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Abstract: In this paper, interval simulation methods are presented to determine guaranteed
enclosures of state variables of an activated sludge process in biological wastewater
treatment. This process is characterized by nonlinearities and uncertain but bounded
parameters. In uncertain systems an axis-parallel interval box is mapped to a complexly
shaped region in the state space that represents sets of possible combinations of state
variables. The approximation of this complex region by a single interval box causes
accumulation of overestimation over simulation time. The algorithm presented in this
paper minimizes this so called wrapping effect by applying consistency techniques, to
avoid safety-critical states.Copyright ©2005 IFAC
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1. INTRODUCTION

The considered activated sludge process in biological
wastewater treatment is described by a system of
ordinary differential equations with nonlinear reaction
kinetics (Köhne, 1998; Henzeet al., 1987). The model
contains several uncertain parameters which can be
time-varying. E.g., the maximum specific growth rate
of the substrate consuming bacteria depends on the
temperature of the wastewater. Higher temperature
leads to a higher growth rate and vice versa. The
inflow to the wastewater treatment plant is also an
important uncertainty. The amount and composition of
the influent wastewater strongly depend on wet or dry
weather conditions.

Popular approaches to simulate uncertain systems are
Monte Carlo methods. However, these methods are
not suitable if guaranteed bounds of the state vari-

ables are required, which is important for security
relevant system operation. In real-world applications
mostly only lower and upper bounds of the uncertain
parameters and their maximum tolerance are known.
Consequently, the application of interval methods
(Moore, 1979; Jaulinet al., 2001) to the evaluation
of the mathematical system model leads to conserva-
tive estimations of the lower and upper bounds of the
state variables. However, a naive application of inter-
val methods results in huge overestimation. Therefore,
the consistency techniques presented in this paper and
splitting into subintervals aim at reduction of the over-
estimation.

Two different kinds of overestimation of the state vari-
ables can be distinguished. First, the maximum and
minimum values of the state intervals in each time
step cannot always be determined exactly if just nat-
ural interval evaluation or higher-order methods are



applied (Rauhet al., 2004). Second, using only one
axis-parallel interval box it is impossible to represent
complexly shaped regions of state variables in the state
space even if the exact infimum and supremum of the
sets can be determined. This kind of overestimation
is usually called the wrapping effect. The wrapping
effect occurs due to replacement of these regions by
axis-parallel enclosures in each time step and there-
fore leads to accumulation of overestimation over sim-
ulation time.

The first kind of overestimation can be minimized by
applying monotonicity tests or iterative calculation of
both infimum and supremum (Rauhet al., 2004). The
second kind of overestimation is reduced by removing
subintervals of an axis parallel box that do not belong
to the exact solution of the state equation with respect
to the approximation of the previous time step. This is
done by the consistency techniques described in this
paper.

In addition the time-discretization of the continuous
system leads to a time-discretization error, which has
to be calculated prior to the application of consistency
techniques. It is shown how a conservative enclosure
of the time-discretization error is determined.

In Section 2 the formulation of the problem is given.
Section 3 describes how the discretization error can be
calculated. In Section 4 the proposed simulation algo-
rithm based on consistency techniques is described. In
Section 5 simulation results of a subprocess of biolog-
ical wastewater treatment are shown. Finally, conclu-
sions and an outlook on future research are given in
Section 6.

2. PROBLEM FORMULATION

The system model of a simplified activated sludge
model in biological waste water treatment (Rauhet
al., 2004) consists of a set of four nonlinear coupled
differential equations
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The four state variables represent the concentrationS
of biologically degradable organic matter (substrate),
the concentrationX of substrate consuming bacteria,
the concentrationSO of dissolved oxygen in the aera-
tion tank, and the concentrationXSet of bacteria in the
settler. The settler model assumes an ideal separation
of purified wastewater and activated sludge. For the
state variables the following restrictions must hold
additionally,

S ≥ 0, X ≥ 0, XSet ≥ 0,

0 ≤ SO ≤ SO,Sat.
(3)

These inequalities point out the physical restrictions,
namely, all concentrations have to be non-negative
for all times. Furthermore, the concentrationSO of
dissolved oxygen is limited by the saturation con-
centrationSO,Sat. The nominal values of the system
parameters are given in (Rauhet al., 2004). The un-
certainty of the maximum specific growth ratêµH

of the heterotrophic biomass is known to beµ̂H ∈
[0.9; 1.1]µH,nominal (Bornemannet al., 1998). In
principle the decay rateb is also exposed to similar
uncertainties. In this paper it is assumed it to be con-
stant.QW is the inflowing wastewater,QEX denotes
the excess sludge removed from the process andQRS

is the sludge which is fed back to the aeration tank.
QRS andQEX are possible control variables, but in
this publication they are assumed to be constant.
The system equations are replaced by the following
expression:

ẋ(t) = f(x(t), p(t)) (4)

with the state vectorx and the uncertain parameter
vectorp. For the simulation of the system the continu-
ous system has to be discretized in time. This is done
by applying a Taylor series expansion

x (tk, xk, pk, tk+1) = xk + Tf (0) (tk, xk, pk)

+
T 2

2!
f (1) (tk, xk, pk) + . . .

