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Abstract: In robotics literature, most of existing Simultaneous Localization and Mapping 
(SLAM) algorithms are limited by the size and type of the environments they can handle. 
A few methods can cope with large scale environments. In this paper, we propose a novel 
hierarchical hybrid method for SLAM in large scale and cyclic environments: locally 
solve SLAM by Maximum Likelihood (ML) with occupancy grid map, and globally by 
Extended Kalman Filter (EKF) with feature-based map. Experiments validated on Pioneer 
2DX mobile robot demonstrate the capabilities and the robustness of our proposed 
algorithm.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Simultaneous Localization and Mapping (SLAM) is 
an essential capability for Autonomous Mobile 
Robot (AMRs) to explore unknown environments, 
and has been attracted immense attention in the 
literature in the past decades since Smith, et al. (1990) 
introduced this problem. As Newman (1999) defined, 
“The SLAM problem asks if it is possible for an 
autonomous vehicle to start in an unknown location 
in an unknown environment and then to 
incrementally build a map of this environment while 
simultaneously using this map to compute absolute 
vehicle location”, which is an inference problem. 
The web site of the SLAM summer school 2002 
(Christensen, 2002) provides a comprehensive 
coverage of the key topics and state of the art in 
SLAM. The dominant approach to SLAM problem is 
based on Extended Kalman Filter (EKF) to estimate 
the joint posterior distribution over the maps and the 
robot poses (Dissanayake, et al. 2001). However, 
EKF approach inherently requires Gaussian 
posteriors, which consequently needs expensive 
computation especially in large scale environments 
with a large number of features. Another more 
important limitation is weak to solve data association  
 
 
 

problem. In SLAM literature four major paradigms 
for environment representation are widely used: 
direct approach, feature-based map, occupancy grid-
based map and topological map. Direct method (Lu, 
et al. 1997) represents the physical environment 
using raw data points without extracting predefined 
features. However, the feature based map (Ip, et al. 
2004) compresses raw data into predefined features. 
Occupancy grid-based (Elfes, 1989) map is generated 
from stochastic estimates of the occupancy state of 
an object in a given cell. It is rather easy to construct 
and maintain it, whereas topological map (Choset, et 
al. 2001) is just graph-like spatial representation. For 
an unknown environment, it is usually difficult to 
represent the world by only one method. For example, 
predefined feature model is hard to get before hand 
because we do not know what type objects will be in 
the surroundings, especially harder in dynamic 
environments; it is a very hard computation load for 
occupancy grid-based method and direct method to 
map a large scale environment, and also some 
inconsistency will happen in cyclic environments. 
Topological map is an abstract and top level on 
previous methods.  
 
Recently, Bosse and Newman, et al. (2004) proposed  
 
 
 



     

a hybrid metrical/topological approach which they 
called Atlas to solve SLAM in large-scale cyclic 
environments. In this paper, we also propose a 
hierarchical hybrid method to overcome the 
limitations of above methods. Our proposed method 
hierarchically incorporates two filtering methods of 
Maximum Likelihood (ML) and EKF, and two 
representation methods of occupancy grid-based map 
and feature-based map. We employ ML to solve 
SLAM basically, thanks to its simplicity and fast 
computation, and adopt occupancy grid map to 
represent the environment. However, just as the 
earlier discussion, grid-based approach does not 
provide a mechanism for loop closing and also is 
suffered from too much storage and computation 
load for large scale environments. So, we locally 
solve SLAM by ML with occupancy grid map, and 
globally solve it by EKF with feature-based map 
where feature is local grid map with 3-Degree of 
Freedom (3-DOF) state. EKF feature-based 
algorithm can smoothly solve the loop closing 
problem, which is a well-known point in the SLAM 
literature. 
 
This paper is organized as follows. In the following 
section, we will present the problem statement of 
SLAM from Bayesian perspective, with a theoretical 
Bayesian formulation. In Section 3, we will describe 
our algorithm in detail. Section 4 presents some 
preliminary experimental results to demonstrate the 
capabilities and the robustness of our approach. 
Conclusion will come into Section 5. 
 
