
COMPLEX-STEP GRADIENT
APPROXIMATION FOR ROBUSTNESS
ANALYSIS OF NONLINEAR SYSTEMS

Jongrae Kim, Declan G. Bates, Ian Postlethwaite

Control & Instrumentation Research Group
Department of Engineering

University of Leicester
Leicester LE1 7RH, UK

Email: jrk7, dgb3, ixp@le.ac.uk

Abstract: In this paper, the complex-step perturbation method is extended to
the setting of optimisation problems involving dynamical systems modelled as
nonlinear differential equations. The main advantage of the complex-step method
for gradient approximation is that it entails no subtraction cancellation error,
and therefore the truncation error can be made arbitrarily small. The method is
applied to two robust performance analysis problems and is shown to provide more
accurate solutions and improved convergence times when compared with standard
finite difference-based approaches. Copyright c©2005 IFAC

Keywords: Robustness Analysis, Optimisation, Nonlinear Systems

1. INTRODUCTION

Derivative approximation using complex variables
was first presented in Lyness, et al. (1967) and
Lyness (1967). The usefulness of this formula-
tion for approximating derivatives of real-valued
functions was highlighted by Squire and Trapp
(1998). The main advantages of the approach
are its simplicity, since it is just as simple as
finite difference-based methods if all operations
and functions are properly defined in the complex
domain, and its accuracy, due to the absence of
subtraction cancellation error. Martins, et al. uses
the complex-step method to estimate the sensi-
tivity for structural finite element methods and
computational fluid dynamics code in (Martins et
al., 2000). In (Martins et al., 2001) Martins, et al.
showed the connection between the complex-step
method and algorithmic differentiation and also
gave some suggestions for ways to further improve
the accuracy of the complex-step method. In an-
other new application of this method, Cerviño, et
al. applied the complex-step approach to pseudo-
spectral algorithms (Cerviño and Bewley, 2003).

In this paper, we show how to extend the complex-
step perturbation method to the setting of opti-
misation problems involving dynamical systems
modelled as nonlinear differential equations. In
particular, we consider the problem of worst-
case performance analysis of systems subject to
parametric uncertainty. We show that, for such
problems, the complex-step perturbation method
can provide more accurate solutions, in a faster
time, than are obtained using the standard finite
difference-based approximations which are com-
monly used in optimisation algorithms such as
“fmincon” in the MATLAB optimization toolbox,
(MathWorks, 2003). In addition, the proposed
approach is shown to be easier to implement and
automate, since, unlike finite difference-based ap-
proaches, it does not require the calculation of an
“optimal” step size for each problem.

2. COMPLEX STEP PERTURBATION
METHOD

In this section we briefly describe the complex-
step perturbation method for approximating the

derivative of a real-valued scalar function. Sub-
sequently, we extend this approach to the setting
of optimisation problems involving dynamical sys-
tems modelled as nonlinear differential equations.
Finally, we introduce the two robustness analysis
problems considered in this study.

2.1 Gradient Approximation using Complex Steps

Consider
J = J(xδ) (1)

where J(·) is a real-valued function, i.e., J ∈ IR,
xδ is a parameter vector in ∆, which is a subset
of IRp, and p is a positive integer. Define the kth

element perturbation of xδ at xδ = x∗
δ as follows:

αk±
δ =

{

x∗
δj

± h, for j = k

x∗
δj

, for j 6= k
(2)

where h is a positive real number. One of the
standard ways to obtain the approximate slope at
x∗

δ towards x∗
δk

is to use a finite difference formula
such as (Squire and Trapp, 1998):

∂J(xδ)

∂xδk

∣

∣

∣

∣

xδ=x∗

δ

≈ J(αk+
δ) − J(αk−

δ)

2h
(3)

Note that the truncation error for the above cen-
tral difference formulation is O(h2), and therefore,
to reduce the truncation error h should be chosen
to be as small as possible. However, when h is
below a certain number 1 , the subtraction can-
cellation error will become dominant in the nu-
merator of the above expression. Hence, when the
finite difference method is used to approximate
the derivative, (a) there is a limit to the accuracy
that can be achieved, and (b) the optimal value
of h has to be computed for each problem.

