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Abstract: The problem of observer design for Lipschitz nonlinear systems is
considered. A new dynamic framework which is a generalization of previously
used Lipschitz observers is introduced. The correct necessary and sufficient
condition on the dynamic gain that ensures asymptotic convergence of the
new observer is presented. The equivalence between this condition and an H∞

optimal control problem which satisfies the standard regularity assumptions in
H∞ optimization theory is shown. A design procedure solvable using commercially
available software is presented and a simulation example is given to illustrate the
proposed design.Copyright c©2005 IFAC
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1. INTRODUCTION

Nonlinear state observer design has been an area
of constant research for the last three decades
and, despite important progress, many outstand-
ing problems still remain unsolved. Reference
(Nijmeijer and Fossen, 1999) provides a good ac-
count of recent research on this subject covering
both theory and applications. A class of nonlin-
ear systems that has seen much attention in the
literature is the class of Lipschitz systems:

ẋ(t) = Ax(t) + Γ(y, u, t) + Φ(x, u, t) (1)

y(t) = Cx(t), A ∈
� n×n, C ∈

� p×n (2)

and where the function Φ(x, u, t) satisfies a uni-
form Lipschitz condition globally in x, i.e,

‖ Φ(x1, u, t)− Φ(x2, u, t) ‖ ≤ α ‖ x1 − x2 ‖ (3)

for all u ∈
� m and t ∈

�
and for all x1 and

x2 ∈
� n. Here α ∈

�
is referred to as the Lipschitz

constant and is independent of x, u and t.

Lipschitz systems constitute a very important
class. Any nonlinear system ẋ = f(x, u) can be
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expressed in the form of (1) as long as f(x, u)
is continuously differentiable with respect to x.
Many nonlinearities satisfy (3) at least locally. Ex-
amples include trigonometric nonlinearities occur-
ring in robotic systems, the nonlinearities which
are square or cubic in nature, etc. The function
Φ(x, u, t) can also be considered as a perturbation
affecting the system as in (Schreier et al., 1997).

Observer design for Lipschitz systems was first
considered by Thau in his seminal paper (Thau,
1973) where he obtained a sufficient condition
to ensure the asymptotic stability of the ob-
server. Thau’s condition is a very useful analy-
sis tool but does not address the fundamental
design problem. Encouraged by Thau’s result,
several authors studied observer design for Lips-
chitz systems. In (Raghavan, 1992; Raghavan and
Hedrick, 1994), Raghavan formulated a procedure
to tackle the design problem. His algorithm is
based on solving an algebraic Riccati equation to
obtain the static observer gain. Raghavan’s tech-
nique was later extended by Garg and Hedrick,
(Garg and Hedrick, 1996), to study fault detection
and identification in Lipschitz systems. Unfortu-
nately, Raghavan’s algorithm often fails to succeed



even when the matrices (A,C) satisfy the usual
observability assumptions. Raghavan showed that
the observer design might still be tractable us-
ing state transformations. Another shortcoming
of his algorithm is that it does not provide in-
sight into what conditions must be satisfied by
the observer gain to ensure stability. A rather
complete solution of these problems was later pre-
sented by (Rajamani, 1998). Rajamani obtained
the necessary and sufficient condition on the ob-
server matrix that ensures asymptotic stability of
the observer and formulated a design procedure,
based on the use of a gradient based optimiza-
tion method. He also discussed the equivalence
between the stability condition and the minimiza-
tion of the H∞ norm of a system in the standard
form. However, he pointed out that the design
problem is not solvable as a standard H∞ opti-
mization problem since the regularity assumptions
required in the H∞ framework are not satisfied.

In this paper, we show that the condition intro-
duced in (Rajamani, 1998) is related to a modified
H∞ problem satisfying all of the regularity as-
sumptions. Based on this result, we propose a new
observer design for Lipschitz nonlinear systems.
The observer synthesis is carried out using H∞

optimization and can therefore be done using com-
mercially available software packages. Our formu-
lation employs the input-output observer frame-
work introduced in (Marquez and Riaz, 2003) in
which the static gain used in the classical ob-
servers is replaced with a dynamical filter. The
paper is organized as follows: section 2 introduces
some background results and notations. In section
3, we introduce our dynamic generalization of pre-
viously used Lipschitz observers and provide the
necessary and sufficient condition for the stability
of the new observer. In section 4, we present the
main result of this paper, where we formulate the
observer design for Lipschitz nonlinear systems as
a regular H∞ problem proving that its solution
is necessary and sufficient for observer stability.
Simulation results are shown in section 5 and some
conclusions are drawn in section 6.

