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Abstract: This paper addresses invariant set computation for discrete-time
switched systems subject to bounded disturbances. Specifically, we show how to
compute the maximal robust switched invariant set C̃S

∞, which we define to be the
set of states which can be made robust invariant by an appropriate switching law.
Furthermore it is demonstrated how the maximal robust reachable set K̃S

∞(Ω) can
be computed, i.e., all states which can be robustly steered into the target set Ω by
an appropriate switching law. We also show how these sets may be used to obtain
a minimum time controller for switched systems, i.e., a controller which robustly
steers the state into a given target set in minimal time. Copyright c©2005 IFAC.
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1. INTRODUCTION

Switched systems are of interest since they repre-
sent a wide range of practical problems, e.g., gear
selection for a car, controller switching for linear
systems. Furthermore, in hybrid control design,
the goal is often to achieve the desired closed-loop
behavior by switching between various control
schemes which each optimize different control ob-
jectives. These schemes are able to tackle complex
design tasks such as multi-objective problems. A
survey of hybrid control design methods is given
in (Antsaklis and Koutsoukos, 2003).

The results presented here are directly applicable
to switched systems although we extend our obser-
vations to general Autonomous Piecewise Affine

(APWA) systems. The standard APWA system
consists of affine systems not subject to external
inputs (x+ = Ax + b) which are defined over a
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polyhedral partition, i.e., a unique affine dynamic
is associated to every state. Here, we consider
APWA systems which are defined over polyhedra
that may overlap. Therefore, switched systems
which correspond to a set of linear or affine dy-
namics valid for the entire state-space are a subset
of the type of APWA systems considered here.

A wide range of literature exists on PWA sys-
tems, since they represent a powerful tool for
approximating non-linear systems (Sontag, 1981)
and because of their equivalence to certain classes
of hybrid systems (Heemels et al., 2001). Specif-
ically, we consider APWA systems subject to
bounded and persistent disturbances. This class
of disturbances is useful for dealing with measure-
ment noise and system uncertainties. Although
the APWA systems considered here may be seen
as a subset of PWA systems, the specific structure
in the APWA dynamics can be exploited, allowing
us to use more efficient computational tools in the
subsequent sections. Specifically, when reachabil-



ity computations are considered, the structure of
the APWA dynamics allows us to refrain from
resorting to projection methods as is necessary
for standard PWA systems (e.g. (Kerrigan, 2000;
Raković et al., 2004)).

This paper presents methods for computing the
maximal robust switched invariant set C̃S

∞ for
APWA systems defined over possibly overlapping
polyhedra and demonstrates how these sets may
serve to obtain robust switching sequences for
APWA systems subject to bounded and persistent
disturbances. We base our contribution on invari-
ant set results for linear and general PWA systems
(Blanchini, 1999; Kolmanovsky and Gilbert, 1998;
Kerrigan, 2000; Raković et al., 2004; Saint-Pierre,
1994) and on recent results for linear switched sys-
tems (Julius and van der Schaft, 2002; De Santis et

al., 2004). Our results agree with the general and
abstract viability theory framework elaborated in
(Aubin, 1991). However, we are concerned with
efficient computational procedures for the APWA
class of systems and we show how computational
geometry and polyhedral algebra can be efficiently
exploited to perform the required computations.
We also show how the robust invariant set may be
used to obtain minimum time controllers which
guarantee robust convergence to a predefined tar-
get set.

The paper is structured as follows. Section 2
introduces the problem and various definitions
and preliminaries. Section 3 presents a general
algorithm for computing robust invariant sets for
switched systems which is subsequently used in
Section 4 to obtain a robust switch control law.
Numerical examples are given in Section 5 before
concluding in Section 6.

2. PROBLEM DESCRIPTION

We consider the autonomous piecewise affine
switched system

x+ = f(x, i, w), (1)

where x+ denotes the successor state, x and w
denote the current state and disturbance, respec-
tively, and i denotes the active dynamic.

Definition 1. A polyhedron is the intersection of
a finite number of closed half-spaces, a polytope

is a closed and bounded polyhedron and a P-

collection is the (possibly non-convex) union of
a finite number of polyhedra.