To avoid the above difficulties, the complex per-
turbation method can be used, since, in this
method, there is no subtraction cancellation error.
Consider the complex perturbation of the k-th
element of xδ at xδ = x∗

δ as follows:

zk
δ =

{

x∗
δj

+ ih, for j = k

x∗
δj

, for j 6= k
(4)

where i is the imaginary number, i.e. i =
√
−1.

The function J(zk
δ) that is perturbed in the com-

plex direction can be expanded in a Taylor series
as follows: (Squire and Trapp, 1998):

J(zk
δ) = J(x∗

δ) + ih
∂J(xδ)

∂xδk

∣

∣

∣

∣

xδ=x∗

δ

− h2

2!

∂2J(xδ)

∂x2
δk

∣

∣

∣

∣

∣

xδ=x∗

δ

− ih3

3!

∂3J(xδ)

∂x3
δk

∣

∣

∣

∣

∣

xδ=x∗

δ

+ . . . (5)

1 The certain number varies from problem to problem.

Taking imaginary parts from both sides and di-
viding by h, the approximation of the derivative
is given by (Squire and Trapp, 1998)

∂J(xδ)

∂xδk

∣

∣

∣

∣

xδ=x∗

δ

≈ Im
[

J(zk
δ)
]

h
(6)

where Im(·) is the imaginary part of the argument.
The approximation error is O(h2), which is the
same as for the central difference method. Note,
however, that since for this formulation there
is no subtraction cancellation error, h can now
be made arbitrarily small (as long as it remains
inside the numerical range for real numbers of
the computer). The gradient of J(xδ) can be
approximated by applying the above operation p-
times for each k.

2.2 Extension To Dynamical Systems

In this section the complex perturbation method
is applied to approximate the gradient of a cost
function J(xδ) for a dynamical system, which is
modelled as a nonlinear differential equation:

ẋ = f(xδ, x, t) (7)

where t is in [t0, ∞), the initial condition is given
by x(t0), and x is the state in IRn. Now, xδ can be
interpreted as a vector of uncertain parameters in
∆ ⊂ IRp. Each element of xδ represents a possible
value for a real physical uncertain parameter in
the system model (7). In this paper, f(xδ, x, t) is
assumed to be a piecewise continuous function in
IRn, and the conditions for the existence and the
uniqueness of the solution are also assumed.

The gradient of the cost function can now be
approximated by (6). The value of J for a complex
perturbed xδ can easily be calculated if the cost
function is given in an explicit closed form involv-
ing xδ .

2 If this is not the case, an implicit method
to calculate the value of the complex perturbed
cost function has to be derived, as follows.

By substituting xδ in (7) by zk
δ , (7) becomes

ẋ(zk
δ , t) = f(zk

δ , x, t) (8)

Let x(zk
δ , t) be the solution of the above differ-

ential equation. x(zk
δ , t) can be divided into two

parts i.e., real and imaginary parts:

x(zk
δ , t) = xR(zk

δ , t) + ixI(z
k
δ , t) (9)

where

xR(zk
δ , t) = Re[x(zk

δ , t)] (10a)

xI (z
k
δ , t) = Im[x(zk

δ , t)] (10b)

and Re(·) is the real part of the argument. Sub-
stituting (9) into (8), the following differential
equations are obtained:

2 Sometimes, the system includes a noise model and the
optimisation problem then becomes a stochastic one. For
simplicity, the stochastic case is not considered in this
paper.

