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Abstract: To obtain improved local performance while retaining the property of global
stability, this paper proposes a new two-stage approach to anti-windup compensation for
systems containing input saturation. The method ensures that (i) if no saturation occurs, then
linear operation continues unhindered; (ii) if mild saturation occurs, an aggressive local anti-
windup compensator becomes active and; (iii) if severe saturation occurs a globally stabilising
anti-windup algorithm enters the fray. A notable feature of the scheme is that, for stable
plants, a two-stage compensator will always exist. Another interesting aside, is that simple,
possibly ad hoc techniques can be combined to yield a good two-stage compensator which
may perform better, locally, than many ‘optimal’ schemes. Copyright 2005 IFAC.
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1. INTRODUCTION
It is well known that local and global analyses of
the stability and performance properties of nonlinear
systems can be vastly different. At its most severe, a
local analysis of a nonlinear system will yield a lin-
ear system, which, in many cases can yield important
information about the system’s behaviour. However,
if the system state evolves to some point far beyond
that neighbourhood in which the linearisation is valid,
results may be misleading. In contrast, a global anal-
ysis, where possible, may yield results which, locally
are not as sharp as one would like and may give un-
duly conservative estimates of a system’s performance
properties and such like.

Systems which are linear, apart from a saturation el-
ement at the plant input, are an important class of
nonlinear systems and demonstrate the above argu-
ment perfectly. In fact, rather than conduct a global
nonlinear analysis, the common approach to controller
design for such systems is to design a controller which
behaves in a desirable manner while the saturation is
behaving as the identity operator, and then, if nec-
essary, some other add-on compensator - the anti-
windup compensator (AWC) - is designed to become
active once saturation occurs.

Over the years many researchers have sought to ad-
dress the stability properties of AWC’s and a number
of approaches have emerged. One of the first meth-
ods was proposed by Glattfelder and Schaufelberger
(1988) who advocated the use of classical absolute
stability theory tools such as the Circle and Popov
Criteria. These approaches have prevailed until today
and much of the modern literature on stability of anti-
windup (AW) schemes is based on the algebraic form
(often as matrix inequalities) of these criteria (see,
for example Mulder et al. (2001)). Other methods are
also available and, most notably for unstable systems,
various other, local, stability criteria have been pro-
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posed by Hu et al. (2001), Hippe (2003) and Gomes da
Silva Jr and Tarbouriech (1999).

One of the main obstacles to the performance of com-
pensator design techniques suggested in Mulder et al.
(2001), Turner and Postlethwaite (2004) and Grimm
et al. (2001) is that global stability is enforced. This
is, from one perspective, advantageous, as these al-
gorithms allow simultaneous controller synthesis and
global stability guarantees. However, these optimisa-
tion based schemes tend to loose some of the intu-
ition which practitioners find important and therefore
techniques such as the Hanus (Hanus et al. 1987)
and high-gain techniques still retain great favour in
industry. Moreover, these ad hoc techniques often out-
perform optimisation-based techniques, at least lo-
cally, although they satisfy no formal stability criteria.

There is often a trade-off in AWC design between
designing a compensator which performs very well
locally, but which cannot be proved globally stabil-
ising; and a compensator which is inferior locally but
is guaranteed to be globally stabilising. The purpose
of this paper is to propose a type of AWC which can
achieve local results which are as good as the ad-
hoc anti-windup compensators, but which also retain
global stability. This naturally leads to a two-stage AW
approach where the first stage of AW is an aggressive
local design which, if used alone, would not guarantee
global stability. This first stage is active during what
we shall call mild actuator saturation (defined later).
The second stage supersedes the first when actuator
saturation becomes severe (defined later) and here a
less aggressive but globally stabilising compensator
dominates the closed-loop behaviour. Incidentally, this
approach may be preferable from another perspective:
for mild saturation AW objectives, such as retention
of linear behaviour as much as possible, might be de-
sirable; if actuator saturation is severe anti-windup ob-
jectives, such as fast de-saturation of an actuator might
be preferable. Other material focused on a similar
problem to that discussed here has recently appeared
in Zaccarian and Teel (2004).



