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Abstract: In this paper the spectral properties of two different types of projection signals 
appearing in 3-D tomography are considered. In particular, the spectral behaviour of the 
3-D projection signal generated via a plane integral is analysed and its effective support 
region is figured out. On the basis of this result, an optimal interleaved sampling pattern 
is established. Compared to the traditional progressive sampling method, a reduction of 
sampling points by the factor 4 is achieved.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Tomography methods for image generation from 
projections extend the human ability to gain non 
invasive views of internal structures of objects for a 
wide range of physical applications, including X-ray 
computerized tomography, emission tomography, 
radio astronomy, electron microscopy and ultrasonic 
reflectivity tomography (Kak and Slaney, 1987). 
These methods are applicable when measured data, 
the so-called projection signals, represent certain 
forms of integrals of the spatial distribution of some 
physical quantity. For instance, the blood flow and 
metabolism of living organisms can be visualised by 
means of positron emission tomography (PET), 
where the measurement of coincidence between pairs 
of detectors approximates line integrals of the 
radioactive tracer distribution along lines of response 
(LOR). On basis of the reconstructed tracer 
distribution, malfunctions which are characteristic 
for diverse illnesses can be diagnosed (Pietrzyk, 
1997). 
 
Due to the complexity of the three-dimensional (3-D) 

reconstruction algorithm, the long reconstruction 
time duration and the large size of projection data, 
the reconstruction of a 3-D distribution used to be 
simplified as a series of two-dimensional (2-D) 
reconstruction problems. A 3-D volume object had to 
be decomposed into a set of parallel transverse planes 
at first. With the data for each cross-section plane 
being acquired and reconstructed independently of 
any other plane, the mathematical and computational 
complexity could be considerably reduced, as well as 
the reconstruction effort. Finally the consecutively 
reconstructed planes could be stacked together to 
form the 3-D volume object. However, with the 
restriction caused by such 2-D data acquisition and 2-
D reconstruction methods, only the measurements 
lying within the transaxial planes could be exploited, 
which consequently led to a system sensitivity loss. 
Owing to the rapid progress in hardware in recent 
years, nowadays this bottle-neck effect in 
consequence of enormous computa-tional demand 
can be efficiently circumvented. By using suitable 
true 3-D reconstruction algorithms and fully 3-D data 
acquisition or increased axial field of view, not only 
the transaxial, but also the oblique measurements can 



be taken into account. Thus, lower statistical noise in 
the reconstructed images can be achieved (Bendriem 
and Townsend, 1998). 
 
The Radon transform and its 3-D extension are the 
underlying fundamental concept used for 2-D and 3-
D tomography. Via Radon transform the projection 
signals and the image object are related. However, in 
practical applications of reconstruction from 
projections, the measurements correspond only to 
estimated samples of the underlying continuous 
projection data. In order to acquire unadulterated 
projection data, sampling requirements for the 
measurement must be imposed.  
 
In the present paper the spectral properties of 
projection signals in 3-D tomography with respect to 
frequency band limitations are analysed. Based on 
these analyses an optimal sampling pattern for 
projection data in 3-D tomography is proposed. The 
approach presented here involves a merely 3-D 
viewpoint and enlightens the problem from another 
respect.  
 
It is shown that an optimal interleaved sampling grid 
in 3-D space requires only one-fourth of sampling 
points compared to the commonly used progressive 
sampling grids. In the next section, extension of the 
Radon transform for 3-D tomography is introduced, 
in particular the new concept of projection data 
which represents integrals over planes through the 
volume distribution. In section 3 the 3-D spectral 
behaviour of projection data collected as plane-
integrals will be evaluated. The resulting special type 
of sampling pattern for projection data will finally be 
proposed in section 4. 
 

2. RADON TRANSFORM USED IN 3-D 
TOMOGRAPHY 

 
For the purpose of continuity, the usage of the Radon 
transform in 2-D tomography will be briefly 
reviewed at first (Herman, et al., 1990). With a 
distribution function (image) ( , )f x y  defined on , 
which represents a spatial distribution of some 
physical quantity in two dimensions, the 2-D Radon 
transform of this distribution function, denoted as 
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( , )p uϑ , is traditionally defined as the line integral 
of f along a line perpendicular to the u -axis at an 
angle ϑ  and at distance  from the origin. This is 
illustrated by Figure 1, where x, y are the Cartesian 
coordinates. Mathematically, the coordinate  for 
angle 

u

u
ϑ  can be denoted as a function of the variables 

x  and  in the following way: y

cos sin .u x y                                ϑ ϑ= +

( , )

                      (1) 

Thereby the projection p uϑ

( , ) ( , ) ( cos sin ) ,p u

 can be defined as 

f x y u x y dxdyϑ δ ϑ ϑ
+∞ +∞

−∞ −∞

= ⋅ − −∫ ∫

( )

  (2) 

xδ

u
( , )

where  is the Dirac impulse function. 