ẋR(zk
δ , t) = Re[f(zk

δ , x, t)] (11a)

ẋI (z
k
δ , t) = Im[f(zk

δ , x, t)] (11b)

Note that the above operation, i.e., calculating
the real and the imaginary parts of f(zk

δ , x, t),
is very easy in most cases. Of course, all of the
calculations and operations inside f(zk

δ , x, t) are
normally defined in the real number domain, and
therefore they must be appropriately transformed
into the complex number domain. Details of how
some standard operations should be defined in
the complex domain can be found in (Martins et
al., 2000). Also, note that because the dimension
of differential equation is doubled, this may cause
some numerical problems when n is large number
and this increases the calculation cost. Since the
original initial condition is given by x(t0), the
complex initial condition has to satisfy:

x(t0) = xR(t0) + ixI(t0) (12)

The initial condition for each differential equation
is therefore given by

xR(t0) = x(t0) (13a)

xI(t0) = 0 (13b)

Finally, the solution, (9), is obtained by solving
the differential equation, (11), with the initial
condition, (13).

2.3 Robust Performance Analysis

In the field of robustness analysis, a typical robust
performance analysis problem is to find the value
of xδ that maximizes the following cost function
(Tierno et al., 1995):

max
xδ∈∆

J(xδ) =
1

2

∫ tf

t0

xT (t) x(t) dt (14)

which is a finite L2 gain (assuming the system re-
mains stable for the defined level of uncertainty),
where tf is the final time and is greater than t0.
For this problem, the term inside the integration
with the solution from the complex perturbed
differential equation becomes

xT (zk
δ , t) x(zk

δ , t) = (xT
R + ixT

I)(xR + ixI)

= (xT
R xR − xT

I xI) + i 2 xT
R xI (15)

Note that the transpose operation is not changed
to complex conjugate transpose but remains the
same as the original transpose for both real and
imaginary parts. Otherwise, the above has no
imaginary part and Im(J) is always equal to zero.
Substituting (15) into (14) and taking imaginary
parts

Im [J(z∗δ)] =

∫ tf

t0

xT
R(t) xI (t)dt (16)

the derivative is approximated by

∂J(xδ)

∂xδk

∣

∣

∣

∣

xδ=x∗

δ

≈ 1

h

∫ tf

t0

xT
R(t) xI (t)dt (17)

By repeating the above calculation p-times for
each xδk

, the gradient is obtained.

Another typical cost function frequently used in
the robustness analysis of flight control systems,
(Fielding et al., 2002), has the following form :

max
xδ∈∆

J(xδ) = max
t∈[t0, tf]

x(t) (18)

where, for example, x(t) could be the angle of
attack of the aircraft, and the problem is to find
the uncertain parameter combination that gives
the maximum angle of attack for a given pilot
stick input. The “max” function is redefined in
(Martins et al., 2000) as follows:

max(z1, z2) =

{

z1, for a1 ≥ a2

z2, for a1 < a2
(19)

where

z1 = a1 + ib1 (20a)

z2 = a2 + ib2 (20b)

As a result, the new “max” function still com-
pares only the real parts of the arguments and
returns the complex number with largest real part.
Therefore, the following has to be returned for the
complex perturbed cost function:

Im [J(z∗δ)] = Im
[

xR(t̃) + ixI(t̃)
]

= xI (t̃) (21)

where t̃ is defined by

t̃ = arg max
t∈[t0, tf]

xR(t) (22)

i.e., t̃ is the instant in [t0, tf] when xR(t̃) is greater
than and equal to any other xR(t) in [t0, tf].
Finally, in this case the derivative is approximated
by

∂J(xδ)

∂xδk

∣

∣

∣

∣

xδ=x∗

δ

≈ xI (t̃)

h
(23)

Note, finally, that both of the robustness analysis
problems defined above may result in non-convex
optimisation problems in general, and therefore
the search for the worst-case combination of un-
certain parameters corresponds to the computa-
tion of lower bounds on worst-case performance,
(Tierno et al., 1995).

3. EXAMPLES

In this section the complex-step method described
in the previous section is applied to two robust
performance problems: a first-order linear system
with a finite L2 gain cost function and a second-
order nonlinear system with a cost function corre-
sponding to the maximum overshoot in response
to a unit step reference demand. The optimisa-
tion algorithm used in all cases is “fmincon” in
MATLAB (MathWorks, 2003), with the gradient
for the optimisation being supplied using both
central finite difference and complex-step approx-
imations.