2. ANTI-WINDUP: SINGLE STAGE
2.1 Preliminaries
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Fig. 1. General one-stage anti-windup configuration

Consider the system in Figure 1 where a single stage
of AW compensation is shown. The saturation and
deadzone nonlinearities are defined as:

Satū(u) =





satū1(u1)
...

satūm(um)



 Dzū(u) =





Dzū1(u1)
...

Dzūm(um)



(1)

where satūi = sign(ui)min{|ui|, ūi} and
Dzūi = sign(ui)max{0, |ui|− ūi} and ūi > 0 ∀i.
The saturation and deadzone functions are related
through the identity

Satū(u)+Dzū(u) = u, ∀u ∈ R
m (2)

The plant has a state-space realisation

[ G1 G2 ] ∼

{

ẋp = Apxp +Bpdd +Bpum
y = Cpxp +Dpdd +Dpum

(3)

where y∈R
np is the output, d ∈R

nd is the disturbance,
xp ∈ R

np is the plant state, and um = Satū(u) ∈ R
m is

the plant input. The controller is implemented as

[K1 K2 Kaw1 Kaw2] ∼

{

ẋc=Acxc +Bcrr +Bcyy+v1
u=Ccxc +Dcrr +Dcyy+v2

(4)

where u ∈ R
m is the control signal, r ∈ R

nr is the
reference and xc ∈ R

nc is the controller state. The
vector v := [v′1 v′2]

′ ∈ R
nc+m is a signal generated

by the anti-windup compensator (if active) and is used
to enforce stability, and improve performance, during
actuator saturation. Due to its linearity, the controller
can be partitioned as

K1 ∼ (Ac,Bcr,Cc,Dcr) (5)

K2 ∼ (Ac,Bcy,Cc,Dcy) (6)

Kaw1 ∼ (Ac, Inc ,Cc,0m×nc) (7)

Kaw2 ∼ (00×0,00×m,0m×0, Im) (8)

If u � ū (this notation means ui ≤ ūi ∀i), the system
behaves as the nominal linear system, that is as the
system were the saturation replaced by the identity
operator. During this period the AWC is not active,
and Kaw1 and Kaw2 do not play a role in the system. We
make the following assumption on the nominal linear
system (Turner and Postlethwaite (2004)).

Assumption 1. The plant and the nominal linear closed
loop are both (internally) stable and well posed.
Equivalently:

• The poles of G(s) have strictly negative real parts

• The transfer function matrix
[

I −K2
−G2 I

]

(9)

is invertible in RH ∞

The second part of the assumption ensures that the AW
problem makes sense. The first part ensures that global
stability results can be obtained and is a necessary
condition for the existence of an AWC which can
ensure robust global stability of the closed-loop.

Standard AW is described in terms of a linear transfer
function matrix, Λ(s), which implies that:

[

v1
v2

]

=

[

Λ1(s)
Λ2(s)

]

ũ = Λũ, ũ = Dzū(u) (10)

This type of configuration is very general and one
which is used in the work of Grimm et al. (2001)
and Mulder et al. (2001). If we set r = 0 and d = 0,

uu
~

N(.) +
+

w

P (Λ)

Fig. 2. Equivalent representation of one-stage anti-
windup

using the identity Dzū(u) = u − Satū(u) we can re-
draw Figure 1 as Figure 2 (as in Mulder et al. (2001)
and Grimm et al. (2001)). Equivalently, we have

u = P(Λ)ũ (11)

ũ = N (u+w) (12)

z = u (13)

where
N (.) = Dzū(.) (14)

P(Λ) := (I −K2G2)
−1(−K2G2+Kaw2Λ2+Kaw1Λ1)(15)

A state-space realisation for P(Λ) is readily calculated
from the state-space matrices given above for the
plant, controller and AWC. The signals w and z will be
useful in the next section and we denote the operator
mapping w to z as T (Λ) : R

m 7→ R
m.