In addition, the well-known 2-D Fourier slice 
theorem relates the Fourier transform (with respect to 
variable ) of the projection data with the Fourier 
transform of distribution function f x y

u
( , )

 in the 
frequency domain. It says that the one-dimensional 
Fourier transform with respect to  of the projection 
signal p uϑ  at the angle ϑ  is equal to a central 
slice of the 2-D Fourier transform of the distribution 
function ( , )f x y  at the same angleϑ . 
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u

ϑ

( , )p uϑ

( , )f x y

cos sinu x yϑ ϑ= +

 
 

Fig. 1. Principles of the 2-D Radon transform 
 
With the definitions above as background, the 3-D 
Radon transform and its related 3-D Fourier slice 
theorem can be deduced straightforward by means of 
generalization of its 2-D counterparts. However, due 
to miscellaneous physical natures of applications, the 
projection data may be accomplished by varying 
form of integrals. In the following two sub-sections, 
two different types of projections are introduced. 
 
2.1 Projection data as integrals over lines 
 
Consistent with the 2-D definition of projection as 
line integral, 3-D projections are conventionally 
treated as 2-D sets of parallel line-integrals in 3-D 
space. With a distribution f ( , , )x y z  defined on , 
its 3-D Radon transform on basis of line-integration 
as projection data, will be discussed at first. The 
projection signal 
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( , , , )p u v ϑ ϕ  can be defined as the 
line integral of f along a line orthogonal to a plane 
with coordinates . This plane has an azimuthal 
angle 

( , )u v
ϕ  and a co-polar angle ϑ . The integration line 

crosses this plane at distance u  and  from the 
reference axes, which is illustrated in Figure 2. 

 is the rotated coordinate system given by 

v

( , , )u v t

sin cos 0
cos sin sin sin c

cos cos sin cos

u xϕ ϕ
ϕ ϑ ϕ θ

ϕ ϑ ϕ ϑ

−
− ⋅   .os

sin
v y
t z

ϑ
ϑ

= −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (3) 

Mathematically, the line of integration in 3-D space 
can be denoted with two functions of the variables 
ϑ ,ϕ , and  in the following way: u v

sin cos
cos sin sin sin cos

u x y
v x y z

ϕ ϕ
ϕ ϑ ϕ θ ϑ

= − +

= − − +⎩

( , , , )p u v

         ⎧
⎨     (4) 

Thereby the projection can be defined as ϑ ϕ



  ( , , , ) ( , , ) ( sin cos )

( cos sin sin sin cos ) .

p u v f x y z u x y

v x y z dxdydz

ϑ ϕ δ ϕ

δ ϕ ϑ ϕ ϑ ϑ

+∞ +∞ +∞

−∞ −∞ −∞

= ⋅ + −∫ ∫ ∫

⋅ + + −

ϕ   (5) 

It should be noticed that the projection data resulting 
from line integrals in 3-D space are four dimensional 
in nature, which indirectly implies the existence of 
redundant information contained in the projection 
data. Nevertheless, in practical applications, adequate 
exploitation of the additional information is a 
commonly used method to improve the sensitivity of 
the measurement system. For instance, the key point 
of the 3-D PET imaging system is that the collection 
of the seemingly redundant information along the 
oblique LORs, if used properly, can improve 
reconstructed image SNR by reducing statistical 
noise (Bendriem and Townsend, 1998). 
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 Fig. 2. Principles of the 3-D Radon transform with 
line integration as projection data 
 
The extended 3-D Fourier slice theorem associated 
with projection data as line integrals states that the 2-
D Fourier transform of the projection data 

( , , , )p u v ϑ ϕ  with respect to and  at the angle u v ϑ  
and ϕ  corresponds to a central plane of the 3-D 
Fourier transform of the distribution ( , , )f x y z  at 
the same spatial angle. This is illustrated in figure 3, 
where the frequency coordinates in the object and 
projection spaces are subject to the same rotational 
relations as between the spatial coordinates, defined 
in (3). 
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Fig. 3. Illustration of the extended 3-D Fourier slice 

theorem associated with projection data as line 
integrals 

 
2.2 Projection data as integrals over planes 
 
Instead of generating the projection data as line 
integrals, projections in the 3-D case can be 
alternatively accomplished by integrations over 

planes. From this viewpoint, the 3-D Radon 
transform can be newly discussed in an alternative 
way. With a distribution ( , , )f x y z  defined on 3 , 
whose 3-D Radon transform is denoted as 

( , , )p t ϑ ϕ , the projections can be defined as 
integration of f on a plane, whose orientation is 
described by a unit vector with two angular 
designations, ϑ  and ϕ . The distance of plane from 
the origin is depicted by the variable t . In figure 4 
this situation is illustrated. The rotated coordinate 
system  is given by equation (3) again. 
Geometrically, the 3-D Radon transform defined in 
this manner maps a spatial distribution into the set of 
its plane integrals in 3-D space. Each point in the 
projection domain 

