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Abstract: A finite receding horizon approach for path planning of uninhabited
air vehicles (UAVs) is presented. The approach is based on mixed integer linear
programming (MILP) techniques. Various constraints are formulated to avoid
radar zones and collisions, etc. These constraints are extended to be both hard
and soft so as to alleviate the infeasibility problem usually encountered. The
finite receding horizon approach is numerically stable and can be applied to the
path planning of a fleet of UAVs. Further improvements are possible for use in
real time planning. The MILP is solved using commercially available software

AMPL/CPLEX. Copyright©
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1. INTRODUCTION

The mixed integer linear programming (MILP)
approach is for optimisation problems which have
integer variables in the cost function and/or
the constraints. Such problems arise in engi-
neering, economics, and many other disciplines.
Commercially available software packages such
as AMPL/CPLEX (Fourer et al., 1993; Floudas,
1995) can be used to solve mixed integer optimi-
sation problems. We shall show in this paper how
the MILP can be used in the problem of flight path
planning for Uninhabited air vehicles (UAVs).

UAVs are advantageous over manned counter-
parts in manoeuvrability, low human risk, low cost
and light weight and is an important develop-
ment area in the aerospace industry for the 21st
century (Pachter and Chandler, 1998; Bortoff,
1999; McLain et al., 2001; McLain, 1999; Chandler
et al., 2002). To be more powerful in applica-
tions, UAVs have to be more autonomous. Among
many open issues in the development of autonomy,
flight path planning, or trajectory selection, is
crucial. Path planning algorithms must calculate
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a stealthy path which steers the vehicle away from
potential dangers (threats, obstacles and collision
with other vehicles if flying in a group). The path
selected should be optimal in a certain sense and
feasible for the vehicle to follow. The algorithm
must be fast enough for real time use to deal
with un-foreseen factors, and efficient in memory
and computational demand to be run on airborne
processors.

Path planners are generally divided into local and
global ones and usually they do not take into
account the dynamics of the vehicle. The former
group work in on-line mode while the latter can be
both on-line and off-line, though usually off-line.
A global path planner requires all information be-
forehand. A clear disadvantage of a global planner
is that a re-planning is necessary, which may take
a long time, if the flight environment changes.
Such changes happen frequently due to the un-
certain environment, pop-up enemy threats, fur-
ther information becoming available, etc. There
is a tendency to design instead local path plan-
ners (Borenstein and Koren, 1991; Elnagar and
Base, 1993). A local path planner does not suffer
from the above disadvantage and can thus be



implemented in real time, though it may possi-
bly lead to non-globally optimal flight paths. In
this paper, a receding horizon strategy within the
MILP framework is proposed which is based on
the work of (Schouwenaars et al., 2001; Richards
et al., 2001; Richards and How, 2002; Richards et
al., 2002). While it is very attractive in computa-
tion, the receding horizon strategy (Schouwenaars
et al., 2001) may fail to find a feasible solution
in certain circumstance due to its local search
characteristic. Hence, in this paper, it is proposed
to include in the problem formulation “soft” con-
straints which accommodate infeasibility and find
the least risk (most optimal) flight path in that
situation.

It is shown that once the problem of path
planning has been formulated as a mixed in-
teger/linear constraints optimisation problem, it
can be solved using commercially available soft-
ware AMPL/CPLEX that uses branch and bound
algorithms (Floudas, 1995). The optimisation
problem is first translated into a program us-
ing the AMPL modelling language (Fourer et
al., 1993). The CPLEX optimiser is then applied
to solve the problem (ILO, 1999).

The paper is organised as follows: Section 2 is
concerned with problem formulation, including
UAV dynamics, risk modelling and vehicle move-
ment constraints. Section 3 introduces the reced-
ing horizon computation and the use of MILP. An
example is used to demonstrate the algorithm in
Section 4, with computational results and discus-
sions. Conclusions are given in Section 5.

2. PROBLEM FORMULATION
2.1 Model of the Aircraft

The aircraft dynamics are expressed as a simple
point mass in two diemansions with position and
velocity [z,y, vz, vy]T as state variables and accel-
eration [a,,a,]” as control inputs. The measured
outputs are the position variables.
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where k is a time step and At is the time interval
between two steps. The control input [a,,a,]}
remains constant over each time interval At under
the zero-order hold assumption.