Table 1 (Example 1) No. of cost function evaluations & convergence results for

FD (central finite difference) and CS (complex-step)

Method h Number of Convergent
cost function point
evaluations [xδ1 , xδ2 , . . . , xδ10]

FD 10−1 14784 [0.267, 0.073, 0.267, 0.073, 0.587, 0.347, 0.587, 0.347, 0.587, 0.347]
FD 10−6 9009 [1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]
FD 10−16 4158 [−1.200, 1.000, −1.200, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]
CS 10−1 2662 [−0.953, 0.913, −0.953, 0.913, 1.028, 1.056, 1.028, 1.056, 1.028, 1.056]
CS 10−6 4356 [1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]
CS 10−50 4598 [1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000]

3.1 First-Order System With Finite L2 Gain Cost
Function

Consider the following first-order linear system:

ẋ = −η(xδ)x (24)

where x(0) = 1, xδ is in ∆, which is a hyperbox in
IR10, each of whose edges is bounded by −4 ≤
xδj

≤ 4 for j = 1, 2, . . . , 10, and η(xδ) is the
ten-dimensional Rosenbrock’s function given by
(Spall, 2003) 3

η (xδ) =

5
∑

i=1

[

100
(

xδ2i
− x2

δ2i−1

)2

+
(

1 − xδ2i−1

)2
]

(25)

The cost function is a finite L2 gain as follows:

max
xδ∈∆

J(xδ) =
1

2

∫ 1

0

x2(t)dt (26)

Since (25) has a global minimum, 0, at xδ =
(1, 1, . . . , 1), the maximum of the cost function
occurs at the same location of xδ . The optimal
cost is 1/2.

The initial value of xδ input to the optimisation
routine is (−1.2, 1, −1.2, 1, . . . , 1) (Spall, 2003).
The errors between the approximated gradient
and the analytical gradient for each iteration are
shown for each method in Figures 1 and 2. The
errors are defined as:

δg = |gt − ga| (27a)

δθ = arccos (gt · ga) /(|gt| |ga|)180/π (27b)

where gt, the true (analytical) gradient, is given
by

gt =

{

[−1 + (1 + 2η)e−2η]

4η2

∂η

∂xδ

, for η(xδ) 6= 0

[0, 0, . . . , 0], for η(xδ) = 0

(28)

and ga is the approximate gradient either from
the finite difference method or the complex-step
method.

Figure 1 shows the gradient approximation errors
of the central difference method for different sizes
of the step, h. For h equal to 10−1 the truncation
error is not small enough to give a reasonable

3 See Example 2.5 in (Spall, 2003)

0 100 200 300 400 500 600 700 800
10

−30

10
−20

10
−10

10
0

0 100 200 300 400 500 600 700 800
10

−10

10
−5

10
0

Iteration Number

 h = 10−1

 h = 10−6

 h = 10−16

180

PSfrag replacements

δ
g

δ
θ

[◦
]

Fig. 1. Gradient approximation error of central
finite difference method

0 50 100 150 200 250 300 350 400 450
10

−30

10
−20

10
−10

10
0

0 50 100 150 200 250 300 350 400 450 500
10

−10

10
−5

10
0

Iteration Number

 h = 10−1

 h = 10−6

 h = 10−50

180

PSfrag replacements

δ
g

δ
θ

[◦
]

Fig. 2. Gradient approximation error of complex-
step method

gradient approximation. As shown in Table 1, the
optimisation routine takes a long time to con-
verge and finally doesn’t converge to the correct
solution. When h is equal to 10−6, a reasonable
approximation of the gradient is produced since
the truncation error becomes small. However, if
we try to further improve the accuracy of the
approximation by decreasing h to, for example,
h = 10−16, the subtraction cancellation error be-
comes dominant causing the approximation to be
always equal to zero and the algorithm to fail to
converge to the correct solution.

For the complex-step approximation, it can be
seen in Figure 2 that when h is equal to 10−1,
the gradient is inaccurate in both magnitude and
direction since the truncation error is too large,
and in fact the algorithm fails to converge to
the correct solution (Table 1). However, for h
equal to 10−6 the approximation is very close
to the analytical one. Moreover, if h is further
decreased to 10−50, an even better approximation
of the gradient is produced, due to the absence of
any subtraction cancellation error. The resulting
approximation of the gradient is extremely good
- the error for h = 10−50 is bounded by 10−15 in
magnitude and 10−5 degrees in direction.