( , , )u v t

( , , )t ϑ ϕ
( , , )

 corresponds to a plane in 
the spatial domain x y z

cos cos cos sin sin ,t x y z

. The plane, on which 
integration occurs, can be mathematically described 
as follows: 

ϑ ϕ ϑ ϕ ϑ= + +

( , , )p t

              (6) 

so that the projection ϑ ϕ

, ) ( ,

( cos cos cos

p t f x y z

t x y z

ϑ ϕ

δ ϑ ϕ ϑ ϕ

+∞ +∞ +∞

−∞ −∞ −∞

= ⋅∫ ∫ ∫

− −

 can be defined as 

   (7) 
( , , )

sin sin ) .dxdydzϑ−

Projection data as plane-integrations is also of 
interest in various practical applications. If we 
consider for example a pulse emitting echo sounder 
in sonar tomography (far field), then the received 
sonar signal at a certain time instance is the integral 
over all scatters on a plane at a certain distance. This 
distance is associated with the time instance via the 
propagation velocity of sound waves in water. 
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Fig. 4. Principles of the 3-D Radon transform with 

plane integration as projection data 
 
In accordance with the new definition, the 3-D 
Fourier slice theorem also changes its meaning. It 
says respectively that the one-dimensional Fourier 
transform with respect to t  of the plane projection 

( , , )p t ϑ ϕ  at the spatial angles ϑ  and ϕ  is equal to 
the 3-D Fourier transform of the distribution function 

( , , )f x y z  along a central line at the same spatial 
angles. 
 

3. SPECTRAL PROPERTIES OF PROJECTION 
DATA IN CASE OF PLANE INTEGRALS 

 
Both of the two 3-D Radon transform types 



mentioned in section 2 apply to continuous signal 
representations. In practical applications, however, 
measurements are available as estimated samples. 
Hence an adequate arrangement of the measurement 
equipment is the key to achieve projection data in 
accordance with the sampling theorem, which means 
that an optimal sampling pattern for the projection 
signal has to be established.  
  
For this purpose, the basic support region of the 
projection in the frequency domain (spectrum) 
should be investigated. The sampling grid can then 
be obtained in filling the frequency space with this 
basic shape. A similar approach in 2-D case has been 
used in (Rattey et al., 1981; Boschen, 2000). While 
such an approach is absolutely meaningful for the 
analysis of the projection data in case of plane 
integrals, it imposes certain problems for the 
projection data in case of line integrals. Since the 
projection data of a 3-D distribution as line integrals 
is of four-dimensional nature, it is impossible to 
establish the sampling grid using the “fill-and-see” 
method. Furthermore, due to the redundant 
information contained in the projection data, it makes 
the study of the spectral properties of the projection 
data more complicated. In view of these facts, the 
analysis of the spectral properties of the projection 
signals in this paper is restricted to the case described 
in sub-section 2.2 as plane integrals. 
 
Since the 3-D distribution of physical quantities in 
practical applications can be always assumed to have 
a limited spatial extent, the 3-D distribution function 
to be treated here can also be seen as spatially 
bounded. In addition, due to the well-known fact that 
any 3-D function can be decomposed as continuous 
sum (integral) of weighted impulse functions, i.e., 

        
0 0 0

0 0 0 0 0

( , , )

( , , )

( , , )

,

f x y z

0x x y y z z dx dy dz

f x y z

δ

+∞ +∞ +∞

−∞ −∞ −∞

=

− − −

∫ ∫ ∫

⋅

   (8) 

it is self-evident firstly to consider the spectral 
behaviour of the projection data caused by a simple 
impulse function 0 0 0( , , )x x y y z zδ − − −

0 0 0

( , , )

( cos cos cos sin sin )

p t

t x y z

. 
Substituting this impulse function into (7) directly 
yields  

 
ϑ ϕ

δ ϑ ϕ ϑ ϕ ϑ

=

− − −
  (9) 

Because of the linear nature of the extended 3-D 
Radon transform explained in sub-section 2.2 and 
equation (8), the 3-D projection of ( , , )f x y z  can 
then be viewed as superposition of these impulse 
functions of form defined in (9) with varying 0x , 

, and . From this point of view, the feasibility 
to determine the effective band-region of the 
projection spectrum of 

0y 0z

( , , )f x y z

0 0 0

0 0 0 0

cos cos cos sin sin

[cos cos cos( ) sin sin ]

( )

,

( , , ) ( , , ) t

x y z

p t
j tF p t e dt

 is provided by 
means of analysing the spectral behaviour of an 

individual impulse function. The optimal sampling 
pattern can then be simply determined by observing 
how the 3-D frequency domain is covered by the 
periodic replication of the basic spectral support 
region of the impulse function of form (9). 
 
