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1. INTRODUCTION

A typical approach when identifying systems is to
compile a set of example data containing samples
of the input and output signals. A batch process
then uses this data set to optimise the model
parameters. Sometimes, however, it is not possible
to obtain this data set in advance, or there is too
much data for the batch process, in which case
some form of online algorithm is required that can
update the system model as more data arrives.
For example an autonomous system may have
an approximate initial model of its environment,
but would benefit from updating this model in an
online fashion as new information is received from
its sensors.

In this paper it is assumed that a discrete time
dynamic environment can be fully described by
the time-invariant state-space model

zk+1 = f(zk,uk) (1)

where zk is the n-dimensional state vector and
uk is the m-dimensional action vector at time

k (a simple extension of continuous time rep-
resentations such as in (Slotine and Li, 1991)
where the input is constant between sampling
times). Furthermore it is assumed that the en-
tire state and action vectors can be sensed (with
observation noise) at each sampling instant k.
The system identification task is to find a suffi-
ciently accurate approximation to the multiple-
input multiple-output (MIMO) function f given
any available prior knowledge and a sequence of
noisy observations of the system’s behaviour.

It is often advantageous to decompose the large
MIMO problem (1) into n multiple-input single-
output (MISO) problems where the outputs are
the components of zk+1 (Nelles, 2001). Each of
these tasks can be formulated as a regression
problem

y = f(x) + ε

where f(x) is the corresponding component of
zk+1 and x = [zT

k uT
k 1]T is a d = n+m+1 dimen-

sional column vector of regressors (the constant
is added to simplify the notation). The observed



values y are corrupted by zero-mean noise ε with
unknown variance σ2. The online system identifi-
cation task is to construct an approximation f̂(x)
to f(x) using a sequence of training examples.

This paper examines several non-parametric meth-
ods from the system identification and machine
learning literature that can construct nonlinear
models online. It is shown that each forms a ra-
dial basis function representation with linear local
models.

The theoretical contribution is to extend one of
the online model tree algorithms. Both the leaf
splitting rule and the pruning rule are improved
to take into account more information. The algo-
rithms are empirically tested in the pendulum and
cart domain, and on the identification of complex
aircraft dynamics.

2. ONLINE NONLINEAR SYSTEM
IDENTIFICATION

This section examines several techniques from
both the system identification and machine learn-
ing literature.

2.1 Radial Basis Functions with Linear Models

A normalised radial basis function (nRBF) ap-
proximation with linear local models is formed by
a weighted sum of M linear functions

f̂(x) =
1

W

M∑

i=1

xT
θiΦi(x) and W =

M∑

i=1

Φi(x) (2)

where the weights Φi(x) depend on the distance of
x from the centre of the basis function. The most
common RBF is a multi-dimensional Gaussian.

As discussed in (Nelles, 2001), if the basis func-
tions are fixed in advance the Md parameters in
the θi can be learnt by either global or local linear
optimisation. Global methods minimise the sum of
the squared errors over all N training examples.
If implemented online using the well known recur-
sive least squares (RLS) algorithm (Ljung, 1987)
the complexity is O(M2d2) per training example.

Local optimisation avoids the expensive global
optimisation by locally optimising a loss function
in each local model. The local loss functions are
the weighted sum of squared errors

Ji =

N∑

k=1

Φi(xk)e2
i,k =

N∑

k=1

Φi(xk)(yk − xT
k θi)

2 (3)

The weighted RLS (wRLS) algorithm can update
all M local models in time O(Md2) per training
example.

Fig. 1. Partitioning of an input space by a decision
tree.

Unfortunately the number of local models M in-
creases exponentially with the number of dimen-
sions if the basis functions are fixed on a grid. In
addition the spacing and sizes of the basis func-
tions must be defined in advance, or found using
an even more expensive nonlinear optimisation
process. Clearly alternative techniques must be
found for higher dimensional problems.

2.2 Receptive Field Weighted Regression

The natural answer to this “curse of dimensional-
ity” (Bellman, 1961) is to turn to non-parametric
learning algorithms where the complexity of the
representation can be varied dynamically. More
parameters can be allocated to modelling more
intricate parts of the function, and less parameters
to simpler regions.