For switched systems, the dynamic i may be
chosen by the controller. The function f(·) is
affine in each of a finite number of polyhedra
{Qi}, i ∈ I , {1, 2, . . . , J}, with possibly over-
lapping interiors that cover the region of state

space of interest. Note that this system model
covers classic switched systems where we usually
have Qi = R

n, ∀i ∈ I. The system satisfies:

f(x, i, w) , Aix + ci + w, x ∈ Qi. (2)

and is subject to the constraints

(x,w) ∈ X × W ⊂ R
n × R

n (3)

where both X and W are polytopic sets containing

the origin in their interior.

Definition 2. The set Ω ⊆ X is said to be a robust
switched invariant set for the PWA system in (2)
subject to the constraints in (3) if for every x ∈ Ω
there exists an i ∈ I such that f(x, i, w) ∈ Ω for
all w ∈ W.

The problem we consider is the efficient compu-
tation of the maximal robust switched invariant
set C̃S

∞ and the maximal robust switched attrac-
tive set K̃S

∞ for switched PWA systems which are
defined as:

Definition 3. The maximal robust switched in-
variant set, C̃S

∞, for the PWA system in (2) subject
to the constraints in (3) is defined by

C̃S
∞ = {x(0) ∈ R

n| ∃i(k) ∈ I, s.t. x(k) ∈ X ∩ Qi(k),

x(k + 1) = f(x(k), i(k), w(k)),

∀w(k) ∈ W, ∀k ≥ 0}.

Definition 4. The N-step robust switched attrac-
tive set, K̃S

N (Ω), where Ω is a non-empty set in
R

n, for the switched system (2) subject to the
constraints in (3) is defined by:

K̃S
N (Ω) = {x(0) ∈ R

n| ∃i(k) ∈ I, s.t.

x(k) ∈ X ∩ Qi(k), x(N) ∈ Ω,

x(k + 1) = f(x(k), i(k), w(k)),

∀w(k) ∈ W, k ∈ {0, . . . , N}}.

The set K̃S
N (Ω) contains all states which can be

robust steered into the set Ω in N -steps. The
maximal robust switched attractive set K̃S

∞(Ω) is
defined as the union of all N -step attractive sets
with N ∈ N. Here, N , {1, 2, . . . } denotes the set
of positive integers.

Lemma 1. For system (2) subject to constraints
(3) the following holds: (i) K̃S

∞(Ω) ⊆ C̃S
∞ if Ω ⊂ X

and (ii) K̃S
∞(Ω) = C̃S

∞ if Ω = X.

If Ω is invariant and no limit cycles (i.e. closed
orbits) are contained inside Ω, the set K̃S

∞(Ω) does
not contain limit cycles. The set C̃S

∞, on the other
hand, may always contain limit cycles.



3. THE MAXIMAL ROBUST SWITCHED
INVARIANT SET

In this section we present an algorithm to compute
the maximal robust switched invariant set C̃S

∞

and the maximal robust switched attractive set
K̃S

∞(Tset) for a given target set Tset, as given in
Definition 3 and 4, respectively.

Given the non-empty set Ω ⊂ R
n we define the

set of states Pre(Ω, i) that robustly evolve in one
step to Ω when dynamic i is active as

Pre(Ω, i) ,{x ∈ X | f(x, i, ω) ∈ Ω, ∀ω ∈ W}

={x ∈ X | f(x, i, 0) ∈ Ω ⊖ W}.

where ⊖ denotes the Minkowski set subtraction
(Pontryagin difference) defined by:

Ω ⊖ W , {x ∈ R
n| x + w ∈ Ω, ∀w ∈ W}.

Remark 1. If the set Ω is a P-collection then the
set Pre(Ω, i) is a P-collection, since the Pontrya-
gin difference of a P-collection and a polytope is a
P-collection and the dynamics f(x, i, ω) are affine
for all i ∈ I. Clearly, the set of states that can
robustly evolve in one step to Ω is given by

⋃

i∈I

Pre(Ω, i).

It is well known that computation of the Pontrya-
gin difference is easily implemented if Ω and W are
polytopes by solving a number of linear programs
(Kolmanovsky and Gilbert, 1998; Kerrigan, 2000).
However, if the set Ω is a P-collection, this opera-
tion becomes very complex. Details on Pontryagin
difference computation for P-collections and poly-
topes are given in (Kerrigan, 2000; Raković et al.,
2004) and software tools to perform this operation
are available (Kvasnica et al., 2003; Veres, 2003).

The following algorithm can be used for com-
putation of the maximal robust switched invari-
ant set C̃S

∞ or the maximal robust switched at-
tractive set K̃S

∞(Ω0), for a given target set Ω0

(Aubin, 1991; Saint-Pierre, 1994):

Algorithm 3.1.

