = G+

nomZ1

and Y = z−qG+
nomHLY1 and the relation (18)

imply that error is a stable sequence if and only
if X = H−Xh.

Using Theorem 1, we can state that a 2DoF
controller is a 2DoF GFLC controller if and only
if it satisfies to Theorem 1, where polynomials Z
and Y moreover satisfy relations Z = G+Z1 and
Y = z−qG+HLY1.

Since (G+, F−) = 1 holds, it directly follows from
(7) that Z = G+Z1 holds for 2DoF FLC if and
only if there exists also V1 such that V = G+V1.
Substituting

V = G+V1, Z = G+Z1 (23)

into (7) and dividing this equation by the polyno-
mial G+, we obtain (20).

Now, we turn our attention to the conditions
Y = z−qG+HLY1 and X = H−Xh. For future
convenience, we denote (D+, L) = D+

L , D+ =
D+

LD+

0 and L = D+

LL0, where L0 = L+

0 . After the
substitution of Y , D+ and L into (6) and using
relations D = D−D+ and A− = D−A−

0
, we find

that solutions of the equation always exist in the
form X = G+H−L0X0, because (D+

0 , L0) = 1,
(D+

0 , G+) = 1 and (A−

0 H−, G−L0) = 1. Further,
after the substitution of X , and division the
equation by the polynomial D+

LG+L0, we get the
following identity for X0 and Y1

A−D+

0 H−X0 + z−qBHY1 = 1 (24)

X = G+H−L0X0,
Y = z−qD+

LG+HL0Y1,
L = D+

LL0

(25)

where D+

0 is an arbitrary factor of the polynomial
D+. Substituting L, X and Y into (8), we see that
the factor L0 of the polynomial L cancels out in
these relations and therefore, its choice does not
affect the behavior of the controller. From formal
reasons, we choose it so that it holds L0 = D+

0 L1

and thus L = D+L1. Then A+

0 L = A+L1 and
F0L = F−

0
F+L1 hold, and relations (8) are given

by

df =
z−rF−

0 F+Z1

H−D+

0 X0

db =
z−qA+HY1

H−D+

0 X0

(26)

Denoting D+

0 X0 = X1 and substituting it into
(24)and (26), we get (19) and (21). Then relations
(27) have the form

X = G+H−L1X1,
Y = z−qD+G+HL1Y1,

L = D+L1

(27)

Notice that each solution to the equation (24) is
also given by the solution to the equation (19) for
X1 = D+

0
X0. If we put D+

0
= 1, this equation

corresponds to (24) and thus the set of solutions
(19) corresponds to the unification of the sets of
solutions (24), obtained for respective factors D+

0 .

Substituting D+

0 X0 = X1 into (26), we get (21).
Finally, we obtain the relation (22) from (17), (18)
for L = D+L1. 2

Now, we determine the set of 2DoF GDBRF
controllers guaranteeing globally both a finite
length control and a finite length error sequence.

Theorem 3: (2DoF GDBRF controller) A
2DoF controller is a 2DoF GDBRF controller if
and only if there exist polynomials X2, Y2, V2 and
Z2 satisfying relations

AHX2 + z−qBHY2 = 1 (28)

FV2 + z−rBF0Z2 = 1 (29)

and giving identities

df =
z−rF0Z2

HX2

db =
z−qHY2

HX2

(30)

The finite length sequences are then given by

U = A0GZ2 − CY2 e =
GV2

z−r
−

CX2

z−q
(31)

Proof: It follows from (22) that the 2DoF GFLC
controller produces a finite error sequence for all
C and G if and only if X1 = A+H+X2 and V1 =
A+

0 F+V2 = A+F+

0 V2, because (C, A+) = 1 and
(A+F+, G−) = 1. Substituting X1 = A+H+X2

into (19), we obtain (28) for Y1 = Y2. Substituting
V1 = A+

0 F+V2 = A+F0V2 into (20), we obtain

A+

0 FV2 + z−rBF0Z1 = A+

0 ,
V1 = A+F0V2

(32)

Assuming that (A+

0 , BF0) = 1, the equation (32)
has solution if and only if Z1 = A+

0 Z2. After the
substitution into (32) we obtain (29). Relations
(30) and (31) are obtained, when substituting

X1 = A+H+X2, Y1 = Y2,
V1 = A+F0V2, Z1 = A+

0 Z2

(33)

into (21) and (22). 2



Table 1. Embedding of 2DoF GFLC and 2DoF GDBRF controllers into the complete
set of 2DoF FLC controllers.

Type L F0, H X Y V Z

GFLC D+L1 stable G+H−L1X1 z−qD+G+HL1Y1 G+V1 G+Z1

GDBRF D+L1 unit A+G+HL1X2 z−qD+G+HL1Y2 A+G+V2 A+

0
G+Z2

Corollary 2: It follows from (23), (27) resp. (33)
that both the sets of 2DoF GFLC and 2DoF
GDBRF controllers are embedded in the set of
2DoF FLC controllers, if and only if polynomials
F0, H , L, X , Y , V and Z from Theorem 1 satisfies
Table 1. The 2DoF GFLC resp. 2DoF GDBRF
controllers exist if and only if the polynomials F0

and H are stable polynomials resp. unit polyno-
mials. This way specified sets of controllers are
independent on the choice of the polynomial L1,
due to its cancellation after the substitution into
relations (8). In case of GDBRF controllers, this
is consistent with the internal model principle
and guarantees that the model of uncontrollable
external variables is contained in the controlled
system and thus also in the open-loop. In the state
space model this condition corresponds to the con-
trollability of that part of the augmented system,
which is observable by error e, which contradicts
to (Grasselli et al., 1995), where observability of
the plant is a necessary condition.

6. CONCLUSION

The key idea of the paper was to determine the
complete set of 2DoF FLC controllers. Newly per-
formed analysis of behavior of FLC controllers in
non–nominal situation, characterized by an even-
tual correction of reference signal w and by gen-
eral plant disturbances, led to the formulation of
GFLC and GDBRF tasks that have not yet been
investigated in this context. The specification of
the complete set of all 2DoF FLC controllers by
Theorem 1 has created a theoretical background
for the specification of several important subsets
of controllers.

We have derived the necessary and sufficient con-
ditions for the existence of 2DoF GFLC resp.
GDBRF controllers and their minimum step vari-
ants. With regard to (Fikar and Kučera, 2000),
this paper opposes the statement that solution
to FLC problem does not exist for a noncausal
polynomial in the denominator of the reference
signal generator. Further, it has been proved for
2DoF controller that the solution to minimum
step control is unique, if the plant is exposed to
disturbances.

From a general point of view, 1DoF controller
design versions are a special case of 2DoF versions.
They are naturally less flexible, and, except the

tradition, they have no visible advantages. The
same goes for GFLC and GDBRF problems.

Finally remark, that the design of 2DoF con-
trollers is always obtained by solution of two Dio-
phantine equations. The set of solution of each
them can be parametrized by a free parametriz-
ing polynomial. The parametrizing polynomial for
feed-back Diophantine equation linearly parame-
trizes only the response to disturbances, while
the parametrizing polynomial for feed-forward
Diophantine equation linearly parametrizes only
the response to the reference signal. Contrary
to (Rao and Rawlings, 2000; Fikar and Kučera,
2000; Mošna et al., 2001) this new finding enables
independent optimization of both mentioned re-
sponses with `1, `2 or `∞ norms.
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