Receptive field weighted regression (RFWR) (Schaal
and Atkeson, 1998) dynamically constructs the
same nRBF representation as (2). New basis func-
tions are added when the system reaches areas
of the input space without sufficient coverage. In
addition the size and shape of the basis functions
are optimised by online second-order gradient de-
scent. The result is a set of basis functions that are
longer in directions of less curvature and shorter
in directions of high curvature, therefore improv-
ing the prediction accuracy. Each linear model
attempts to optimise the local cost function (3)
using wRLS with exponential forgetting because
of the changing shape of the basis functions.

RFWR has since been adapted to improve its
dimensionality reduction capability (Vijayakumar
and Schaal, 2000), however the test domains do
not contain redundant dimensions and the original
algorithm without any ridge regression parame-
ters is more competitive.

Unfortunately the algorithm is sensitive to various
parameters, including the initial shape of basis
functions and a penalty term γ, and requires a
distance metric to be defined over the regressor
space (Potts, 2004a). Decision trees offer an alter-
native way to partition the input space that also
scale to a high number of dimensions, and require
no such metric.



2.3 Online LOLIMOT Algorithm

The locally linear model tree (LOLIMOT) al-
gorithm also uses the nRBF representation (2)
(Nelles, 1999). The basis functions are fitted to
a rectangular partitioning of the input space per-
formed by a decision tree with axis-orthogonal
splits at the internal nodes (see Fig. 1 for an
example). For each rectangle, the corresponding
basis function has a standard deviation in each
dimension that is equal to the width of the rectan-
gle in that dimension multiplied by a constant kσ.
In the experiments kσ = 0.25. Each linear model
optimises the local cost function (3) using wRLS.

The difficult part is deciding when to grow or
prune the tree. For each local model the online
LOLIMOT algorithm maintains two background
sub-models on either side of each potential axis-
orthogonal split bisecting the region. Therefore in
each partition in Fig. 1 LOLIMOT maintains four
sub-models, one on each side of either a horizontal
or vertical split through the centre of the region.

At each time instant k the most active linear
model a is considered for splitting, where

a = arg max
i

(Φi(xk))

Its local loss function Ja is compared with the sum
of the local loss functions J−

aj and J+
aj for the sub-

models on each side of the split in dimension j

where
j = arg min

i
(J−

ai + J+
ai)

is the most promising split. A split is made if
Ja > (J−

aj + J+
aj)kimprove. An internal node i is

considered for pruning if both children l and r are
leaves. The leaves are removed if Ji < (Jl + Jr).

Unfortunately it is very difficult to determine the
optimal kimprove without extensive trial and error,
and the value is sensitive to the level of noise
in the data (Nelles, 1999). In the experiments it
also proved necessary to stop splitting when the
input space had fragmented into a predetermined
number of regions.

2.4 Incremental Model Tree Induction

In the machine learning community there has also
been recent work on learning model trees online
(Potts, 2004a). The Incremental Model Tree In-
duction (IMTI) algorithm takes a different ap-
proach to the system identification methods de-
scribed above. The model tree is grown under the
assumption that there is no interaction between
the local linear models in the leaves. This assump-
tion enables the likelihood that a split is beneficial
to be calculated no matter what level of noise is
present. Moreover each training example is only

passed down the tree to a single leaf, resulting in
fast training times.

In each leaf IMTI maintains a linear model, and
κ candidate splits along each dimension (there-
fore generalising the single candidate split in each
dimension maintained by the LOLIMOT algo-
rithm). The assumption of no interaction between
the models in the leaves means that the loss func-
tion is no longer weighted, and is only calculated
over the Ni examples observed in each leaf i

Ji =

Ni∑

k=1

e2
i,k =

Ni∑

k=1

(yk − xT
k θi)

2 (4)

The loss functions, and the linear model parame-
ters in each leaf, are calculated using RLS. The
linear sub-models on each side of the κ(d − 1)
candidate splits are also maintained in a similar
manner. Denote the loss function on one side of
the jth candidate split as J−

ij , and the loss func-

tion on the other side as J+
ij . Assuming Gaussian

noise with unknown variance the Chow test for
homogeneity amongst sub-samples (Chow, 1960)
gives the probability that the value of the statistic