(1) Specify initial set H0 = Ω0 and set k = 0.
(2) Ωi

k+1 = Pre(Hk, i), ∀i ∈ I.
(3) Hk+1 =

⋃

i∈I Ωi
k+1.

(4) If Hk+1 = Hk, return; Else, set k = k+1 and
goto 2.

An algorithm for checking whether two P-collec-
tions are equal can be found in (Raković et al.,
2003; Baotić and Torrisi, 2003). This functionality
is also contained in various software tools (e.g.,
(Kvasnica et al., 2003)).

Lemma 2. Let the set Hk∗ be a fixed point (i.e.,
Hk∗ = Hk∗+1) of Algorithm 3.1, then Hk∗ is a
robust switched invariant set.

The proof for Lemma 2 follows from results
reported in (Julius and van der Schaft, 2002;
Raković et al., 2004) and is well known in the gen-
eral viability theory (Aubin, 1991; Saint-Pierre,
1994).

Theorem 1. Suppose that Ω0 = X in Step 1 of
Algorithm 3.1 and that there exists a k∗ ∈ N

such that Hk∗ = Hk∗+1. Then, Algorithm 3.1
terminates and C̃S

∞ = Hk∗ .

PROOF. Ω0 = X is the largest feasible set and
Hk ⊇ Hk+1. If Hk = Hk+1 then Hk is a fixed
point of the Algorithm 3.1 and it is the maximal
robust control invariant set contained in X, i.e.,
C̃S
∞ = Hk. 2

Theorem 2. Suppose that Ω0 = Tset, where Tset ⊂
R

n is a non-empty robust switched invariant set.
If in Step 1 of Algorithm 3.1 there exists a k∗ ∈ N

such that Hk∗ = Hk∗+1, then Algorithm 3.1
terminates and K̃S

∞(Tset) = Hk∗ .

PROOF. It holds that Hk ⊆ Hk+1. If Hk =
Hk+1, it follows that there does not exist a state
x /∈ Hk such that f(x, i, ω) ∈ Hk for any i ∈ I
and ω ∈ W. Therefore K̃S

∞(Tset) = Hk if Hk =
Hk+1. 2

In general, the sets Ωi
k and Hk are P-collec-

tions and the sets Ωi
k may be overlapping due to

the definition of f(·) in (1). Although most of the
computations in Algorithm 3.1 are performed on
P-collections it should be noted that the neces-
sary computation for APWA systems is relatively
straightforward, since no projections need to be
performed as is the case for PWA systems (e.g.
(Kerrigan, 2000; Raković et al., 2004)).

4. MINIMUM TIME CONTROL

This section demonstrates how the set computa-
tion schemes of the previous sections can serve to
obtain switching laws which are robust towards
additive but bounded disturbances. The proposed
switching scheme guarantees convergence to a
target set, whereby the target set Tset is chosen
here to be a small set containing the origin in its
interior. However, the size of Tset is lower-bounded
by the magnitude of the persistent disturbance
w ∈ W.



(a) Target set

Tset.

(b) Iteration 1. (c) Iteration 2. (d) Iteration 3. (e) Iteration 4. (f) Iteration 5.

Fig. 1. Reach-set computation according to Algorithm 4.1, with W = {0} for Example 1. Here, the first
5 iterations are depicted. The different polytopes defining the P-collections are depicted in different
colors.

4.1 Controller Computation

We propose the following algorithm:

Algorithm 4.1.

(1) Define a target set H0 = Tset and set k = 0.
(2) Compute Si

k+1 = Pre(Hk, i) ∩ Tset, ∀i ∈ I.
(3) Set Hk+1 =

⋃

i∈I Si
k+1.

(4) If Hk+1 6= Hk, set k = k +1 and goto step 2;
Else, set k∗ = k.

(5) Compute Si
k+1 = Pre(Hk, i), ∀i ∈ I.

(6) Set Hk+1 =
⋃

i∈I Si
k+1.

(7) If Hk+1 = Hk, return; Else, set k = k + 1,
and goto step 5.