2. BACKGROUND RESULTS AND
NOTATION

In this section we summarize some preliminary
results on observer design for systems of the form
(1)-(3) and where the pair (A,C) is detectable.
In all the literature available for this class of
nonlinear systems, the observer proposed falls in
the class of Luenberger-like observers, namely:

˙̂x = Ax̂+ Γ(y, u, t) + Φ(x̂, u, t) + L(y − ŷ) (4)

ŷ = Cx̂ (5)

The observer error dynamics is then given by

ė = (A− LC) e+Φ(x, u, t)− Φ(x̂, u, t) (6)

where e = x− x̂. Thau was the first to introduce
a sufficient condition for the asymptotic stability
of the error in (6). His result was as follows:

Theorem 1. (Thau, 1973) If the gain L is chosen

s.t α <
λmin(Q)
2 λmax(P )

with the Lyapunov equation

(A − LC)T P + P (A − LC) = −Q, then the
estimation error in (6) is asymptotically stable.

Theorem 1 provides a very important sufficient
condition for the existence of an observer, but pro-
vides no insight into how to design the observer.
Raghavan proposed a design algorithm based on
the following theorem:

Theorem 2. (Raghavan and Hedrick, 1994) If
there exists an ε > 0 such that the Algebraic
Riccati Equation (ARE) in (7) has a symmetric
positive definite solution P , then the observer gain
L = 1

2εPC
T stabilizes the error dynamics in (6)

for all Φ with a Lipschitz constant α.

AP +PAT +P (α2I−
1

ε
CTC)P + I+ εI = 0 (7)

According to this result, Raghavan proposed an
iterative binary search procedure over ε, to obtain
the observer gain. However, given a particular
system of the form (1)-(3) with a specific Lipschitz
constant α∗, this procedure may fail even if the
pair of matrices (A,C) is observable. Moreover,
Theorem 2 provides no insight into what condi-
tions the matrix (A− LC) must satisfy to ensure
observer stability. The answer to this puzzle was
provided by Rajamani in the following theorem:

Theorem 3. (Rajamani, 1998) The error dynam-
ics in (6) is asymptotically stable for all Φ with a
Lipschitz constant α if and only if L is chosen so
as to ensure that (A−LC) is stable and such that

min
ω∈

�
+ σmin(A− LC − jωI) > α (8)

The beauty of this result is that it presents neces-
sary and sufficient conditions for observer stability
as a condition on the observer matrix. Rajamani
also related his result it to the H∞ theory by
rewriting (8) as:

‖ [sI − (A− LC)]−1 ‖∞ <
1

α
(9)

where the left hand side of (9) is equivalent to the
H∞ norm of the transfer function between ω and
ζ in the following so-called standard form:

ż =
[

A
]

z +
[

In −In
]

[

ω

ν

]

(10)

[

ζ

ϕ

]

=

[

In
C

]

z +

[

0n 0n
0pn 0pn

] [

ω

ν

]

(11)

where:
ω = φ̃ = Φ(x, u, t)− Φ(x̂, u, t)

ν = L (y − ŷ) (12)

ζ = e = x− x̂

ϕ = y − ŷ
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Fig. 1. Standard setup.

which can also be represented by Fig. 1 where the
plant G has the state space representation in (13)
with the matrices defined in (10)-(11) and where
the controller K is the static observer gain L.

ĝ(s) =





A B1 B2

C1 D11 D12

C2 D21 D22



 (13)

Unfortunately, observer synthesis cannot be car-
ried out directly using the standard H∞ solution
since the standard form in (10)-(11) does not
satisfy all of the regularity assumptions in the
H∞ framework, summarized in Section 4.1 (No-
tice that DT

12D12 and D21D
T
21 are both singular).

Therefore, in (Rajamani, 1998), Rajamani consid-
ered using a gradient based optimization method
to continuously change the locations of the closed
loop eigenvalues to minimize a performance in-
dex related to (8). Moreover, he considered the
special case of A being Hurwitz in (Rajamani
and Cho, 1998), introducing an analytical solution
when a certain sufficient condition on the so called
distance to unobservability of (A,C) is satisfied.