At this stage it would be normal to consider the
deadzone as a Sector[0, I] nonlinearity and use the
Circle Criterion to synthesise an AWC which would
provide global stability. In fact, if the plant is stable
there always exists such a compensator (see Grimm
et al. (2001) for example). However we shall take a
different approach.

2.2 Local anti-windup

It is well known that the deadzone nonlinearity inhab-
its the Sector[0, I] that is, if

ũ1 = N (u) := Dzū(u) (16)

then we have, for some diagonal W > 0, that (see
(Khalil 1996), Chapter 10)

ũ′1W (u− ũ1) ≥ 0 (17)
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Fig. 3. The deadzone and Sector bounds

From Figure 3 we can see that for any u, the dead-
zone nonlinearity remains in the Sector[0,1] (for the
scalar case). However, let us suppose that ui never
becomes greater that βi ūi ∀i where βi > 1, ∀i,
then locally we can see that the deadzone actually
inhabits a narrower sector, Sector[0,A ] where A :=
diag(α1, . . . ,αm) and αi := βi−1

βi
∈ (0,1). Again, this

can be seen for the scalar case in Figure 3. Note that
A < I.

The approach we take now is to synthesise an AWC
which stabilises the system in Figure 2 for all nonlin-
earities N ∈ Sector[0,A ]. An AWC which is globally
stabilising for all such sector nonlinearities will, then,
be locally stabilising for the system in Figure 2 when
N (.) = Dzū(.) , providing the magnitude of ui does
not exceed βi ūi. Thus two approaches can be taken

(1) An existing, ad-hoc, AWC can be analysed to
find a suitable sector bound, A , for which it is
guaranteed to be (globally) stabilising; or

(2) Given a set of βi, or equivalently a sector matrix
A , an AWC can be synthesised which guaran-
tees (global) stability for all nonlinearities in the
Sector[0,A ].

It is immediate from the results of Grimm et al.
(2001), that, as there exists a globally stabilising AWC
for all N ∈ Sector[0, I], there will always exist a
globally stabilising AWC for all N ∈ Sector[0,A ]
because A < I. However, typically we are able to
use much more aggressive AW techniques when the
sector is narrower and also there always exists a suf-
ficiently ‘small’ A such that a specific type of lo-
cally stabilising AWC is globally stabilising for all
N ∈ Sector[0,A ]. Appendix A gives details on how
to synthesise a static AWC which is globally stabilis-
ing for all N ∈ Sector[0,A ]. Our second assumption
is thus:

Assumption 2. With Λ = Θ, the following condition
holds: The interconnection of PΘ = P(Θ) and N ∈
Sector[0,A ] through equations (11) - (13) is globally
exponentially stable (when w = 0) and the operator
TΘ : w 7→ z is well-defined.

As the interconnection of PΘ and N ∈ Sector[0,A ]
is globally exponentially stable, this ensures that the
map TΘ is actually finite gain Lp stable. However,
by itself, this means simply that the system in Figure
1 will be locally asymptotically stable when the AWC
Λ = Θ is used (as the deadzone nonlinearity is actually
in Sector[0, I] globally); it gives no guarantees of
global stability.

2.3 Global anti-windup

Consider Figure 2 again. Assumption 1 is a neces-
sary and sufficient condition to guarantee the exis-
tence of an AWC, which we call Φ(s), which globally
stabilises the origin of the closed-loop system. The
performance of such a compensator is not guaranteed
to be locally optimal, but obviously the property of
global, or at least large-signal, stability is desirable.
This motivates our third assumption.

Assumption 3. With Λ = Φ, the following condition
holds: The interconnection of PΦ = P(Φ) and N ∈
Sector[0, I] through equations (11) - (13) is globally
exponentially stable (when w = 0) and the operator
TΦ : w 7→ z is well-defined.

