NONLINEAR CONTROL OF 3-D OVERHEAD CRANES: ENERGY-BASED DECOUPLING
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Abstract: In this paper, a nonlinear anti-sway control law for overhead cranes is
investigated. The crane model itself is adopted from the literature; however, a new
nonlinear decoupling control law that provides superior position-regulation and sway-
suppression characteristics is proposed in this paper. The derived control law uses the
sway angular rate as well as the sway angle as feedback. The performance of the
proposed control law is compared with those of the PD and E? control laws in the
literature. The transient characteristics of the proposed control law are also verified using
a 3-D pilot crane. Simulation and experimental results are discussed. Copyright © 2005
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1. INTRODUCTION

Cranes can be categorized into four types: overhead
cranes, container cranes, tower cranes, and jib cranes.
This paper focuses on overhead cranes that are
widely used in factories and warehouses (Butler et al.,
1991). A major difference between container cranes
and overhead cranes is that there is no girder motion
in container cranes; that is, the trolley motion is the
only motion that makes the load swing, whereas in
overhead cranes, both the trolley and girder motions
may occur at the same time. Hence, in container
cranes, the sway motion is assumed to occur in a
plane, whereas the sway motion of overhead cranes
should be analyzed in three-dimensional space.

For the speed control of a trolley in two-dimensional
space, an analytical time-optimal control solution
without a hoisting motion was investigated by
Manson (1977). In contrast to speed control, the
torque control method applies control forces/torques
in such a way that the dynamics of the controlled
system meet a given reference signal. The torque
control method is more attractive from the aspects of
accuracy and energy saving. Moustafa and Ebeid
(1988) derived a 3-D nonlinear model of overhead
cranes and investigated a linear state feedback

control by linearizing the derived 3-D model. In
(Hong, et al, 2000), to achieve both fast traveling of
the trolley and precise regulation of the sway motion
at the end of trolley strokes, a two stage control
combining a time-optimal traveling control and a
variable structure control for residual sway
suppression was proposed. Fang, Dixon, Dawson,
and Zergeroglu (2003) investigated a nonlinear
control based upon the total energy of a 3-D
overhead crane.

In this paper, an energy-based (Lyapunov-function-
based) nonlinear control design for a 3-D crane is
investigated. The advantage of using an energy-based
control is that the nonlinearity of the plant can be
fully incorporated into control law design when the
energy function is differentiated along the plant
dynamics. Also, the uniform asymptotic stability of
the closed-loop system can be guaranteed by a
properly chosen energy function. However, the dis-
advantage of energy-based control is that it is
difficult to improve the transient performance (i.e.,
rise time, settling time, etc.) in a systematic way even
though its stability is assured. Hence, a trial and
error approach to improve the transient performance
is normally pursued. The contributions of this paper
are the following. An energy-based control law with
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Fig. 1. 3-D overhead crane: its schematic and a pilot
crane for experiment.

improved rise time and sway suppression capability
for a 3-D crane is proposed. The uniform asymptotic
stability of the closed-loop system is assured. Finally,
the developed algorithm is verified through
simulations and experiments using a 3-D pilot crane.

2. SYSTEM DYNAMICS

For the successful suppression of the sway motion of
a suspended load, it is important to know what part
of the crane dynamics should be included in the
control law design stage and what part can be
neglected. In the case of overhead cranes, in contrast
to container cranes, a three-dimensional model
should be used to represent the swing dynamics of
the suspended load. In this study, the model
developed in (Moustafa, and Ebeid, 1988) and (Fang,
et al., 2003) was adopted.

Fig. 1 shows the schematic of a 3-D overhead crane.
Let X be the trolley moving direction and Y be the
girder moving direction. Let ¢ be the angle of the

Y’ -axis and the projected line of the rope to the X'-
Y’ plane. Let & be the angle between the vertical
line and the rope. Let x(t) , y({t)eR be the

displacements of the trolley and the girder,
respectively. Let F, and F, be the control forces

applied to the trolley and the girder, respectively.