2.2 Constraints to Avoid Radar Zones

The radar areas are modelled as rectangles with
(zrad yrady and (zred, yred ) as the coordinates
of the lower left and upper right corner points
of the obstacle, respectively. At each time step i
the position (x;,y;) of the vehicle must lie in the
area outside of the risk area. In the case of Ny
vehicles and Np stationary obstacles, the general

mixed integer linear constraints (Schouwenaars et
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In the situation of overlapped radar zones, the
receding horizon algorithm may not work out
feasible solutions due to such formulated hard
constraints. For this consideration, the hard con-
straints can be transformed to soft ones by intro-
duction of small variables as in the following Vp €
[1,...,Ny],Vee[l,...,Ng],Vie[l,...,N]:
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cision variables between 0 and 1. The idea is to re-
duce these variables to zero by incorporating them
into the objective (cost) function. The problem
formulation returns to the original setting when
these m's are zero. If it is not possible to reduce



them to zero, i.e. the original hard constraints
cannot be satisfied, the algorithm will have the
flexibility to generate solutions which violate these
constraints as little as possible.

2.3 Collision Avoidance Constraints

In the case of a fleet of UAVs, it is necessary
to consider collision avoidance in path planning.
This consideration can also be formulated using
mixed integer linear constraints (Schouwenaars et
al., 2001). At each time step, every pair of vehicles
p and ¢ must be a minimum distance apart from
each other in the z or/and y directions. At the
ith time step, let (wpi,ypi) and (w4, 94) be the
positions of the vehicles p and g, respectively, and
di*' and di° the safety distances in the x and y
directions, then the collision avoidance constraints
can be set as (Schouwenaars et al., 2001): Vi €
[1,...,N],Vp€ [1,...,Nv],vq S [p+ 1,...,Nv] :
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Similarly these constraints can be converted to
soft constraint to increase the solvability of the op-

timisation problem by introducing auxiliary vari-
ables as: Vi € [1,...,N],Vp € [1,...,Ny],Vq €
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2.4 Speed and Acceleration Constraints

The maximum speed vp,q, is enforced by an
approximation to a circular region in the velocity
plane (Richards and How, 2002; Richards et al.,
2002). For each vehicle, the velocity vector is
projected to different directions to obtain
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The above constraints require that the velocity
vector be inside a regular polygon with N¢ sides
circumscribed about a circle of radius v,e.. A

constraint on the minimum speed can be ex-
pressed in a similar way. However, it is different
from the maximum speed constraint in that at
least one of the constraints must be active instead
of all of them,

Imel,...,Ng], Vie[l,...,N]:
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where N¢ is the order of the discretization of the
circle. Equation 9 is a non-convex constraint and
can be written as a mixed integer linear constraint
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Similarly, the constraint for the upper bound on
acceleration can be written as:

VYme([l,...,N&], Vie[l,...,N]:
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2.5 Cost Function Selection

The objective function can be taken as the sum of
two costs: a quadratic cost function and a cost to
minimise the violation of constraints. We can min-
imise a quadratic function whose variables must
satisfy the state space equation of the dynamic
system (1) as follows

min J = min /(sTQs +u’Ru)dt  (12)
; )
subject to
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where s € R" is the state vector and u € £+ is
the control. The system is assumed to start from
some initial state so and final (target) state sy. A
linear form of the quadratic cost is given by:
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The weighting matrices () and R of the quadratic
formulation have been replaced by nonnegative
weighting vectors q and r, and spz; is the given
final j** state.

As discussed above, one way to increase solvability
of the problem while keeping the violation of con-
straints to a minimum is to soften the constraints
by including small variables (m's) in the cost
function (14) as follows:
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So the overall objective function is .J, +.J, for the
pt" vehicle. The constraint list in (16) should be
expanded to include other constraints considered
earlier as per case to form the optimisation prob-
lem.