For each value of h for each method, the number of
function evaluations required to converge to a so-
lution are given in Table 1. From the table, it can
be seen that, as well as being more accurate, the
complex-step method is also significantly faster.
This is not surprising, since the central difference
method requires two function evaluations to ap-
proximate the slope, as compared to one for the
complex-step approach.

3.2 Second-Order System With Maximum-Value
Cost Function

Consider the following second order nonlinear
system taken from (Slotine and Li, 1991): 4

ẋ1 = x2 (29a)

ẋ2 =
1

xδ1

[−xδ2
x1|x1| + u] (29b)

where the bound for each uncertain parameter is
as follows: 1 ≤ xδ1

≤ 20 and −5 ≤ xδ2
≤ 5. The

control input u is given by(Slotine and Li, 1991) 5

u = −10
√

5(x1 − 1) + x2|x2| − k sat(s) (30)

where sat(s) is given by

sat(s) = sign(s) min(|s|, 1), (31)

s is the sliding surface that is given by s = x2 +
10(x1 − 1) and

k =

(

2 +

√
5

10

)

+ 10
√

5
(√

5 − 1
)

|x1 − 1| (32)

Note that, in order to use the complex-step
method to generate a gradient approximation, all
of the operations defined above must be imple-
mented as shown in (Martins et al., 2000) and
(Martins et al., 2001). For example,

4 See Examples 7.1 and 7.4. Our example is slightly modi-
fied from the original: the bounds for the two uncertain
parameters are changed so that the response has some
overshoot.
5 sat(·) is used to avoid chattering in the control signal and
the original reference trajectory was a time-varying signal
but it is changed in our example to the unit step.

1 2 4 6 8 10 12 14 16 18 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

1

1.05

1.1

1.15

1.2

1.25

PSfrag replacements

xδ1

x
δ
2

Fig. 3. The contour lines show the overshoot
values with respect to xδ . The arrows show
the directions of the approximate gradients
calculated by the complex-step method for
each optimisation step starting from (1, 5).
It converges to the solution in four steps

|z1| =

{

z1, for a1 ≥ 0

− z1, for a1 < 0
(33a)

min(z1, z2) =

{

z1, for a1 ≤ a2

z2, for a1 > a2
(33b)

sign(z1) =

{

1, for a1 ≥ 0

− 1, for a1 < 0
(33c)

The cost function is given as

max
xδ∈∆

J(xδ) = max
t∈[0, 10]

x1(t) (34)

Hence, the optimisation problem is to find the
values of (xδ1

, xδ2
) where the overshoot of x1 is

a maximum. For the purposes of comparison, an
exhaustive grid-based search was used to find an
approximate global maximum for this problem.
A gridding of 200 points for xδ1

and 100 points
for xδ2

was used so that the interval magnitude
for both parameters was 0.1. The total number
of function evaluations for the grid-based search
was therefore 20,000 and the global maximum was
found to be (xδ1

, xδ2
) = (20,−5).

The initial values of (xδ1
, xδ2

) input to the opti-
misation algorithm corresponded to the farthest
point from the global solution, i.e., (1, 5). Using
the complex-step method with the step size h
equal to 10−50, the optimisation converged to the
solution (20.00, -5.00), exactly to the global solu-
tion. The number of function evaluations required
was 63. Since the gradient around the initial guess
is almost flat (see Figure 3), the optimisation al-
gorithm using the finite difference-based gradient
approximation failed to converge to the global
solution, when using the best value for the step
size h chosen by the function “fmincon” (in fact,
it was immediately trapped at its initial value). As
can be seen from Figure 3, however, the complex-
step method is able to calculate a good approxi-
mation of the gradient even at the initial point of
the optimisation, and is thus able to converge to
the correct solution. Figure 4 shows the number
of function evaluations for the two methods with