The following assumptions are made: i) payload and
trolley are connected by a massless rigid rod; that is,
a pendulum motion of the load is considered; ii) the
trolley and girder masses and the positions of the
trolley and girder are exactly known; iii) the ball
joint connecting the rod and trolley is frictionless and
this joint does not rotate about the connecting rod;
iv) the rod elongation is negligible; v) the rod length

(hoist rope length) is constant, which gives a four-
d.o.f. crane model rather than five. Now, a variable

q(t) e R* is defined as q(t) =[x(t), y(t), O(t), p)]" .

In accordance with the assumptions made above, the
crane dynamics are given by

M (a)d +Vin (d,4)d +G(q) =u 1)
where
m; 0 my my 0 0 Vigs Vs
0 myp my my, |0 0 Vig Vi
M= ] Vm =
My Mgp My 0 00 0 Vi
My My, 00 My, 0 0 Vigzs Vi

G=[0 0 mygLsing 0]

My =My +Mg + Mg, My =mgLcoségsing
my, =myLsingcosg , my =mg, +m,

My =m,Lcosdcosg, my =-myLsindsing
My =myLcosdsing , my, =m Lcosdcosg
Mgz =m, L% +1, my =m Lsin@cos¢

my, =-m,Lsin@sing, m,, =m L%sin’ g +1
Vigs =-M,Lsin@sing & +m Lcosdcosp ¢
Vs =M, Lcos@cosg & —m Lsin Osin g ¢
Vppo3 =—M,Lsin@cosg 0 —m,Lcosdsing ¢
Vppos = —M,Lcosdsing & —m Lsindcosg ¢
Vipss =—M,L2siN0cos0 ¢, Vy 4y =m, L sin 9 cos o ¢

Vinas =M, L2 sin0cosd 0 .

In the above expressions, m,, m,, and m, are the

payload mass, girder mass, and trolley mass,
respectively; | is the mass moment of inertia of the
payload; L is the length of the suspending rope; g is
the gravitational acceleration. It is remarked that the
inertia matrix and centripetal term, M(q) and

V., (q,q) , satisfy the skew-symmetric relationship of

ET(M(@@)/2-V,,(0,d))E=0 where M(q) is the time
derivative of M(q) , and that they hold the

inequalities k;[¢|* <£™M(@)é <k,|¢|® for ¢eR*.

To decouple the x- and y-dynamics from the ¢ - and
# -dynamics, (1) is rewritten as

G =M (@){u-Vp(g,d)4-G(a)}- )
Then, the x- and y-dynamics are
i = (PF +W)/det(M) . (3)
where r=[x y]" , P= [ P plz] >0
P2 P2

F=[F, F1",W=[w, w,]", det(M) stands for the
determinant of M(q) . Expression for p; and w, for
1<i, j,k < 2 are referred to (Fang, et al., 2003).

Finally, the @ - and ¢ - dynamics are

T Dy o
¢ 0 my My My ) \ Y
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3. CONTROL LAW DESIGN

In this section, a nonlinear control law for
suppressing the sway angle of the suspended load is
derived. The novelty of this law lies in improving the
transient performance. The information on the sway
angle, sway angular velocity, trolley displacement
and velocity, girder displacement and velocity is
assumed to be known (the sway angular velocity can
be observed in practice, but this is not an issue in this
paper). For comparison purposes, after introducing
the PD and E? coupling control laws of Fang et al.
(2003), a variant form of the nonlinear control law
that is superior to the PD and E? control laws is
proposed. Let the position error be defined by

e=r—ry =[x, Y.I' (®)
where ry =[xy y41', Xe=X—X4, Ye=Y-Yy4, and
Xxq and vy, are the desired trolley and girder
positions, respectively.

(i) The PD control law in (Kiss, Levine, and
Mullhaupt, 2000) and (Fang, et al., 2003) is in the
form of

F = (ke —ky€)/ke (6)
where ke, k,, and k, are positive constants.

(ii) The E? coupling control law of (Fang, et al.,
2003) is given by

_ -1 _ - I(v
F=[Q] ( koe—kqé det(M)Wj @)

where Q = keEl, +—L—P ¢ R>2, E(q,q) =

det(M)
G"M(@)d/2+m,gLl-cos(®) , and 1, is a 2x2
identity matrix.