We do not give details on how to construct such an
AWC, but there are several methods available from
which one can construct a suitable globally stabilising
AWC (Grimm et al. (2001),Wada and Saeki (1999)).
The next section will demonstrate how the locally
stabilising AWC, Θ(s) and the globally stabilising
AWC, Φ(s) can be combined.

3. ANTI-WINDUP: SECOND STAGE

d

G
r

K
u

y

Bu

u

−

−

u−

Θ

v

+ +

Dz   (.)

Dz  (.)

sat  (.)

Φ−Θ

Fig. 4. Two-stage anti-windup configuration

Consider Figure 4 where what we shall call two stage
anti-windup is shown. The AWC, Γ is defined as

Γ :

{

v1 = Θ1Dzū(u)+(Φ1 −Θ1)DzBū(u)
v2 = Θ2Dzū(u)+(Φ2 −Θ2)DzBū(u) (18)

where B := diag(β1, . . . ,βm). Note that if the βi = ∞,
or the block Φ(s)−Θ(s) is disconnected, we recover
the standard one-stage AWC. The operation of the
AWC, Γ, is roughly as follows. When no saturation oc-
curs u� ū, the system will continue to operate linearly,
as Dz(u) = 0 ∀u � ū. However when mild saturation
in at least one channel occurs, that is ūi ≤ |ui| < βi ūi
for some i the first stage of AW becomes active i.e.
Dzū 6= 0, but DzBū(u) = 0. Then if severe saturation
occurs, that is |ui| ≥ βi ūi for some i, both stages of
AW will become active as now DzBū(u) 6= 0 also.
To summarise, Γ gives good local performance, but
then ‘takes out’ this compensator when the saturation
becomes sufficiently large and the global AWC takes
the more prominent role.

It is assumed that Θ has been designed such that
it gives desirable local stability (Assumption 2) and
performance in some sense, but is not necessarily
globally stabilising. Φ is assumed (by Assumption
3) to simply be globally stabilising. The attractive
feature of Γ is that it blends together two types of AW
behaviour in a continuous fashion. The remainder of
this section will demonstrate that the compensator Γ
globally stabilises the system in Figure 4.



Fact 4. (1) If Dzūi(ui) 6= 0 and Dzβiūi
(ui) 6= 0 then

sign(Dzūi(ui)) = sign(Dzβiūi
(ui)) ∀i, ∀β > 1 (19)

(2) Dzūi(ui) = 0 ⇒ Dzβiūi
(ui)) = 0 ∀i, ∀β > 1 (20)

Lemma 5.

˜N (u) := Dzū(u)−DzBū(u) ∈ Sector[0,A ] (21)

Proof: We prove that

˜Ni(ui):=Dzūi(ui)−Dzβiūi
(ui)∈Sector[0,αi] (22)

for all i. Using Fact 4, it follows that we need to
consider only three cases (for each i):

(1) If Dzūi(ui) = 0 (which implies Dzβiūi
(ui) = 0 as

β > 1), then ˜Ni(ui) = 0. This corresponds to
ui < ūi.

(2) If Dzūi(ui) 6= 0, but Dzβiūi
(ui) = 0 (as β > 1

this is possible), then ˜Ni(ui) = Dzūi(ui). This
corresponds to the case when ui ≥ ūi, but less
than βiui.

(3) If ui ≥ βi ūi, then Dzūi(ui) and Dzβiūi
(ui) are both

non-zero, but of the same sign, by Fact 1. Hence
we have

˜Ni(ui) = sign(ui)[|ui|− ūi − (|ui|−βi ūi)] (23)

= sign(ui) [(βi −1) ūi]
︸ ︷︷ ︸

>0

(24)

Combining these three different cases gives the result
for each i. The lemma then follows as a result of this.
��.

The following is the main result of the paper.