In this paper, we generalize the necessary and suf-
ficient condition in (8) to a more general dynamic
framework. We then prove that the new condition
is equivalent to a standard H∞ problem satisfying
all the regularity assumptions (unlike (10)-(11)).
Based on these results, we present a systematic
procedure to compute the observer gain within
the H∞ framework. The following definitions and
notations will be used throughout the paper:

Definition 1. (L2 space) The space L2 consists of
all measurable functions u :

� + →
� q, satisfying

‖u‖L2

∆
=

√

∫ ∞

0

‖ u(t) ‖2 dt < ∞. (14)

The norm ‖u‖L2
defined in (14) is the so-called

L2 norm of the function u. Consider now a system
H : L2 → L2. We will represent by γ(H) the L2

gain of H defined by γ(H) = supu
‖Hu‖L2

‖u‖L2

. It is

well known that, for a linear system H : L2 → L2
with a transfer matrix Ĥ(s), γ(H) is equivalent
to the H-infinity norm of Ĥ(s) defined as follows:

γ(H) ≡ ‖ Ĥ(s) ‖∞
∆
= sup

ω∈
�
σmax(Ĥ(jω))

where σmax represents the maximum singular
value of Ĥ(ω). The matrices In, 0n and 0nm
represent the identity matrix of order n, the zero

square matrix of order n and the zero n by m

matrix respectively. The symbol T̂yu represents
the transfer matrix from input u to output y. The

partitioned matrix K =

[

AL BL

CL DL

]

(when used as

an operator from y to u, i.e, u = Ky) represents
the state space representation:

ξ̇ = ALξ +BLy

u = CLξ +DLy

3. GENERALIZATION TO DYNAMIC
FRAMEWORK

In this paper, following the approach in (Marquez
and Riaz, 2003; Marquez and Riaz, 2005), we will
make use of dynamical observers of the form:

˙̂x(t) =Ax̂(t) + Γ(y, u, t) + Φ(x̂, u, t) + η(t) (15)

ŷ(t) =Cx̂(t) (16)

where η(t) is obtained by applying a dynamical
compensator K of order n on the output estima-
tion error. In other words η(t) is given from

ξ̇ = ALξ +BL(y − ŷ) (17)

η = CLξ +DL(y − ŷ). (18)

We will also write

K =

[

AL BL

CL DL

]

(19)

to represent the compensator in (17)-(18). It is
straightforward to see that this observer structure
reduces to the usual observer in (4)-(5) in the
special case where the gain K is the constant

gain given by K =

[

0n 0np
0n L

]

. The additional

dynamics brings additional degrees of freedom in
the design, something that will be exploited in
the proposed H∞ procedure. In this section, we
generalize Theorem 3 to the dynamic framework
as follows. First, note that the observer error
dynamics in (6) is now given by

ė = A e+Φ(x, u, t)− Φ(x̂, u, t)− η (20)

which can also be represented by the setup
in Fig. 1 where G has the state space represen-
tation in (13) with the same matrices defined
in (10)-(11) and with the same variables in (12)
except for ν which is now given by

ν = η = K(y − ŷ) (21)

We denote by T̂ζω the transfer function between
ω and ζ for this setup. The following theorem is
then the generalization of Theorem 3:

Theorem 4. Given the Lipschitz system of equa-
tions (1)-(2), the state x̂ of the observer (15)-(19)
globally asymptotically converges to the system
state x for all Φ(·, ·, ·) satisfying (3) with a Lips-
chitz constant α if and only if K is chosen s.t:

sup
ω∈

� σmax[T̂ζω(jω)] <
1

α
(22)



Proof : (Sufficiency) Using the variable definitions
in (12) along with ν in (21) and the matrices in
(10), (11) and (19), T̂ζω can be represented as:

T̂ζω = T̂eφ̃ =





A−DLC −CL
BLC AL

In
0n

In 0n 0n



 (23)

and is such that γ(T̂eφ̃) =‖ T̂eφ̃ ‖∞<
1
α
according

to (22). The proof for sufficiency follows from
noting that the estimation error e is given from the
feedback interconnection of T̂eφ̃ and ∆ as shown in
Fig. 2 where ∆ is the static nonlinear time-varying
operator defined as follows:

∆(t) : e→ φ̃ = Φ(x, u, t)− Φ(x̂, u, t)

= Φ(e+ x̂(t), u(t), t)− Φ(x̂(t), u(t), t)

-

φ̃
T̂eφ̃

e

¾∆

Fig. 2. Feedback interconnection.