(iii) To improve the transient performance in sway
suppression and the robustness against initial swing
and varying payload, the following new control law
is proposed:

-1 .
F:{ P } -[—e—Zé— W +(S'n¢)f} ®)
det(M) det(M) |cos¢

where

f=Lsin0(d>+Vad+f, 9)
5:{c059mpL/(mpL2+l)}2, (10)

i) [VaO—{sin g (e +Xe) +C0S¢ (Ve +ye )
[{sin g (Xg +X¢ ) +COSP (Ve + Ve )}
-Lsin @ (§)? +(sin ¢ %, +C0s ¢ ¥ )-+/A6],

if VAO—{5in ¢ (Xo +Xo) +COS ¢ (Ve + Yo )} #0,

ii) sgn(6) -[sin ¢ (2%, +Xe ) +COS ¢ (2¥ + Ve )|,

if VEO—{sin ¢ (Xe +Xe ) +COS & (Yo + Ye)} =0
and cos ¢ (X +Xg)—SiN @ (Ve +Ye) %0,

—n
I

iii) sin ¢ X, +COS¢ Yo,
f=1 if JAO—{sing (X +Xe)+COSH (Ve +Ye)}=0 (11)
and cos¢ (Xe +Xe)—Sing (Y +Ye)=0.

Theorem 1: Consider the plant (3)-(4) with
|0(0)| < z/2, and the control law given by (8)-(11).

Then, the trolley and girder position errors x, and
Y. , and the swing angle ¢ , converge to zero
asymptotically, and =[xy & ¢]" remains bounded
forallt > 0.

Proof: By substituting (8) into (3) and rearranging the
terms, the position error dynamics become
é+2é+e:[sm¢]-f (12)
cos¢

where e=r-r, , in which the target trolley and
girder positions, x, and vy, , are constants. The 4 -
dynamics in (4) become

(m, L% +1)6 + (cos@sin g X +cosOcos ¢ §)m, L 13)

—m,L?sin@cosd (4)* +m,gLsin@ =0

or

(M, L2+ 1)0 +{sin ¢ (~2%, — X, ) +COS§ (~2¥, — Y, )+

f}cosom, L—m L?sin@cosd (4)° +m,gLsind=0.

(14)
Rewriting of (12) and (14) yields:
Ko +2X, + X, =sing- f , (15)
Yo +2Y, + Y, =c0Sg- f (16)
(M, L2 +1)-{6+ad}+m,gLsin & ={sin p(2%, +X,) an

+C0S ¢ (2, +Y,)}cos@m,L—f cosom,L.
It is remarked that only (15)-(17) are used in control
law design, because the ¢ -dynamics become

insignificant if & converges to zero; see (Fang, et al.,
2003).

First, a positive definite function for the x- and y-
dynamics is considered as follows:

V,=(E+e)(e+e)/2. (18)
Then, the time derivative of (18) using (15)-(16)
becomes
V,=(@+e) (€+6)
=—(é+e) (E+e)+{sing (X, +X,) (19)
+C0S@ (Ve + Ve )} .
Also, the sway dynamics, (17), are expressed as
6, =0,
0, = -af, —csin(6,) +{sin g (2%, + X,) (20)
+C03¢ (29, +Ye)}va VA f
where 6, =6, 6, =6, and T= m,gL/(m,L*+1). An
energy function for system (20) (i.e., a positive

definite function for the 6 -dynamics) is considered
as follows:

V, =1/2-62 +ct{l-cosd,}. (21)
Then, the time derivative of (21) using (20) becomes



V, = 0,0, +tsin(6,)é,
=267 +{sin@ (2%, + X,) +cosp 2y, +¥.)} (22)
~Nao, -ae, f.
Then, using the relationship
(6+e)" (e+e) ={sing(X, + X, ) +cos@(Y, + Y )}
+{Cos (X, + X;) —SiN (¥, + Yo ¥,
the time derivative of V =V, +V, becomes
V < {sing(X, +X,) +cosp(Y, + Yo )¥
—{cos@(X, +X.) —sing(y, + Y. )} —ab?
+{sing (X, + X,) +C0S¢ (¥, + Yo)} (f ++/36,)
+(sing X, +cosg y,) a0, -Vao, f
< {SiNg(X, +X,) +COSP(Ye + Vo) —VEAOY  (24)
—{cos (X, + X ) —SiN@(Ye + Vo) ¥
+[{sing (X, + X, ) +C0S ¢ (Ve + Ve )} Lsin G (4)?
+(sing X, +c0s¢ Y,)-Vab,]
—{Jao, —sing(x, +x,) —cosg(¥, + yo)}- f .
In (24), three different values of f can be chosen
according to (11) (i.e., depending on the values of