Algorithm 4.1 first computes an invariant target
set in steps 1 to 4. In fact, the set Hk∗ is the
maximal robust switched set contained in Tset.
The target set Hk∗ is subsequently used to com-
pute the set of states which can be driven into it
in k − k∗ steps (see Figure 1). This allows for a
switching scheme which drives the state to the
target set in minimum time. As a consequence
of the initialization for H0, the target set Tset is
reached from Hk in at most k+1 steps. In general,
Algorithm 4.1 may not terminate in finite time.
However, a sensible criterion for its termination
can be specified. For instance, it is to possible to
abort the Algorithm at step 7 after a predefined
number of iterations or after the state space of
interest is covered. In this case, the minimum time
controller covers merely a subset of K̃S

∞(Tset).

4.2 Target Set Computation

In particular cases, where there exists a set of
dynamics defined in the region of state space that
contain the origin in their interior, Algorithm 4.1
can be simplified as we illustrate next.

Let I0 ⊆ I, be defined by:

I0 , {i ∈ I | 0 ∈ int(Qi), |λmax(Ai)| < 1, ci = 0}

where 0 is the origin of the state-space and
λmax(Ai) denotes the largest eigenvalue of Ai.
Thus, I0 is a subset of I and contains the sta-
ble linear dynamics defined over the region of
state space containing the origin as an interior

point. It is shown in (Kouramas, 2002; Raković
et al., 2005) that a robust positively invariant
approximation of the minimal robust positively
invariant set (Kolmanovsky and Gilbert, 1998) for
strictly stable linear discrete time system x+ =
Ax + w, w ∈ W can be computed in a finite
number of iterations. Given the disturbance set
W, containing the origin in its interior, a scalar
0 ≤ α < 1 and a strictly stable matrix A there
exists an integer s such that As

W ⊆ αW and the
set F (α, s) (Kouramas, 2002; Raković et al., 2005)
defined by

F (α, s) , (1 − α)−1
s−1
⊕

j=0

Ai
W

is a robust positively invariant set for the system
x+ = Ax + w (

⊕

denotes the Minkowski set
addition). For any i ∈ I0 let

Fi(αi, si) , (1 − αi)
−1

si−1
⊕

j=0

Ai
W (4)

Note that for any i ∈ I0, the set Fi(αi, si) is
robust positively invariant for the dynamics Ai,
if Fi(αi, si) ⊆ (X ∩ Qi). Let

I∗
0 = {i ∈ I0 | Fi(αi, si) ⊆ (X ∩ Qi)}

If the set I∗
0 6= ∅, it is clear that

⋃

i∈I∗

0

Fi(αi, si)

is a robust switched invariant set. In fact any of
the sets Fi(αi, si), i ∈ I∗

0 is a robust switched
invariant set. This gives us some extra degrees
of freedom in choice of an appropriate terminal
set for minimum time control scheme, since then
the first four steps in the Algorithm 4.1 are not
needed. The algorithm can be started with step 5,
by setting k∗ = 0 and choosing H0 to be any of
the sets Fi(αi, si), i ∈ I∗

0 or any union of the sets
Fi(αi, si), i ∈ I∗

0 .

4.3 On-Line Switching

For each (i, k) ∈ I × N
+ let I(x, k) denote the

set of admissible switches for a given state x, such
that f(x, i, w) ∈ Hk−1, ∀w ∈ W and i ∈ I. Thus:

I(x, k) , {i ∈ I | x ∈ Qi ∩Hk,

f(x, i, w) ∈ Hk−1, ∀w ∈ W}



The on-line implementation of the proposed con-
troller can be efficiently applied recursively for any
given state x ∈ K̃S

∞(Tset) by the following simple
algorithm:

Algorithm 4.2.

(1) c = mink{k ∈ N | I(x, k) 6= ∅}.
(2) Choose any switch i ∈ I(x, c).

Remark 2. It follows from the construction of
Algorithms 4.1 and 4.2 that any state x ∈ Hk, k ≥
k∗ robustly evolves into Hk−1 for all w ∈ W

and for any choice of i ∈ I(x, k) which in turn
implies that a trajectory starting at any state
x ∈ Hk, k ≥ k∗ robustly evolves into Hk∗ in no
more than k − k∗ time steps. Once the trajectory
reaches the set Hk∗ it remains inside Hk∗ forever,
since Hk∗ is a switched robust positively invariant
set by construction.

This scheme allows the user to specify preferences
concerning the active dynamics without influenc-
ing robust constraint satisfaction of the system.
It is conceivable to choose i ∈ I(x, k) such that a
predefined cost-function is minimized.