3. RECEDING HORIZON APPROACH AND
MILP

3.1 Receding Horizon Control

A major difficulty in using MILP is the compu-
tational demand it requires. The computations
increase dramatically with the number of time in-
tervals (steps). On the other hand, big time steps
could lead to inaccurate or non-implementable
“solutions” . In order to make the algorithm work-
able in real time or near real time, a receding
horizon approach has to be considered. In this
approach, the path is computed online by solving
an MILP over a limited horizon (in terms of time
intervals) at each time step. The procedure is
composed of a sequence of locally optimal seg-
ments. At each time step, the MILP is solved for
T future time intervals, where the length T of
the planning horizon is chosen as a function of
the available computing resources as well as the
individual problem. Solving this MILP provides
the input commands for the T" future time steps.
The solution is of course only locally optimal.
Only a subset of these T input commands is ac-
tually implemented. The process is then repeated
and a new set of commands is generated for the
next time window. Usually the applied subset is
restricted to the first control input, such that
a new set of input commands is calculated at
each time step. Since the controller is designed
at every sampling instant, disturbances can easily
be dealt with. The concept is equally applicable
to single-input, single-output (SISO) and multi-
input, multi output (MIMO) systems, both linear
and nonlinear.

3.2 Possible Infeasibility with Receding Horizon

When using receding horizon approaches, non-
existence of feasible solutions may occur during
the procedure of MILP, though in theory there are
solutions to the whole problem. This is because
the look ahead horizon is limited. The vehicle
can be led to a critical state for which MILP has
no solution in the next iteration. In other words,
a feasible solution for T further time steps at
current time step ¢ does not guarantee a feasible
MILP at the time step ¢ + 1. This can be further
explained by the situation in which in the last
time step of the planning horizon, the vehicle is
moving at maximum speed, while its position is
just outside an obstacle that has not yet been
spotted. The position of the vehicle satisfies the
anti-collision constraints and so corresponds to a
feasible solution of the MILP. At the next time
step, the obstacle is identified and the vehicle
needs to brake or turn exceeding the constraints
on acceleration or on the available manoeuvre
space; a solution will not therefore be found.
Increasing the time horizon will ease this kind
of situation, but will also raise the computational
demand.

3.8 Safe Feasible Mechanism

In the radar/SAM exposure minimisation prob-
lem, there are no physical obstacles. Rather we
have radars of various detection ranges. We may
have, say, three types of radars: long range SAM
unit (65 km), medium range SAM unit (25 km),
and short range SAM unit (7 km). We can approx-
imately model these circular regions with squares
of the same length as the radii of these circles.
So in order to make the problem feasible some
minimum violation of these constraints can be
allowed. These radar ranges can overlap with one
another. So if the UAV path is totally blocked by
these overlapping radars or if the receding horizon
approach with hard constraints (4), (6) and cost
(16) is used, then MILP leads to an infeasible
solution. But by using the soft constraints (5), (7)
and including auxiliary variables in the cost (16),
we can always obtain a feasible solution. Viola-
tions are kept to a minimum by use of the small
variables (m's) in the cost. If further reduction of
violations is required, we may model the threats
as squares of flexible size, slightly greater than the
actual fitted square. The increment can be taken
as 10% of the actual square. In this way, a vehicle
can enter the radar zone but has to follow the
safest possible path by optimising this flexibility.

4. EXAMPLE AND SIMULATION RESULTS
4.1 Scenario of the Example

An example is used to demonstrate the algo-
rithm. This example considers path planning for



3 UAVs which start from different positions but
fly to the same destination. The operation re-
gion is 180 km by 200 km as shown in Figure
1 and has 10 defence units (radar and SAM)
shown as circles in the figure. Five units are of
medium range (25 km) centered at coordinates
(100, 100), (125,65), (125,135), (50, 155), (50, 45),
respectively, and the rest are of short range (7
km) centered at (42,102), (167,182), (167,127),
(167,37), (167,77). The initial positions of UAV1,
UAV2, UAV3 are (10, 10), (10, 120), (10, 180), re-
spectively. All three UAVs start at the same time
and move towards a common goal at (170, 100).
The UAVs fly at an initial speed of 200 m/s and
with an initial heading angle of 40° with regard to
the horizontal. It is required that the final speed
of each vehicle when arriving at the destination is
100 m/s and the heading is along the x-axis. The
maximum flight speed is 300 m/s (see in Table 1).
To use the formulation described earlier, the
defence units are modelled as squares contain-
ing the circular threat regions. Adoption of
“Soft” constraints in the finite horizon optimisa-
tion scheme alleviates the possibility of infeasibil-
ity outcomes. The vehicles may enter threat zones
but will try to leave them as soon as possible to
keep violation of constraints at a minimum. It has
been observed that maximum violations will occur
when the vehicle enters a threat zone at maximum
speed and is perpendicular to the square boundary
at a tangent point with the circle. That makes it
possible that the vehicle will actually enter the
dangerous zone before it can make a turn. Hence,
in order to reduce this exposure, an additional
safety measure can be taken by expanding the
squares by 10% as is done in this exercise (the
dotted lines in Figure 1).
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Fig. 1. Example Scenario and Obtained Flight
Trajectories