+
T τ

τ !
f (τ−1) (tk, xk, pk) + e (ξ, x(ξ))

(5)

with the integration step-sizeT , i.e. tk = kT and
tk < ξ < tk+1. Throughout this paper, all uncertain

system parameterspk ∈
[
p

k
, pk

]
are assumed to be

interval parameters, i.e., the range of these parameters
is defined by lower boundsp

k
and upper boundspk.

No additional information about the distribution of
these parameters is available and needed. In addition,
these parameters are assumed to be time-varying, i.e.,
arbitrary variations of the actual value of these param-
eters from one time-step to the next are allowed within
the specified parameter range without specifying any
dynamical behavior of the parameter variation.

Applying interval arithmetic simulation techniques to
(4), guaranteed bounds for the state variablesxk+1 are
calculated recursively in terms of uncertainties of the
state vectorxk and uncertain system parameterspk.
These bounds ofxk+1 should be as tight as possible



to the actual lower and upper bounds of the state vari-
ables. Furthermore, overestimation of these bounds is
reduced by applying consistency techniques presented
in Section 4 to improve the enclosure of non-axis-
parallel state intervals. By this procedure, the influ-
ence of parts of the state space without physical rele-
vance to the considered process model is minimized.

3. TIME-DISCRETIZATION ERROR

Systems of nonlinear differential equations are an ad-
equate description for numerous real-world systems,
e.g. for biological processes such as wastewater treat-
ment. For numerical analysis of the system behavior
time-discretization is performed. This leads to an un-
avoidable discretization error depending on the dis-
cretization method and the step-size. With interval
methods it is possible to give conservative bounds
for this error and therefore a guaranteed estimation
of the bounds of the continuous-time system. For the
truncation error the following relation holds

e(ξ, x(ξ), pk) ⊆ T τ+1

(τ + 1)!
f (τ) ([tk ; tk+1] , B, pk) .

(6)
In this expression, the intervalB is a bounding box
for the range of the state variablesx(t) ∈ B, ∀t ∈
[tk; tk+1] , if the initial intervalsxk = x(tk) are given.
Applying the Picard Operator

Φ (B) = x (tk) + [0 ; T ] f ([tk ; tk+1] , B, pk) (7)

the interval enclosureB can be determined (Devilleet
al., 2002).B is initialized with the state vectorxk. If
Φ (B) 6⊆ B, the bounding-boxB has to be inflated. If
Φ (B) ⊆ B, (1) is performed recursively untilΦ (B)
matches withB except a small given error. In case that
this algorithm does not converge or that the interval
of the discretization errore ([tk ; tk+1] , B, pk) is too
large, the step-sizeT has to be reduced.

Note, that the Picard operator uses a first-order Tay-
lor expansion. It can be generalized to higher orders
which may allow larger step-sizes, at the cost of higher
computational effort. In this paper the first order ex-
pansion for determiningB has been used in combina-
tion with the second order expansion, which improves
the results. For the second order expansion

Φ (B) =x (tk) + [0 ; T ] f (tk, x (tk) , pk) +
1
2

[0 ; T ]2 f (1) ([tk ; tk+1] , B, pk)

holds (Corliss and Rihm, 1995).

The higher derivativesf (1) = ẍ, f (2) =
...
x , . . . ,

f (τ) = xτ+1 of the right hand side of the differen-
tial equation can be determined recursively with the
following relation

f (0) (t, x) = f (t, x)

f (τ) (t, x) =
∂f (τ−1) (t, x)

∂t
+

∂f (τ−1) (t, x)
∂x

f (0) (t, x)

(8)

The explicit Euler method corresponds to the trunca-
tion of a Taylor series expansion after the first-order
term τ = 1. For the error introduced by neglect-
ing all higher-order terms guaranteed bounds can be
calculated by an interval extension of the error term
e(ξ, x(ξ), pk). The system has no explicit dependency
in t, hence for the explicit Euler method the following
expression holds:

xk+1 ⊆ xk + Tf (0) (xk, pk) + e (B, pk) . (9)

xk+1 is a guaranteed bound of all state variables in
time-step attk+1.