Fij =
(Ji − J−

ij − J+
ij ) × (Ni − 2d)

(J−

ij + J+
ij ) × d

(5)

occurs under the null hypothesis that the data
comes from a single linear model. Under this null
hypothesis Fij is distributed according to Fisher’s
F distribution with d and Ni − 2d degrees of free-
dom, and the probability of obtaining Fij is the
associated p-value (probability in the tail of the
distribution). The best split is found by minimis-
ing this probability, and therefore maximising Fij ,
over every split j. Clearly Fij is maximised when
(J−

ij + J+
ij ) is minimised, and this strategy corre-

sponds to the split selection in the LOLIMOT al-
gorithm. The advantage of this method is that the
minimum probability, α, gives the likelihood that
the split is incorrect, and therefore a split is only
made when α is less than a predetermined sig-
nificance level αsplit. Pruning is performed when
the probability α at an internal node rises above
the threshold αprune, and a stopping parameter δ0

controls the asymptotic tree size (Potts, 2004a).

Although the tree is grown under the assumption
of no interaction between local models, better
predictions are obtained by applying a smoothing
technique that results in the same representation
(2) as nRBF, RFWR and LOLIMOT. Gaussian
basis functions are fitted to the rectangular leaf
regions in the same manner as for LOLIMOT,
with the standard deviation in each dimension
equal to the width of the rectangle in that di-
mension multiplied by the constant kσ. In the
experiments αsplit = 0.01%, αprune = 0.1%, κ = 5
and kσ = 0.25.



3. IMPROVED IMTI ALGORITHM

3.1 Splitting Rule

The derivation of (5) requires that the linear
model in each leaf is initially empty, and that the
linear models on each side of every candidate split
are constructed from the same examples as the
leaf model. However in an online setting when a
leaf is split and two children are created there is
already a fitted linear model for each child (the
models that were instrumental in choosing the
split). Assume that for a particular node i this
initial linear model was created from Ni,0 exam-
ples (Ni,0 = 0 only at the root). As before the jth
candidate split partitions additional examples into
two sets: N−

ij on one side forming a model with loss

function J−

ij , and N+
ij forming a model with loss

function J+
ij on the other. The leaf model is built

from all Ni =Ni,0+N−

ij+N+
ij examples and has loss

function Ji. Under these more general conditions
it can be shown (equation (A-1) in the Appendix
with p = 1 and q = 2) that the statistic

Sij =
(Ji − J−

ij − J+
ij ) × (N−

ij + N+
ij − 2d)

(J−

ij + J+
ij ) × (Ni,0 + d)

is distributed according to the F distribution with
Ni,0+d and N−

ij+N+
ij−2d degrees of freedom. This

statistic is used in the online algorithm because
it takes into account the Ni,0 examples already
collected before the parent node was split.

3.2 Pruning

Using the same statistic for pruning results in a
comparison between the model in each internal
node and a combination of the two models in
the node’s children. A superior pruning statistic
can be derived that compares the model in each
internal node with the entire piecewise linear
approximation constructed by all the leaves in
the node’s sub-tree. The more general pruning
statistic (equation (A-1) in the Appendix)

Pi =
(Ji − JL) × (NL − qd)

JL × (Ni − NL + (q − 1)d)

is distributed according to the F distribution
with Ni − NL + (q − 1)d and NL − qd degrees
of freedom, where Ji is calculated from all Ni

examples observed at the node and JL is the sum
of the loss functions formed from the NL examples
observed in the q leaves of the sub-tree rooted at
i.

4. EMPIRICAL RESULTS

Model errors are given as the normalised root
mean square error (nRMSE) on a set of inde-
pendent test samples. All results show the mean
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Fig. 2. Model errors on the cart and pendulum.

of 20 trials, with error bars and errors in tables
indicating one unbiased estimate of the standard
deviation over these trials.