\/592 —SiN@(X, + X, ) —COSP(Y, + Ye) and cosg(X, + X,
)=sing(¥e +Ye) ).
(i) First, assume that \/56’2 #SiN #(X, + X, ) +COS (Y,
+Y.) . Then, (24) becomes

V < {sing(x, +X,) +Ccos@(¥, +Y,) —Vao,}

_{COS ¢(Xe + Xe) —sin ¢(ye +Ye )}2 (25)
<0.
Thus, V is a Lyapunov function for the x-, y-, and ¢ -
dynamics, and the uniform asymptotic stability of the
closed-loop system is achieved. Hence, sin ¢(%, + X, )

23)

+CoS@(Ye +Ye) —x/gﬁz and cos@(X, + X,) —Sing(y, +
y.) continue decreasing until they become zero
(Hong, 1997).
(ii) Second, assume that vae, =sing(x, +x,) +cosj(y, +
Ye) and cosg(x, +X,)+sing(y, +y,)=0 . Then, firstly
(22) becomes
V, <-a6%, (26)
and thus, va@, and also sin g(x, + X, )+cos (¥, +Y,)
become bounded. And, secondly (19) becomes
V, =—(6+e)" (6+€)+ab, {Lsin 0 (§)? +/a6, @
+5gn(6,) -[sin ¢ (2%, + X, ) + 0SB (2 + Yo [}
Hence, from (26), (17) is uniformly asymptotically

stable, and thus, from (27), (15) and (16) are input-
to-state stable (i.e., input 6, and state é+e). Then,

the interconnected system (15) through (17) is also
uniformly asymptotically stable (Khalil, 2002).
(iii) Third, the given conditions are

Sing(X, + X,) +COSP(Y, +Y.)—Vad, =0, (28)

CoS@ (X, +X,) —SiNG (Yo +Y,)=0. (29)
The time derivative of (29) becomes
{_Sin¢(xe +Xe)_cos¢()-/e +Ye)}'¢3 (30)

+{COS¢ (Xe + Xe) _Sin¢ (ye + ye)}: 0.
(15) and (16) yields:

COS@ (X + 2%, + X ) =SNG (Vo +2Y, +Ye) . (31)
Also, subtracting (29) from (31) yields:
CoS¢ (X + X ) =Sing (Vo + V) - (32)
Hence, equation (30) becomes
{sing (X, +X,) +C0S¢ (Yo + Ye)}-#=0. (33)
Thus, the following two cases can be obtained: a)
Sing (X, +X,) +C0S¢ (Yo +Yo) =0 0r b) ¢=0. In the
case of a), (28) gives 6,=0 , (29) yields
(% + %, ) + (¥ +ye)* =0, and (24) reduces to V <0.
Also, the second equation in (20) becomes
6, =—ctsin(6,) (34)
because -a@, +{sin @ (2%, + X, ) + oS¢ (2Y, + Y )} -
Va-f=0. Hence, 6, =0 follows from (34). In the
case of b), (15), (16), and ¢ =0 yield:
Sing (X, +2X, +X,) +C0S@ (Yo +2Y, + Ye)
:«/562 +sing X, +cos¢ Y,
SiNg (X, + X, +X,) +C0S¢ (V, + Ve + Y) =vab, (36)
By (28) and (36), it follows that

(35)

sing X, +cos¢ §, =0. (37)
Also, the time derivative of (28), (37), and 4 =0 give
sing X, +cosg y, =d(/ag,)/dt. (38)

Now, combining the time derivative of (38), (37),
and ¢ =0, it follows that
d?(/ag,)/dt? =0 (39)
from which (34) can be used to have
d?(cosé, -6,)/dt?