4. CONSISTENCY TECHNIQUES

In this section a simulation algorithm based on con-
sistency techniques is described, which reduces the
wrapping effect significantly. The algorithm consists
of two steps: A forward step which calculates rough
enclosures of the state variables in the following time
step and a backward step, which deletes subintervals
which do not belong to the exact solution with respect
to the previous approximation (Devilleet al., 1998;
Deville et al., 2002; Klettinget al., 2004).

4.1 The Forward Step

The forward step can be performed in several ways.
For the explicit Euler method with error term we get

xk+1 = xk + Tf(xk, pk) + e(B, pk) (10)

while for the implicit Euler method with error term

xk+1 = xk + Tf(xk+1, pk+1)− e(B, pk) (11)

holds. In the latterxk+1 is calculated by applying an
interval Newton method. In this case the Krawczyk
method (Neumaier, 1990), which is described in Ap-
pendix A, has been used. The advantage of the
Krawczyk method over other interval Newton ap-
proaches is that the inversion of interval matrices is
avoided.

In this paper both variants (10) and (11) of the forward
step are used in combination. First, the explicit method
is performed which is used as initialization of the in-
terval Newton method to determine the solution of the
implicit method. In other words the implicit method
contracts the solution of the explicit method. To get
even tighter enclosures equation (10) is evaluated with
a monotonicity test and iterative calculation of infi-
mum and supremum. These methods are described in
(Rauhet al., 2004).

4.2 The Backward Step

For backward computation of a subintervalSI three
different cases have to be distinguished. These three
cases are illustrated in Fig. 1.



Figure 1. Forward step and backward step.

Applying the backward step, subintervalSI1 in time
stepk + 1 is mapped toSI1′ in time stepk. SI1′

lies completely out ofxk, thereforeSI1 does not
belong to the exact solution. SubintervalSI2′ lies
completely inside ofxk. That meansSI2 belongs
to the exact solution of time stepk + 1. Subinterval
SI3 has to be split further, becauseSI3′ is only
included partially inxk and therefore no conclusion
can be made. The repeated application of splitting and
backward calculation yields in an approximation of
the actual solution in time stepk + 1.

There are now two possibilities to perform the back-
ward step. To obtain tighter results the intersection of
both methods is used. The first possibility is derived
from equation (10) by rewriting it the following way:

0 = xk +Tf(xk, pk)+ e(B, pk)−xk+1 = h(xk, pk)
(12)

Next, xk+1 is split into several subintervals̃xk+1.
Now it has to be tested if there exists a region of zeros
in xk for everyx̃k+1. If there exists a region of zeros
in xk, then x̃k+1 belongs toxk+1. If not, x̃k+1 can
be deleted. If no conclusion can be madex̃k+1 has
to be split again. Equation (12) is solved by applying
the Krawczyk method. A detailed description of the
Krawczyk method and how it is applied to consistency
tests can be found in Appendix A. The second way
to perform the backward step works as follows. First,
equation (11) is rewritten

xk = xk+1 − Tf(xk+1, pk+1) + e(B, pk) (13)

thenxk+1 is split into subintervals. For subintervals
x̃k+1

x̃k = x̃k+1 − Tf(xk+1,pk+1) + e(B, pk), (14)

is applied.
If

x̃k ⊂ xk, (15)

it can be guaranteed, that there exists a zero inxk for
any element of̃xk+1 If

x̃k ∩ xk = ∅ (16)

there is no zero inxk for any element of̃xk+1 and
x̃k+1 can be deleted. If

x̃k 6⊂ xk (17)

and
x̃k 6= ∅ (18)

x̃k+1 has to be split further.

An efficient splitting strategy makes sure that the num-
ber of splitting operations and therefore the number
of intervals is kept lower, than if a cyclical change of
the splitting direction is applied. It is more efficient to
split in the direction where the backward step is most
sensitive. An heuristic approach is given in (Kletting
et al., 2004). The consistency test and the associated
splitting leads inevitably to an increasing number of
intervals. To avoid an exponential growth of the num-
ber of intervals also efficient merging strategies have
to be applied. Two subintervals can be replaced by the
convex hull around both, if the resulting interval leads
to no or only small overestimation. This is illustrated
in Figs (2) and (3). Some merging strategies are de-

x1,k1,k

x2,k2,k

Figure 2. Intervals before merging.

x1,k1,k

x2,k2,k

Figure 3. Intervals after merging.

scribed in (Klettinget al., 2004).