 

2. THE SLAM PROBLEM 
 
SLAM is referred to as the ability of an AMR to 
incrementally extract the surrounding features for 
estimating its pose in an unknown location and 
unknown environment. It involves simultaneously 
estimating positions of newly perceived landmarks 
and the location of the robot itself while 
incrementally building a map, which is an inference 
problem. Fig. 1 illustrates the generative Dynamic 
Bayesian Network (DBN) that underlines the rich 
corpus of SLAM literature (Montemerlo, et al. 2002). 
In particular, we denote the discrete time index by 
the variable t, odometry reading from t-1 to t by ut, 
sensor measurement at t by zt, true location of the 
robot by xt, the map by m. And the following sets 
refer to data leading up to time t. 
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Then SLAM can be formulated as a recursive 
Bayesian filtering problem based on Markov 
assumption (shown in Eq.2). That is, given the 
knowledge of current states, the future is independent 
of the past. In particular, it implies that the posterior  
 
 
 

estimate ),|( :0:0 ttt uzxp  is sufficient statistics for the 
past data, with regards to the prediction. This 
assumption holds true especially for static 
environments which is another general assumption in 
the SLAM literature. Thrun (2001) has presented 
detailed derivations for SLAM. 
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Fig. 1. A DBN for SLAM: Shaded circles denote 

explicit states and clear circles denote hidden or 
implicit states which should be inferenced from 
explicit ones. 
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We also typically term ),|( mxzp tt  in Eq.2 as 
measurement model which specifies the likelihood of 
the observation z for every possible location x; and 
term ),|( 1−ttt xuxp  as motion model which defines 
the likelihood that the robot is at xt given previous 
location xt-1 and motion control ut. 
 
We use SICK LMS 200 in our work. Just as shown in 
Fig. 2, the spot spacing of SICK LMS 200 is smaller 
than the spot diameter for an angular resolution of 
0.5 degree. This means that footprints of consecutive 
measurements overlap each other. In spite of its high 
accuracy of measurement, it is still over optimistic to 
neglect the measurement noise. Therefore, we 
assume that the errors in range and bearing can be 
modelled as a Gaussian uncorrelated white sequence 
with constant variance respectively. 
 

 
 
Fig. 2. Footprint of the measurement from SICK 

LMS200: A red rectangle indicates a footprint of 
one measurement point. We borrow this photo 
from Wang (2004) with the author’s permission. 

 
The wheel encoders in our Pioneer 2DX robot are 
 
 
 



     

used to measure wheel rotation and steering 
orientation. Position errors grow with drift, bias or 
slippage, and also will accumulate over time as 
integration errors. Therefore, we employ small 
motion method, which assumes that only a small 
error occurs for a short-distant travel, to model robot 
kinematics, shown in Fig. 3. Thus we also model 
motion noise as a zero-mean multivariate Gaussian. 
 

control command at time t: ut=[dt,at]
T

d
0

a
0

dtat
θ

(x, y)

Robot
X=[x yθ]T

 
Fig. 3. Graphical representation for small motion 

with control command. 
 
 
3. LOCAL ML WITH OCCUPANCY GRID MAP 
AND GLOBAL EKF WITH FEATURE-BASED 

MAP 
 
To overcome the drawbacks of expensive 
computation and storage and inconsistency for large 
and cyclic environments as earlier discussion, and to 
find an online SLAM algorithm for such 
environments, we propose to locally solve SLAM by 
ML with occupancy grid map and globally solve it 
by EKF with feature-based map. 
 
 
3.1. Local ML with Occupancy Grid Map 
 
ML Estimation  The idea and implementation of ML 
is simple, thus meeting the online computing 
requirements: Given a sensor measurement and 
odometry reading, determine the most likely pose. 
Then append the pose and build the map. Particularly 
for SLAM (2), that means to maximize the marginal 
likelihoods of pose and map given previous pose and 
map. We just use following function (3) to update the 
map, and in practice, we employ occupancy grid map 
to implement it, which we will discuss later. 

),|(maxarg),(ˆ :0:0:0:0 tttt zxmpzxm =             (3) 
So, when the map available, SLAM problem (2) can 
be reduced further at each time step, with additional 
assumption that previous step pose 

1ˆ −tx  is known too. 
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Now, what is left to do is to calculate the t-th pose by 
ML estimate. 

)ˆ,|()),(ˆ,|(maxargˆ 1:0:0 −= ttttttt
x

t xuxpzxmxzpx
t

     (5) 

 
 
 

To calculate (5) is only a complex mathematics 
exercise. We omit the detailed information here. 
 