In this feedback loop, γ(T̂eφ̃) <
1
α

as mentioned
earlier and, although an exact expression for ∆ is
not available, we have γ(∆) ≤ α because from the
Lipschitz condition in (3), it follows that

γ(∆) ≤

√

∫∞

0
α2 ‖ x− x̂ ‖2 dt

√

∫∞

0
‖ x− x̂ ‖2 dt

≤ α

Using the bounds on the L2 gains of the operators
T̂eφ̃ and ∆, we will make use of a dissipativity
argument by noting that the following properties
are satisfied for the feedback loop in Fig. 2:
(a) ∆ is a static nonlinearity (no internal states)

and T̂eφ̃ is the dynamic LTI system in (23).

(b) The mappings T̂eφ̃ : φ̃ → e and ∆ : e → φ̃

have finite L2 gains γ(T̂eφ̃) and γ(∆), and

moreover they satisfy γ(T̂eφ̃).γ(∆) < 1.

(c) T̂eφ̃ and ∆ are dissipative with the supply

rates ω1 = −eT e + γ(T̂eφ̃)
2φ̃T φ̃ and ω2 =

−φ̃T φ̃ + α2eT e respectively. We will denote
by S1 and S2 the storage functions associated
with these supply rates.

It is an straightforward application of Corollary 1
in (Hill and Moylan, 1977) that S1 + aS2, a > 0,
is a Lyapunov function for the feedback system
of Fig. 2 and that this system is asymptotically
stable. This implies that e→ 0 as t→∞.
(Necessity) This is a direct result of the small gain
theorem for LTI systems (see proof of Theorem
4 in (Rajamani, 1998) for more details) which
implies that if γ(T̂eφ̃) ≥

1
α

in Fig. 2, then there

exists Φ(x, u, t) = M(t)x with ‖ M̂(s) ‖∞≤ α s.t
the closed loop system in Fig. 2 is unstable. 4

Corollary 1. Under the conditions of Theorem 4,
if condition (3) holds locally, then local asymp-
totic convergence of the observer is guaranteed.

4. A NEW H∞ OBSERVER DESIGN

We herein present our main results by proving
that the condition in (22) (and (8) as a special
case) is actually equivalent to a standard H∞

problem satisfying all the regularity assumptions.

4.1 Problem regularization

By adding a “weighted” disturbance term in the
output equation (2), now we tackle the problem
of designing an observer for the following system

ẋ(t) = Ax(t) + Γ(y, u, t) + Φ(x, u, t) (24)

y(t) = Cx(t) + ε d(t), ε > 0 (25)

where the function Φ(x, u, t) satisfies the Lipschitz
condition. Using the same observer defined by
(15)-(19), it can be seen that the standard form
in (10)-(11) has now the following form

ż =
[

A
]

z +
[[

In 0np
]

−In
]





[

ω

d(t)

]

ν



 (26)





ζ

ϕ



 =





In

C



 z +





[

0n 0np
]

0n

[

0pn εIp
]

0pn













[

ω

d(t)

]

ν









(27)

This can also be represented by the standard
setup in Fig. 1, except for redefining the matrices
of ĝ(s) in (13) and replacing ω by ω̄ defined as:

ω̄
∆
=

[

ω d(t)
]T

(28)

This standard form, however, still does not sat-
isfy the regularity assumptions since DT

12D12 is
singular. Fortunately, regularization can be done
by extending the external output ζ to include the
“weighted” vector βν. This adds another change
in Fig. 1 consisting of replacing ζ by ζ̄ defined as:

ζ̄ =
[

ζ βν
]T

(29)

The entries of ĝ(s) in (13) are then given by:

ż =
[

A
]

z +
[[

In 0np
]

−In
]





[

ω

d

]

ν



 (30)









[

ζ

βν

]

ϕ









=









[

In
0n

]

C









z +









[

0n 0np
0n 0np

] [

0n
βIn

]

[

0pn εIp
]

0pn

















[

ω

d

]

ν









(31)

All the regularity assumptions summarized be-
low (Zhou and Doyle, 1998) are now satisfied iff
(A, C) is detectable (with no new design
restrictions):



(1) (A,B2) is stabilizable (for any matrix A).
(C2,A) is detectable (iff (A, C) is detectable).