4.2 Results and Discussions

In this exercise, the basic time interval is chosen
as 1 second. The finite horizon T is chosen as 10

Table 1. Parameters used in the simulation

Parameter Value Parameter Value
ql [1,1,1,1] vl [1,1]
p? [1,1,1,1] wobs 1010
weol 1010 dgo! 1000
deot 1000 Meol 800, 000
Mobs 800, 000 MY 900
M 50 Ng, 20
Ng, 20 Ng 20
Umaz 10 ot 1
Umin 100 Umaz 300

seconds. That means at each iteration MILP finds
an “optimal”solution for 10 seconds (a control
sequence for the next 10 seconds). But of course
only the first control input is to be implemented.
All the parameters used in the computation are
listed in Table 1. The computation is carried out
using a PC machine with CPU of 2.66 GHz and
RAM 1.048 Gb. The computation time for the full
simulation is 27844 seconds that is the time when
the last vehicle (UAV1) reaches the destination.
The simulation times to destination for UAV2 and
UAV3 are 27595 and 6386.3 seconds, respectively.
The flight times taken by UAV1, UAV2, UAV3 are
1286, 1216, 856 seconds, respectively. Trajectories
obtained for this example are shown in Figure 1.
By comparing the computation and flight time,
it is easy to see that a long computation time is
required which makes it impracticable to be used
in real time (on line) trajectory planning. Further
improvements are definitely needed. A shorter
horizon will reduce the computation time but will
possibly make the solution less optimal. On the
other hand, it is interesting to analyse in detail
the time taken to solve this finite receding horizon
MILP problem at each time step. This is shown in
Figure 2. A high demand in computation occurs
during the interval from 1030 to 1102 seconds with
the peak demand (5473 seconds) at the 1036'" sec-
ond. The trajectories for UAV1 and UAV2 around
that particular time instant are shown in Figure 3.
The UAVs are flying near the expanded boundary
of the defence unit which is the last threat zone
before they reach the destination. It can be seen
in Figure 3 that at that time UAV1 takes a full
turn to correct its direction immediately after
exiting the (expanded) danger zone. In order to
make a maximum turn, UAV1 has to reduce its
speed to the minimum. On the other hand at that
time instant, UAV2 is travelling exactly on the
expanded boundary with minimum speed. Hence,
the minimum speed constraint is active at the
1036 time step for both UAV1 and UAV2. As
this constraint is non convex and involves integer
variables, the computation of a solution is very
hard and takes longer time. Similarly, for other
iterations during the time interval (1030 — 1102)
seconds the minimum speed constraint remains
active for either UAV1 or UAV2 (but not for
both).
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5. CONCLUSIONS

In this work, we have shown that flight path
planning for UAVs can be solved by a linear,
constrained optimisation formulation with real
and integer variables. A finite receding horizon
method has been proposed which makes use of
soft constraints. Available software packages such
as AMPL/CPLEX can be applied in finding a
solution. However, the MILP procedure requires a
high computational demand. That makes it very
difficult to perform in real time, though the intro-
duction of finite receding horizon greatly helps the
reduction of computation time. Further investiga-
tions are needed to formulate the constraints more
effectively and to speed up the MILP computa-
tion. Future work will be focused to model radar
zones with dynamic boundaries and comparison
between the efficiency of MILP and of nonlinear
optimisation will also be carried out.
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