4.1 Cart and Pendulum

The problem of swinging up a pendulum on a cart
is highly nonlinear when the pendulum is allowed
to rotate through 360◦. The simplified dynamic
model (not taking into account frictional effects)
is

0 = ẍ cos θ − lθ̈ − g sin θ

u = (m + M)ẍ − mlθ̈ cos θ + mlθ̇2 sin θ

where x is the position of the cart (limited to ±2),
θ is the angle of the pendulum, l = 1 is the length
of the pendulum, g is gravity, M = m = 1 are the
masses of the cart and pendulum respectively, and
u is the lateral force applied to the cart (limited
to ±7). The state at time k is zk = [xk ẋk θk θ̇k]T .
The next state of the system is calculated using 5
successive Euler integrations with a time step of
0.01 seconds to give an overall sampling rate of 20
times per second. The system is initialised at rest
with the pendulum hanging vertically downward.
A simple hand-coded control strategy repeatedly
swings up the pendulum and balances it for a
short period using the observed state vector yk =
zk+1 + ε, where ε is a vector of independent
zero-mean Gaussian noise with variance σ2 and
σ = 0.1. The system identification task is to
learn the dynamics given examples of 〈xk,yk〉.
The sequence of states generated is given directly
to the learner without changing the order, and is
therefore very highly correlated. The algorithms
are tested using 10,000 examples randomly drawn
from a similar sequence, but without noise.

The RFWR initial distance metric D0 = 10I, the
penalty γ = 10−7 and the learning rates are 1000.
Online LOLIMOT uses kimprove = 1.3 and the
number of models is limited to 100. IMTI uses
a stopping parameter δ0 = 0.001. Fig. 2 shows
how the approximation error evolves over time for
each algorithm, demonstrating the superior model
constructed by IMTI. Table 1 shows that IMTI



Table 1. Model sizes and training times
per example for the cart and pendulum.

Number of Training

Algorithm local models time (ms)

RFWR 136 ± 4 37 ± 1

Online LOLIMOT 100 ± 0 25 ± 4

IMTI 98 ± 30 18 ± 0

uses no more local models than RFWR or online
LOLIMOT, although the variation in local model
numbers over the 20 trials is high.

4.2 Flight Simulator

Learning to fly an aeroplane is a complex high-
dimensional task. These experiments use a flight
simulator based on a high-fidelity flight model of
a Pilatus PC-9 aerobatic aircraft. The model was
provided by the Australian Defence Science and
Technology Organisation and is based on wind
tunnel and in-flight performance data. The same
simulator has also been used in previous work
(Isaac and Sammut, 2003; Potts, 2004b).

The system is sampled 4 times per second, and 9
state variables are recorded (altitude, roll, pitch,
yaw rate, roll rate, pitch rate, climb rate, air
speed and a Boolean variable indicating whether
the plane is on the ground) along with 4 action
variables (ailerons, elevator, throttle and the cat-
egorical flaps setting which can take the values
‘normal’, ‘take off’ and ‘landing’). These state
variables were selected so that a dynamic model
of the plane could be learnt, and therefore the
absolute position and heading were disregarded.
The combination of states and actions results in a
13 dimensional regressor vector. The learning task
is to predict the 8 continuous values of the next
state.

The training examples are taken directly from
a trace of the aircraft flying so that successive
regressors are highly correlated. Simulated tur-
bulence is set to a high level resulting in com-
plex noise characteristics that deviate substan-
tially from the independent Gaussian assumption.
Additional noise is also added to the inputs to
excite the system and provide a richer source
of training examples. The algorithms are tested
using 10,000 examples randomly drawn from a
similar trace.

The RFWR initial distance metric D0 = 2.5I, the
penalty γ = 10−5 and the learning rates are 1000.
Online LOLIMOT uses kimprove = 2.0 and the
number of models is limited to 30. IMTI uses a
stopping parameter δ0 = 0.02. Fig. 3 shows how
the approximation error evolves over time for each
algorithm, and also for a single linear model up-
dated using recursive least squares (RLS). Clearly
RFWR and IMTI form good models of the aircraft
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Fig. 3. Model errors on the flight simulator.

Table 2. Model sizes and training times
per example for the flight simulator.

Number of Training

Algorithm local models time (ms)

RFWR 26 ± 5 18 ± 2

Online LOLIMOT 30 ± 0 74 ± 9

IMTI 26 ± 5 108 ± 1

dynamics. Table 2 shows that each algorithm uses
approximately the same number of local models,
although IMTI and online LOLIMOT are com-
putationally expensive on this higher dimensional
problem.