(2) D21D
T
21 = ε2Ip×p, which is nonsingular.

DT
12D12 = β2In×n, which is nonsingular.

(3) rank

[

A− jωI B2

C1 D12

]

= 2n = full col. rank.

rank

[

A− jωI B1

C2 D21

]

= n+p = full row rank.

(4) D22 = 0.

4.2 Proof of equivalence

Let T1 be the setup in Fig. 1 associated with
(10)-(11), T2 the one associated with (26)-(27) and
T3 the one associated with (30)-(31) where the
three share the same controller K in (19). And
let T̂1, T̂2 and T̂3 be their corresponding transfer
matrices. The following two lemmas demonstrate
a certain equivalence relationships among these
setups (see Appendix A for detailed proofs).

Lemma 1. Consider a stabilizing controller K for
the setups T1 and T2, then ‖ T̂1 ‖∞< γ if and only
if ∃ ε > 0 such that ‖ T̂2 ‖∞< γ.

Lemma 2. Given ε > 0 and a stabilizing controller
K for the setups T2 and T3, then ‖ T̂2 ‖∞< γ if
and only if ∃ β > 0 such that ‖ T̂3 ‖∞< γ.

We now present our main result in the form of a
theorem showing that the observer gain K needed
to stabilize the error dynamics in the initially
proposed design problem must solve a regular H∞

control problem. To this end, we define the regular
continuous H∞ problem “Problem 1” as follows:
Problem 1: Given ε > 0 and β > 0, find S,
the set of admissible controllers K satisfying
‖ T̂ζ̄ω̄ ‖∞< γ for the setup in Fig. 1 with G having
the state space representation in (13) along with
the matrices in (30)-(31).

The main result is summarized as follows:

Theorem 5. Given the Lipschitz system of equa-
tions (1)-(2), the state x̂ of the observer (15)-(19)
globally asymptotically converges to the system
state x for all Φ satisfying (3) with a Lipschitz
constant α if and only if ∃ ε, β > 0 s.t K ∈ S∗

(the set of controllers solving “Problem 1” defined
above with γ = 1

α
).

Proof : A direct result of Theorem 4, Lemmas 1
and 2. 4

4.3 A new H∞ design procedure

The following iterative “binary search” procedure
is then proposed to evaluate the observer gain K:
Design procedure:

Step 1 Set ε, β > 0 and γ ← 1
α
.

Step 2 Test solvability of Problem 1. If test
fails then go to Step 3 ; otherwise solve the
problem (using available software packages) and
any K ∈ S is a candidate observer gain that
globally stabilizes the error dynamics.
Step 3 Set ε ← ε

2 and β ← β
2 . If ε or β < a

threshold value then stop ; otherwise go to Step 2.

Comments
• When the optimization problem can not be

solved due to its infeasibility or due to limita-
tions of the used software, one can increase γ
which corresponds to a smaller Lipschitz con-
stant α. The word stop in step 3 can then
be replaced by: decrease α and go to step 1.
The algorithm is then guaranteed to work as
α→ 0. However, the region of convergence is
decreased unlike if original α is used.

• Same design can be used when the output is
disturbed as in (25). The small gain theorem
guarantees that the estimation error e(t) ∈
L2 if d(t) ∈ L2.

• Design of the H∞ observer can also be done
by including appropriate weightings to the
original problem to emphasize the perfor-
mance requirements of the observer over spe-
cific frequency ranges.

5. SIMULATION RESULTS

We consider an illustrative example of a 2nd order

system of the form (1)-(2) with A =

[

−2 3
3 1

]

,

Γ =

[

0
1

]

u, Φ =

[

0
1.5 sin(x1)

]

and C =
[

0 1
]

.

The Lipschitz constant is α = 1.5. The system
initial condition x(0) =

[

1.6 2
]

. This example is
not meant to be realistic. It has been designed
to show the proposed observer design. Therefore,
in our simulation we use a state feedback control
law to stabilize the equilibrium point at the origin,
assuming both states to be available for feedback.
The gain matrix L needed to use the observer (4)-
(5) was obtained in (Raghavan and Hedrick, 1994)

as L =
[

2 4
]T

. Using the H∞ design of sec. 4.3,
the matrices AL, BL, CL and DL for the observer
(15)-(19) are obtained as follows (with ε = β = 1):

AL =

[

−2.2092 −376.4306
−0.4894 −95.3217

]

, BL =

[

159.2165
35.5614

]

CL =

[

0.0726 0.3088
2.3163 19.3184

]

, DL =

[

0
0

]

Fig. 3 and 4 show the observers performance,
where the initial condition for both observers is
taken as x̂(0) =

[

0 0
]

.