Table 2 (Example 2) No. of cost function evaluations & convergence results for

FD (central finite difference), and CS (complex-step) with 220 different starting points

Method Minimum Maximum Average Standard Deviation Success Rate

FD 15 1290 135.41 146.25 98.18%
CS 9 144 59.07 18.43 100%

1 50 100 150 220
0

200

400

600

800

1000

1200

1400

Starting Point Index m + 11 n

N
um

be
r

O
f F

un
ct

io
n

E
va

lu
at

io
ns

Central Finite Difference
Complex−Step

Fig. 4. The number of cost function evaluations
for different starting points. The starting
point index, m + 11n, corresponds to the
starting point, (xδ1

, xδ2
) being equal to (−5+

m, 1 + n), where m = 1, 2, . . . , 11 and n =
0, 1, . . . , 19. The total number of points is
220.

220 different starting points, where the incorrect
convergent cases are removed and the step size
h for the central finite difference is equal to 10−5,
which is chosen to improve the success rate and re-
duce the number of function evaluations. Clearly,
the upper bound of the complex-step method is
significantly less than that of the finite difference
method. Table 2 summarizes the simulation re-
sults. In terms of the average number of function
evaluations and the success rate, the complex-step
method gives efficiency improvements of 56% and
2%, respectively, compared to the finite difference
method.

4. CONCLUSIONS

In this paper, the complex-step perturbation
method was extended to the setting of opti-
misation problems involving dynamical systems
modelled as nonlinear differential equations. The
method was applied to two robust performance
analysis problems, and was shown to provide
more accurate solutions and improved conver-
gence times when compared with standard finite
difference-based gradient approximation methods.

ACKNOWLEDGMENTS

This work was carried out under EPSRC research
grant GR/S61874/01. The authors are grateful to

Dr. Andres Marcos of the Control and Instrumen-
tation Group at the University of Leicester for
bringing the complex-step gradient approximation
method to our attention.

REFERENCES

Cerviño, Laura I. and Thomas R. Bewley (2003).
On the extension of the complex-step deriva-
tive technique to pseudospectral algorithms.
Journal Of Computational Physics 187, 544–
549.

Fielding, Christopher, Andras Varga, Samir Ben-
nani and Michiel Selier (Eds.) (2002). Ad-
vanced Techniques for Clearance of Flight
Control Laws. Springer, Chapter 10.

Lyness, J. N. (1967). Numerical algorithm based
on the theory of complex variables. In:
Proceeding ACM 22nd National Conference.
Thomson Book Co.. Washington DC.

Lyness, J. N. and C. B. Moler (1967). Numerical
differentiation of analytic functions. SIAM
Journal of Numerical Analysis 4, 202–210.

Martins, Joaquim R. R. A., Ilan M. Kroo and
Juan J. Alonso (2000). An automated method
for sensitivity analysis using complex vari-
ables. In: AIAA-2000-0689. AIAA Aerospace
Sciences Meeting & Exhibit. Reno, NV, USA.

Martins, Joaquim R. R. A., Peter Sturdza and
Juan J. Alonso (2001). The connection be-
tween the complex-step derivative approxi-
mation and algorithmic differentiation. In:
AIAA-2001-0921. AIAA Aerospace Sciences
Meeting & Exhibit. Reno, NV, USA.

MathWorks (2003). Optimization Toolbox (Ver-
sion 2) For Use With MATLAB. The Math-
Works, Inc.

Slotine, Jean-Jacques E. and Weiping Li (1991).
Applied Nonlinear Control. Prentice Hall,
Inc., pp. 288-299.

Spall, James C. (2003). Introduction To Stochastic
Search And Optimization : Estimation, Sim-
ulation, and Control. John Willey & Sun, 49-
50.

Squire, William and George Trapp (1998). Using
complex variables to estimate derivatives of
real functions. SIAM Review 40(1), 110–112.

Tierno, Jorge E., Richard M. Murray and John C.
Doyle (1995). An efficient algorithm for per-
formance analysis of nonlinear control sys-
tems. In: American Control Conference. Seat-
tle, WA.