Theorem 6. Define TΘ : w 7→ z to be the (finite gain
stable) operator formed from the interconnection of
equations (11) - (13) with Λ = Θ. Define also TΦ :
w 7→ z to be the (finite gain stable) operator formed
from the interconnection of equations (11) - (13) with
Λ = Φ
If Assumptions 1,2 and 3 are satisfied then the com-
pensator Γ ensures global stability of the system in
Figure 4 if

‖TΦ(.)‖i,2 <
1

‖TΘ(.)‖i,2
(25)

Proof: First note that if r = 0,d = 0, then Figure 4 can
be represented by the equations

u = M[ũ′1 ũ′2]
′ (26)

where

ũ1 := N1(u) = Dzū(u) (27)

ũ2 := N2(u) = DzBū(u) (28)

and

M := (I −K2G2)
−1[−K2 Kaw1 Kaw2]

[
G2 0
Θ1 Φ1 −Θ1
Θ2 Φ2 −Θ2

]

(29)

Adding and subtracting −K2G2ũ2 to eq (26) we obtain

u = u1 +u2 (30)

where

u1=(I −K2G2)
−1(−K2G2+Kaw1Θ1+Kaw2Θ2)

︸ ︷︷ ︸

P(Θ)

ũ1,2(31)

u2=(I −K2G2)
−1(−K2G2+Kaw1Φ1+Kaw2Φ2)

︸ ︷︷ ︸

P(Φ)

ũ2 (32)

and
ũ1,2 := N3(u) = ũ1 − ũ2 = Dzū(u)−DzBū(u) (33)

Note that equations (30),(31) and (33) are in the form
of equations (11) - (13), so we can define the operator

u1 = TΘ(u2) (34)

By Assumption 2, TΘ is well-defined and finite-gain
stable because, by Lemma 1 N (.) ∈ Sector[0,A ].
Similarly, equations (30), (32) and (28) are in the form
of equations (11) - (13), so we can define the operator

u2 = TΦ(u1) (35)

By Assumption 3, TΦ is well-defined and finite-gain
stable. By Assumption 1, there always exists compen-
sators satisfying Assumptions 2 and 3. The results fol-
low by applying the Small Gain Theorem to equations
(34) and (35). ��.

Corollary 7. There always exists a Γ such that Theo-
rem 6 holds.

Proof: It is sufficient to prove that there always exists
an AWC which satisfies Assumption 3 with TΦ having
small enough L2 gain. To see this choose Φ1 =
BcyG2(s) and Φ2 = DcyG2(s), then we have

P(Φ) = (I −K2G2)
−1(−K2G2 +K2G2) = 0 (36)

Hence ‖TΦ‖i,2 = 0 and therefore Theorem 1 holds.
��.

Remark The above choice makes the second stage of
AW compensation equivalent to internal model con-
trol (IMC) AW. This ensures no expensive computa-
tional optimisation is required, although it is possible
that the transient response may suffer. �

Corollary 8. There always exists a static first stage
AWC (Θ) which solves Theorem 1.

Proof: From the appendix, it is always possible to
choose the sector narrow enough (i.e. βi and αi small
enough) to ensure that a static AWC solves Lemma
1. By corollary 1, it follows that there exists always a
choice of Φ such that ‖T2‖i,2 = 0. ��

4. EXAMPLE

Consider the example used in Romanchuk (1999) and
Turner and Postlethwaite (2004). Figure 5 shows the
response of the system due to a 3-2-1 type pulse in-
put both channels without saturation; the system has
a fast, well-damped and decoupled response. When



input saturation with saturation limits of ±8 in both
channels is introduced as shown in Figure 6 this re-
sponse deteriorates and unacceptable behaviour in one
channel results. To address this problem, we use
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Fig. 5. 3-2-1 pulse response: linear system

0 5 10 15 20 25 30 35 40
−50

−40

−30

−20

−10

0

10

20

O
ut

pu
t r

es
po

ns
e 

[d
eg

]

Saturated response

0 5 10 15 20 25 30 35 40
−12

−10

−8

−6

−4

−2

0

2

C
on

tr
ol

 r
es

po
ns

e 
[d

eg
]