5. CONCLUSIONS

This paper compares three recent online nonlinear
function approximation algorithms that can be
used for system identification and show potential
to scale to a large number of dimensions. All three
representations are seen to fit into the basis func-
tion paradigm. Receptive field weighted regression
dynamically adjusts its basis functions to spread
over areas with low curvature. The other two algo-
rithms, incremental model tree induction (IMTI)
and the online local linear model tree (LOLIMOT)
algorithm use a decision tree to partition the input
space.

The tree-based algorithms have fewer parameters
and no learning rates to tune, thus avoiding a ma-
jor cause of instability in many gradient descent
systems like RFWR. In addition they require no
metric over the input space. IMTI has a single
tunable parameter that intuitively controls the
trade-off between the number of linear models and
the approximation error. Online LOLIMOT has
two parameters; the splitting parameter kimprove

and the maximum number of models. Although
the limit on the number of models is easy to set,
the algorithm is highly sensitive to kimprove and
poor learning occurs if it is too large or small.

Improvements to the IMTI algorithm are detailed,
allowing it to utilise more data in its splitting and
pruning decisions. IMTI is seen to have consis-
tently superior learning characteristics, although



it starts to become computationally expensive in
higher dimensions. A better scaling version of the
algorithm has been developed although it can
learn less effectively (Potts, 2004b).
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APPENDIX

This appendix derives the statistical test used in
the improved IMTI algorithm. Label the internal
nodes of a particular sub-tree rooted at I1 as
I1 . . . Ip, and the leaves as L1 . . . Lq (see Fig. 4).

Ip

Lq

I3

I1

I2

L2L1

Fig. 4. Labelling of sub-tree nodes.

The sub-tree was grown online, and initially only
consisted of the sub-tree root node I1. There-
fore there are a number of examples NI1,0 that
were observed at I1 but not at any lower node.
Similarly at each internal node j there are NIj,0

examples that were observed before the node had
any children. A linear model is constructed at each
internal node j from the NIj,0 examples observed
before the node was split, and the corresponding
loss functions (4) JIj,0 are calculated (the residual
sums of squares). In each leaf i a linear model
is formed from the NLi examples that reached the
leaf, and the loss functions JLi are also calculated.

If the sum of NLi over all leaves is denoted as
NL and the sum of NIj,0 over all internal nodes
is denoted NI,0 then the sub-tree has observed a
total of N = NL +NI,0 examples. A single linear
model is constructed at the root I1 from all N

examples and the corresponding loss function J

is calculated. Also denote the sum of JLi over all
leaves as JL and the sum of JIj,0 over all internal
nodes as JI,0.

Making the assumptions that the observation
noise is independent, zero-mean and Gaussian
with variance σ2, and that the regressor matrix in
each linear regression defined above has full rank
d, then we can form the null hypothesis H0 that
all the observed examples were generated from a
single linear model. The alternative hypothesis is
that the data is better explained by the linear
models in the leaves of the tree.

Using standard analysis of covariance techniques
generalised to multiple regressions (Kullback and
Rosenblatt, 1957) it can be shown that the three
expressions on the right-hand side of the identity

J ≡ JL + JI,0 + (J − JL − JI,0)

are distributed independently as χ2(NL − qd)σ2,
χ2(NI,0−pd)σ2 and χ2((p+ q−1)d)σ2. To obtain
a better comparison between the null and alter-
native hypotheses, the effect of the internal nodes
is removed. Adding the last two expressions above
gives (J−JL) which is distributed as χ2(NI,0+(q−
1)d)σ2 by the summation of two independent χ2-
distributed variables. This distribution is clearly
affected if H0 does not hold, whereas JL has
the same distribution regardless. Following Chow
(Chow, 1960) H0 can therefore be tested by the
statistic

F =
(J − JL) × (NL − qd)

JL × (NI,0 + (q − 1)d)
(A-1)

which is distributed according to Fisher’s F dis-
tribution with NI,0+(q−1)d and NL−qd degrees of
freedom by the definition of the F distribution
as the ratio of two independent χ2-distributed
variables.