5. SIMULATION RESULTS

In this Section, the proposed interval arithmetic simu-
lation algorithm is applied to a simplified Activated
Sludge Model ASM in biological wastewater treat-
ment which has been described in Section 2.

5.1 Truncation Error

In Fig. 4 a grid based reference solution (thin trajec-
tories) with sufficiently small step-size and with small
tolerances is shown. A comparison of the interval eval-
uation of the discrete-time system without considering
the time discretization error for a step-sizeT = 10s
shows that the reference solution may not be included
within the interval solution. If the additive interval



evaluation of the truncation error is considered, the
reference solution is within the state intervals marked
by the vertical lines in each time-step. In this case the
combination of implicit and explicit Euler method is
used, which would be impossible without considering
the discretization error. The truncation error can be
reduced by reduction of the step-size. However, the
simulation always yields guaranteed enclosures of the
continuous time system.

Figure 4. Oxygen concentration.

5.2 Results for the Simplified Activated Sludge Model

Fig. 5 shows a comparison between the simulation
results with consistency tests and without consistency
tests where only the forward step with step-sizeT =
10s was applied. After 40000 s the step-size has been
changed toT = 5s.

The maximum number of intervals in the simulation
with consistency test is 500. The consistency test is
applied to the 20 largest intervals and only in every
third time step. Which is a sensible compromise be-
tween simulation quality and computing time. Those
20 intervals are first split and the consistency test is
applied to the now 40 subintervals. Subintervals which
can be excluded are deleted from the list, intervals
which belong to the solution are inserted into another
list. The remaining intervals are split again. This pro-
cedure is repeated until a maximum of 5000 intervals
is reached. At the end of each time step a merging
routine is applied, which reduces the number of subin-
tervals significantly, with only small overestimation.
If there are still more then 500 intervals left after
the merging routine only the forward step is applied
until the merging routine at the end of each time step
reduces the number to less than 500.

The simulation results make clear that a simulation
with only a single interval box leads to much too con-
servative results. The application of consistency tests
gives very tight results for the substrate concentration
and for the concentrationSO of dissolved oxygen and
the explosion of the results for the bacteria concen-
trations is avoided as it is likely to happen without

(a) Substrate concentrationS.

(b) Bacteria concentrationX.

(c) Concentration of dissolved oxygenSO .

(d) Bacteria concentration in the settlerXSet.

Figure 5. Simulation results



consistency techniques tests and without splitting into
subintervals.

6. CONCLUSION AND FURTHER WORK

In this paper, an interval arithmetic simulation ap-
proach for continuous-time systems with uncertain
system parameters has been proposed. Appropriate
consistency techniques have led to guaranteed bounds
for all state variables. The application to an activated
sludge model of biological wastewater treatment has
pointed out that the proposed consistency tests reduce
the wrapping effect significantly. Tighter results can
be obtained by using more subintervals.

Further reduction of the wrapping effect is achieved by
applying the consistency tests in every or every second
time step. Additionally, a recursive pseudo-linear state
transformation can be applied in the forward step. The
implementation of an adapted step-size control will
increase the efficiency and quality of the algorithm.
It is also possible to allow even parameter variations
between two time steps —not only at the sampling
points— to achieve still guaranteed bounds of the
state variables. This requires the inclusion of lower
and upper bounds of the parameter variation rates for
the determination of the bounding box and the time-
discretization error.
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Appendix A. THE KRAWCZYK METHOD

The Krawczyk method is used to determine if a subin-
terval x̃k+1 belongs to the solution in time stepk +
1 with respect to the previous approximation. The
Krawczyk method has the following iteration rule

k(x) = xm − Y h(xm) +
(

I − Y
∂h

∂x

)
(x− xm)

with Y −1 ∈ ∂h
∂x andxm=mid(x). The iteration

xn+1 = k(xn) ∩ xn

is called Krawczyk iteration, wheren is the n-th
iteration. The initial boxx0 corresponds to the interval
boxxk. If

k(x) ⊂ xk

then it can be guaranteed, that there exists a zero inxk

for any element of̃xk+1. But if

k(x) ∩ xk = ∅

there is no zero inxk for any element of̃xk+1 and
x̃k+1 can be deleted. If

k(x) 6⊂ xk

and
k(x) 6= ∅

another iteration has to be performed. If this does not
improve the result̃xk+1 has to be split further.