Time [sec]

Fig. 6. 3-2-1 pulse response: − saturated system; −−
linear system

an ‘optimal’ static AWC as suggested in Turner and
Postlethwaite (2004), but only require this to stabilise
the system in the Sector[0,0.2]× I2, allowing it to be
more aggressive than originally reported in Turner and
Postlethwaite (2004). We also use an optimal full-
order AWC as suggested in Turner et al. (2004) but
stipulate that this must be globally stabilising; that
is for all values of the deadzone in Sector[0, I]. It
transpires that as both of these AWC’s are based on
the representation given in (Weston and Postlethwaite
2000) they have a very compact implementation 2 .
Table 1 shows the L2 gains of the operator Tp which
governs the deviation of saturated performance from
nominal linear performance (see Turner and Postleth-
waite (2004) for more details). Table 1 suggests that

Compensator L2 gain Number of states
Static compensator, α = 0.5 ≈ 0.1 0
Full order compensator, α = 1, ≈ 376 3

Table 1. Comparison of local/global
L2 gains

locally, we can expect much better performance from
our static AWC, providing our control signals do not
exceed ū/(1−αi) = 8/(1−0.2) = 10 in each channel.
However, we are not guaranteed of any performance -
or even stability - once the control signals cross this
boundary. Conversely, our full-order AWC is globally
stabilising although its L2 gain is substantially more
than the locally performing compensator. From this
we might expect that a two-stage AWC constructed
from the combination of the two above compensators
might perform better locally than the full-order AWC,
while retaining its global stability and performance
properties. Figures 7, 8 and 9 show the responses

2 This will be reported elsewhere due to space limitations
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Fig. 7. 3-2-1 pulse response: − w/static AW; −−
linear system
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Fig. 8. 3-2-1 pulse response: − w/full-order AW; −−
linear system
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Fig. 9. 3-2-1 pulse response: − w/two-stage AW; −−
linear system

obtained from our example system using the locally
optimal static AWC, the globally optimal full-order
AWC, and the two-stage AWC constructed from com-
bining the two. The reference demand is a step input of
amplitude 4.5 in each channel. This is enough to make
the control signal saturate and exceed 10 degrees in
one channel, meaning that our locally optimal static
AWC is not guaranteed to perform well. Notice that
this is indeed the case with the static compensated
closed-loop’s response resulting in large overshoots in
the responses of the second channel. As expected the
full order AWC is less aggressive and tracking in the
second channel is not quite achieved. However, using
the two-stage AWC, an improvement in tracking is
maintained. Further simulation results show that, as
the input demands get larger, the two-stage AWC’s
response converges to that of the full order AWC as
expected.

Remark: In many simple examples in the literature, it
is difficult to demonstrate that a two-stage AWC shows
significant performance improvement over a one-stage
AWC; often static AWC’s, with only local stability
and performance guarantees, actually perform very
well far beyond the region in which this behaviour
is guaranteed. Alternatively, full-order AWC’s may
perform so well locally, that a locally optimal AWC is
not required (interestingly this transpires to be the case
for the example given in Zaccarian and Teel (2004)
where a full-order AWC synthesised according to the
results of Turner et al. (2004) performs as well as



the nonlinear compensator given there). However we
believe that AWC’s such as the two-stage proposal
here, or the nonlinear one developed in Zaccarian
and Teel (2004) are likely to show their value when
considering complex, high-order systems.