6. CONCLUSION

A new H∞ observer design for Lipschitz nonlinear
systems is proposed. It is first shown that the
classical “Luenberger-like” observers are special
cases of a more general dynamic framework, one
that shows promise given the additional degrees
of freedom. The equivalence between the observer
design problem and a standard H∞ control prob-
lem that satisfies all of the regularity assumptions
is shown. A systematic design procedure that can
be carried out using commercially available soft-
ware products is also presented.
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Appendix A.

Using the definitions in the beginning of sec. 4.2
along with the definition of ζ, ω, ζ̄ and ω̄ in (12),
(28) and (29), the transfer matrix T̂1 is given from
(23), while T̂2 and T̂3 are given from:

T̂2 = T̂ζω̄ =





A−DLC −CL
BLC AL

In −εDL

0n εBL

In 0n 0n 0np





T̂3 = T̂ζ̄ω̄ =









A−DLC −CL
BLC AL

In −εDL

0n εBL

In 0n
βDLC βCL

0n 0np
0n εβDL









We will refer to their common state transition

matrix as Ĥ =

[

Ĥ11 Ĥ12

Ĥ21 Ĥ22

]

and we hence have:

T̂1 = Ĥ11

T̂2 =
[

Ĥ11 −εĤ11DL + εĤ12BL

]

(A.1)

T̂3 =

[

Ĥ11 −εĤ11DL + εĤ12BL

βN̂1 βN̂2

]

where N̂1 = DLCĤ11 + CLĤ21 and N̂2 =

ε
(

−N̂1DL +DLCĤ12BL + CLĤ22BL +DL

)

.

Proof of Lemma 1 (Sufficiency) For the “two
input/one output” standard setup T2, let ∃ε > 0
and a stabilizing controller K s.t ‖ T̂2 ‖∞< γ.

But from (A.1) we have ‖ T̂2 ‖∞= max
(

‖ Ĥ11 ‖∞ ,

‖ −εĤ11DL + εĤ12BL ‖∞

)

. Hence, ‖ T̂1 ‖∞< γ.

(Necessity) Let ∃ a controller K such that
‖ T̂1 ‖∞< γ. It follows that ‖ Ĥ11 ‖∞= σ < γ.

∴ ‖ T̂2 ‖∞= max
(

σ, ε ‖ −Ĥ11DL + Ĥ12BL ‖∞

)

.

But since K is a stabilizing controller, then

‖ −Ĥ11DL + Ĥ12BL ‖∞= ρ (where ρ is a finite
number). Hence, 0 < ε < γ

ρ
⇒ ‖ T̂2 ‖∞< γ. 4

Proof of Lemma 2 (Sufficiency) For the “two
input/two output” setup T3, let ∃ε > 0, β > 0
and a controller K s.t ‖ T̂3 ‖∞< γ. But ‖ T̂3 ‖∞=

max
(

‖ Ĥ11 ‖∞ , ‖ −εĤ11DL + εĤ12BL ‖∞,

‖ βN̂1 ‖∞, ‖ βN̂2 ‖∞

)

. Therefore, ‖ T̂2 ‖∞=

max
(

‖ Ĥ11 ‖∞, ‖ −εĤ11DL + εĤ12BL ‖∞

)

< γ.

(Necessity) Let ∃ε > 0, K s.t ‖ T̂2 ‖∞= σ < γ.

∴ max
(

‖ Ĥ11 ‖∞, ε ‖ Ĥ11DL − Ĥ12BL ‖∞

)

= σ.

∴ ‖ T̂3(z) ‖∞= max
(

‖ βN̂1 ‖∞, ‖ βN̂2 ‖∞, σ
)

.

But since K is a stabilizing controller, then
‖ N̂1 ‖∞= ρ1 and ‖ N̂2 ‖∞= ρ2 (where ρ1 and
ρ2 are finite numbers).
∴ 0 < β < γ

max(ρ1, ρ2)
⇒ ‖ T̂3 ‖∞< γ. 4
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