=-0,(cosf, -07 —3csin® 9, +Ccos® ;)  (40)

=0.
Thus, either 8, =0 or cosé, -67 —3Csin’ 6, +T cos’ 6,
=0 follows. In the latter case, the quadratic formula

gives cos6, = (02 +,/0 +48c2)/8c >0 , whose
solution (4,,8,) should also satisfy (34) since (34)
holds in the case of b) as well. However, it can be
easily seen that this leads to a contradiction.
Therefore, 9, =0 follows from (40), and thus, 6, =0

from (34).

In both cases a) and b), 8, =6, =0 are obtained, and
thus, %, +X, =Y, +y, =0 from (28) and (29). Note
that (24) reduces to V <0 in any case. O

4. SIMULATIONS AND EXPERIMENTS

First, computer simulations of three control laws (i.e.,
the PD and E? control laws of (Fang, et al., 2003),
and the proposed nonlinear control law in Section 3),
using equations (3)-(4), were carried out. The system
parameters used in the simulations were

m, =0.73kg, m, =1.06 kg, m, =3.0 kg,

| =0.005kgm?, L=0.7m.
The x and y position errors at the target positions and

the swing angle throughout traveling were compared.
Even though a performance comparison with various

(41)



payload weights and initial sway angles was
performed, the discussion in this paper is limited to
the case of m, = 0.73 kg and #(0) = 0 deg, because

similar behaviors were observed in other cases. The
target positions of the trolley and girder were

[x4.Yq] =[10,1.0]". (42)
Also, simulations with various target positions
besides (4) were pursued, but the overall trend was
the same.

Fig. 2 shows the simulation results of the PD control
in equation (6), where the used gains are k, =102,

k, =45, and ke =1. The positioning control of the

trolley and girder according to (42) is acceptable (see
Fig. 2a,b), but, even though their target positions had
been achieved at about 9 sec, the payload continues
oscillating (see Fig. 2¢). Fig. 3 depicts the simulation
results of the E? control in (7), where the used gains
are ky =125.3, k, =50, and kg =0.001. Compared

with Fig. 2, the set-point regulation is almost the
same, but the g -oscillation has been much improved
(see Fig. 3c). Fig. 4 shows the simulation results of
the proposed control in (8)-(11). Compared with the
PD and E? control laws, both set-point regulation
and sway suppression are much superior.

The experimental results of the three control laws
using a 3-D pilot crane were also compared. The 3-
D crane utilized was an InTeCo 3DCrane. As shown
in Fig. 1, it consists of a trolley, a girder, and a
payload hanging on a pendulum-like lift-line wound
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by a motor mounted on the trolley. The girder is
capable of rectilinear motion in the Y-direction,
while the trolley is capable of rectilinear motion
along the girder in the X-direction. The 3DCrane is
driven by three DC motors. There are five encoders
to measure five variables: the trolley and girder
displacements, the lift-line length, and the two
deviation angles of the payload (all five encoders are
identical). The trolley and girder motors are driven
by power interfaces, which amplify the signals from
PC to DC motors and transmit the pulse signals of
the encoder after converting them to 16-bit digital
signals. The PC communicates with the power
interface board via an internally equipped RT-DAC
multipurpose digital 1/0 board. The physical
parameters of the 3DCrane are given in (41).
Actually, the 3DCrane values were used in
simulations for comparison purposes. The sampling
time was 0.01 sec. The desired target position was
the same as (42).

Fig. 5 compares the experimental results of the three
controllers (PD, E?, and the proposed one) using the

same initial conditions. The rise time of the E?
control and that of the proposed one are almost the
same, but the better sway suppression characteristics
of the proposed controller are shown.
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Fig. 5. Experiment results(PD, E?, proposed control).

5. CONCLUSIONS

In this paper, a nonlinear control law for 3-D
overhead cranes using the feedback linearization
technique and the decoupling strategy of ¢- and ¢ -
dynamics from x- and y-dynamics was investigated.
The performance of the proposed controller was
compared with those of the PD and E? control laws
of (Fang, et al., 2003). The stability proof in this
paper is much more rigorous than those available in
the literature. Because most transferences of loads in
factories are performed with a fixed rope length, the
applicability of the proposed controller is very high.
The question of changing the rope length remains for
future work.
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