5. CONCLUSION

This paper has laid the foundations for a two-stage
approach to AW. The results allow an aggressive, lo-
cally stabilising, AWC to be combined with a glob-
ally stabilising second-stage AWC. The application
of a suitable second stage design is dependent on a
small-gain inequality holding, although the IMC com-
pensator always satisfies this inequality. The results
potentially allow popular AW techniques (which lack
stability guarantees) to be applied with confidence.
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Appendix A. EXISTENCE OF A LOCALLY
STABILISING STATIC AWC

In this section we shall prove that there always exists a
locally stabilising static AWC, for small enough sector
i.e. for αi small enough. As we consider only stability
we have that r = 0 and d = 0. Therefore, PΘ = P(Θ)
has state-space realisation

P(Θ) ∼

{
˙̃x = Ãx̃+(B0 + B̃Θ)ũ1
u = C̃x̃+(D0 + D̃Θ)ũ1

}

(A.1)

where the state-space matrices of P1 are defined as

x̃ =

[

xp
xc

]

Θ =

[

Θ1
Θ2

]

Ã =

[
Ap +Bp∆DcyCp Bp∆Cc

Bcy∆̃Cc Ac +Bc∆̃DpCc

]

B0 =

[
−Bp∆

−Bc∆̃Dp

]

B̃ =

[
0 Bp∆
I Bc∆̃Dp

]

C̃ = [ ∆DcCp ∆Cc ] D0 = −∆DcyDp D̃ = [ 0 ∆ ]

where ∆ = (I−DcyDp)
−1 and ∆̃ = (I−DpDcy)

−1 exist
due to Assumption 1. In this case Θ1,Θ2 are static
matrices. Next, as N ∈ Sector[0,A ], we have that

2ũ1W (A u− ũ1) ≥ 0 (A.2)

for some diagonal matrix W > 0 (note that A =
diag(α1, . . . ,αm) > 0 as well). Using the multivariable
form of the Circle Criterion we obtain that the sys-
tem is asymptotically stable if the following matrix
inequality holds
[

Ã′P+PÃ PB0 +PB̃Θ+C̃′
A W

? −2W +WA (D0 + D̃Θ)+(D′
0 +Θ′D̃′)A W

]

< 0(A.3)

for some P > 0, diagonal W > 0 and matrix Θ. Us-
ing the congruence transformation diag(P−1,W−1) =
diag(Q,U) we obtain the matrix inequality
[

QÃ′ + ÃQ B0U + B̃ΘU +QC̃A

? −2U +A D0U +UD′
0A +A D̃ΘU +UΘ′D̃′

A

]

< 0

(A.4)

If we choose A = U = αmaxI and use the Schur
complement, then inequality (A.4) holds iff

QÃ′ + ÃQ−α2
max(B0 + B̃Θ+QC̃′)×

(−2I +αmaxD0 +αmaxD′
0 +αmaxD̃Θ+αmaxΘ′D̃′)−1

×(B0 + B̃Θ+QC̃′) < 0 (A.5)

By Assumption 1, the nominal system is asymptot-
ically stable, implying that Ã is Hurwitz and conse-
quently that QÃ′ + ÃQ < 0. Hence, by choosing αmax
small enough, the above inequality can always be en-
sured to hold.
The above result mirrors the one in (Kapoor et al.
1998) where it is proved that all AWC’s are at least
locally stabilising. Of course, such a solution is not
necessarily optimum and a better approach might be
to solve inequality (A.4) for Q,U,Θ for a given A .
Inequality (A.4) is bilinear but defining L = ΘU yields
the linear matrix inequality
[

QÃ′ + ÃQ B0U + B̃L+QC̃A

? −2U +A D0U +UD′
0A +A D̃L+L′D̃′

A

]

< 0(A.6)

Such a problem is not guaranteed to be feasible for
arbitrary A , but as proved above, there will exist an
A such that (A.6) is feasible.
An alternative approach is to solve (A.4) for Q,U and
A for given Θ. Again (A.4) is bilinear, but reversing
the congruency transformation yields

[

Ã′P+PÃ PB0 +PB̃Θ+C̃′Y
? −2W +Y D0 +D′

0Y +Y D̃Θ+Θ′D̃′Y

]

< 0 (A.7)

which is linear in P > 0, diagonal W > 0 and diagonal
Y > 0, where Y = A W = WA . Hence A can be
determined as A = YW−1.