Occupancy Grid Map  As discussed previously, we 
apply occupancy grid map method to calculate (3). 
So here we establish the standard occupancy grid 
map approach (Elfes, 1989). As the name suggests, 
occupancy grid maps usually are represented by two-
dimensional grids and generate probabilistic maps. 
Let mx y denote the occupancy of the grid cell at <x, 
y> in the map m. Occupancy is a binary variable: 
Either the cell is occupied or it is free. The problem, 
thus, is to calculate a posterior over a set of binary 
variables, each of which is a single numerical 
probability ),|( :0:0, ttyx zxmp . Then, we apply Bayes 
filters to calculate these posteriors. For 
computational reasons, it is common practice to 
calculate the so-called log-odds: 
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Obviously, the occupancy grid mapping algorithm is 
recursive with the initialization (7). So, to compute 
the desired probability only requires two entities: 
occupancy prior )( , yxmp  and inverse sensor model 

),|( , ttyx zxmp  which specifies the probability that a 
grid cell mx y is occupied based on a single sensor 
measurement zt taken at location xt. When log-odd is 
available, we need to recover the desired posterior 
from the calculated log-odd: 

1
:0:0, ]1[1),|( , −+−=

T
yxl

ttyx ezxmp                   (8) 
 
 
3.2. Global EKF with Feature-based Map 
 
As we mentioned repeatedly in the previous sections, 
occupancy grid-based approach does not provide a 
mechanism for loop closing and also is suffered from 
too much storage and computation load for large 
scale environments. So, we build occupancy grid 
map locally, and treat each local grid map as a 3 
Degree of Freedom (3-DOF) feature state represented 
by the gravity and orientation of the local map, then 
employ EKF to update these features globally. The 
advantage of this hierarchical scheme is to overcome 
the storage and inconsistency problems. To 
consistently close a large cyclic map, we must 
recognize the already visited place, specifically, we 
must know whether current local grid map is in a pre-
visited place or not. To do so, we adopt covariance 
increasing (Li, 1998) when there is an inconsistency 
in the global map (illustrated in Fig. 4). 
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Fig. 4. Covariance increasing activated when 

inconsistency is detected. 
 
EKF feature-based map is a dominant method in 
SLAM literature in the past decades. The overall 
algorithm is summarized as follows. 
 
Algorithm EKF 
1. Initialization step 

 Initialize the mean square error covariance P0|0, 
predict the position x0|0, state noise covariance 
model Q0 and measurement noise covariance 
model R0. 

2. Prediction step 
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transition model with respect to robot state 
Qt: state noise covariance at time t 
3. Update step 

 Innovation:
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where: 

1|ˆ|)(
−

∇=∇
ttxttt xhH : Jacobian matrix of 

measurement model with respect to robot state 
Rt: measurement noise covariance at time t 
 
 

4. EXPERIMENTAL RESULTS 
 
We have validated the proposed algorithm on a 
Pioneer 2DX mobile robot equipped with SICK 
LMS200 (shown in Fig. 5) and further experiments 
are still on-going now. But the preliminary results 
also demonstrate the capabilities and the robustness 
of our proposed algorithm. 
 
We first performed our experiments in an indoor 
structured environment. The hand-measured world  
 
 
 

 
 
Fig. 5. Experimental platform: Pioneer 2DX mobile 

robot with SICK LMS200. 
 
model is shown in Fig. 6. And the map generated by 
raw laser scan by using direct method is shown in Fig. 
7. As seen from Fig. 7, there is obvious inconsistency 
among the map, especially when the robot moves 
into the pre-visited places such as corners of the map. 
Therefore we need to design some methods to 
overcome such inconsistency, which is just the main 
task in our work. 
 

 
 
Fig. 6. The exact hand-measured world model 
 

 
 
Fig. 7. Map generated by raw laser scan. 
 
Then we basically use ML with occupancy grid map 
to model the same environment. The resulting map is 
shown in Fig. 8. In Fig. 8, the green place denotes 
unknown region, the gray place denotes free region, 
the dark place denotes the objects, and the red line 
just denotes the robot trajectory. It is easy to see from 
Fig. 8 that the inconsistency problem is well solved, 
even robot frequently moves into pre-visited region. 
 
In Fig. 9, we also show four local grid maps how to 
work in global EKF level in detail in the whole 
mapping procedure. Map denotations in Fig. 9 are 
same as Fig.8.  
 
 
 
 
 



     

5. CONCLUSION 
 
In this paper, we propose a hierarchical hybrid 
method to solve SLAM problem. In our algorithm, 
we basically employ ML with occupancy grid map to 
solve SLAM in local level. Because there will be 
some inconsistency when working in cyclic 
environments and also the much expensive storage 
and computation load for occupancy grid map for 
large scale world, we apply EKF feature-based map 
to update the resulting map in global level. The 
practical experiments demonstrate that our approach 
can run in real-time. And it is easy to scale to large 
environments just modify the size and resolution of 
the grid map. 
 

 
 
Fig. 8. Map generated by the proposed algorithm. 
 

 
 
Fig. 9. Four local grid maps during whole mapping 

procedure. 
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