Note that the proposed procedure is different from
control schemes for general piecewise affine sys-
tems (e.g. (Borrelli, 2003; Bemporad et al., 2002))
since it is not based on multi-parametric program-
ming. Multi-parametric programming (Bemporad
et al., 2002) may be seen as a form of projection
which is computationally expensive and excessive
for the type of problem considered here.

If Algorithm 4.1 is implemented directly, the
number of polytopic sets Ωj representing the P-
collection Hk =

⋃

j∈J Ωj increases significantly
as k grows due to the combinatorial nature of
the problem. This is a direct consequence of the
dynamical behavior of APWA systems. In order
to avoid this problem to some extent, it is impor-
tant to reduce the number of stored sets J (i.e.,
Hk =

⋃

j∈J Ωj) before incrementing the iteration
counter. Specifically, one can remove all Ωj∗ for
which the following holds: Ωj∗ ⊆

⋃

j∈J\{j∗} Ωj .
This corresponds to checking whether a polytope
is covered by a P-collection, which is addressed in
(Baotić and Torrisi, 2003). Although this reduc-
tion procedure reduces complexity significantly,
the number of regions may still grow quickly
with increasing prediction horizon; moreover this
complexity reduction scheme subsequently makes
available only a subset of the admissible switches
in the controller implementation.

5. NUMERICAL EXAMPLES

This section illustrates the application of Algo-
rithm 4.1 on the following numerical example.

Example 1. Assume a switched system (2) with
Q1 = Q2 = R

n and the following dynamics

A1 =

[

0.8 1
0 0.8

]

, c1 =

[

0
0

]

,

A2 =

[

0.8 −1
0 0.8

]

, c2 =

[

0
0

]

.

The system is subject to state constraints X =
{x ∈ R

n| ‖x‖∞ ≤ 10}, i.e., each state is con-
strained between ±10. The objective of the con-
troller should be to drive the state into the box
Tset = {x ∈ R

n| ‖x‖∞ ≤ 1} as quickly as possible.

We initially consider no additive disturbance, i.e.,
W = {0}. The maximal positively invariant set for
each of the dynamics is depicted in Figure 2(a).
Figure 2(b) depicts the partition of the switch-
ing controller obtained with Algorithm 4.1. It is
clear from the figures that the proposed switching
scheme enlarges the set of controllable states. The
controller consists of 346 reach-sets which were
obtained in 23 iterations and a runtime of 34
seconds 1 .

Let us now assume the system is subject to
additive disturbance bounded by W = {w ∈
R

n| ||w||∞ ≤ 0.1}. For this case, there is no robust
invariant subset contained inside the target box,
if we assume no switching occurs. However, if we
allow for switches, the maximal robust switched
invariant set is depicted in Figure 2(c).

Although the proposed computation scheme may
be expensive, it is performed off-line. The on-line
effort reduces to evaluating a look-up table which
can be efficiently implemented.

6. CONCLUSION

We have shown how to compute the maximal
robust switched invariant set and the maximal ro-
bust attractive set for autonomous piecewise affine
(APWA) systems. By considering APWA systems
instead of general piecewise affine systems, it is
possible to compute these sets efficiently, since
projection operations are not needed. We have
furthermore shown, how the obtained sets may
serve as appropriate target sets when computing
robust minimum-time controllers. The resulting
controllers guarantee robust convergence to a user
defined target set in minimum time.

REFERENCES

Antsaklis, P. J. and X. D. Koutsoukos (2003).
Software-Enabled Control: Information Tech-

nology for Dynamical Systems, Chapt. in Hy-

1 Pentium IV, 2.4GHz using the MPT toolbox (Kvasnica
et al., 2003).



(a) The set C̃S
∞

for dynamic 1 and
2, respectively (W = {0}, no switch-
ing).

(b) The set C̃S
∞

obtained with Algo-
rithm 4.1 (W = {0}).

(c) The set C̃S
∞

obtained with Algo-
rithm 4.1 (W = {w ∈ R

n| ||w||∞ ≤
0.1}).

Fig. 2. Controllable state space with and without switching, contained in Tset = {x ∈ R
n| ‖x‖∞ ≤ 1}. The

system subject to disturbances W = {w ∈ R
n| ||w||∞ ≤ 0.1} is not controllable without switching.

brid Systems: Review and Recent Progress.
Wiley-IEEE Press.

Aubin, J. P. (1991). Viability theory. Systems
& Control: Foundations & Applications.
Birkhaüser.
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