The 1-D Fourier transform of the impulse function of 
(9) with respect to variable t  is given by 

   t

t r

je
je

ϑ ϕ ϑ ϕ ϑ

θ ϑ ϕ φ θ ϑ

ωω ϑ ϕ ϕ ϑ

+ +

− +

+∞

−∞

−= ∫

0

0

s
n .

x r

ω

ω

−=
−=

    (10) 

by using the following variable representation 

                            

0 0 0

0 0 0

0 0 0

cos co
cos si
sin

y r
z r

θ φ
θ φ

⎧ =
⎪

=⎨
⎪ θ=⎩

                          (11) 

It is obvious that this 1-D Fourier transform is 
periodic in ϑ andϕ , i.e., 

             
( , , ) ( , 2 , )

( , , ) ( , , 2 ).

p t p t

p t p t

F F m

F F n

ω ϑ ϕ ω ϑ π ϕ

ω ϑ ϕ ω ϑ ϕ π

= +

= +
             (12) 

Consequently, the complete 3-D Fourier transform, 
i.e. with respect to ,t ϑ ,andϕ , is of discrete nature 

in the ϑω - and -direction and can be written as ϕω

0 )
2

( ( ) ( )

( , , )

4

p t

jn

m n
e m n

F ϑ ϕ

π
φ

ϑ ϕδ ω δ ω

ω ω ω

π
+∞ +∞ − +

=−∞ =−∞
∑ ⋅ − ⋅ −∑

=

0 0 0 0cos( sin sin ) ( , cos cos ) ,
0

t tr m J n r d
π

ω θ ϑ ϑ ω θ ϑ ϑ⋅ + ⋅∫

(13) 

where 

       
0 0

0 0

( , cos cos )

1 ( cos cos sin )

t
J n r

j n rt
π

ω θ ϑ

τ ω θ ϑ τ
2

e d
π

τ
π −

∫

n

t

+

=

−
    (14) 

is the th-order Bessel function of the first kind.  
 
Since the integral in (13) cannot be solved explicitly, 
numerical analysis method has to be used to figure 
out the shape of the effective support region. While 
the projection spectrum is of complex nature, the 
analysis focuses only on the magnitude of the 
spectrum to assess its spectral extent in frequency 
domain. In figure 5 the numerical results of an 
exemplary impulse function without phase factor is 
displayed. Due to the difficulty in displaying 
trivariate functions, the magnitudes of the projection 
spectrum are illustrated in dependence of the 
variableω . It is easy to recognize that the magnitude 

is of discrete nature in ϑω tω- and -direction. In ϕω -
direction, the function is continuous. 



 An examination of the computational results reveals 
that the effective support region of the projection 
spectrum in frequency domain resembles a shape of 
head-to-head adhered double-cone of infinite-
extension as displayed in figure 6(b). The amplitude 
has its maximum exactly in the centre, i.e., at 0tω = . 

With the increase of tω , the amplitude begins to 
decrease. Simultaneously, the effective region with 
respect to ϑω  and ϕω  becomes larger. Defining the 

band region of ( , , )p tF ϑ ϕω ω ω  with respect to the 

discrete ϑω - and ϕω -direction for a given tω  as the 
number of terms, which are necessary to include 
98% of the whole energy, the following relation 
turns out for the band-width in ϑω - and ϕω -
direction 

                                                     (15)  , | | 1,
M t

Rϑ ϕω ω> +

where MR  is defined as the spatial bound of the 3-D 
distribution function. Due to the discrete nature of 

ϑω  and ϕω , this relation can be further modified to  

                                                    (16)  , | | 1,M tRϑ ϕω ω⎡ ⎤⎣ ⎦> +

|
where the bracket indicates that the largest integer 
value smaller than |

M t
R ω  should be used. 
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Fig. 5. Illustration of numerical results of an 
exemplary impulse function without phase factor. 
The outcomes are displayed subject to the 
variable tω . 

 
For a spatially limited function shown in figure 6(a), 
the effective support region of projection spectrum is 
displayed in figure 6(b). Known from signal theory 
that a function of finite spatial support has a 
nonband-limited spectrum, the head-to-head adhered 
double-cone also has no band limitation with respect 
to the tω -direction. However, in practice the spatial-
limited distribution often can be treated as 
approximately band limited in the frequency domain. 

Based on this assumption, ( , , )p tF ϑ ϕω ω ω

t M

 can be 

considered as quasi zero for the region | |ω ω>  

with Mω  as desired bound approximation, and hence 
the support region of the projection spectrum has a 
shape of two head-to-head adhered double-cone of 
finite-length Mω , which is shown in 6(d). 
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 Fig. 6. Illustration of various support regions in 
spatial and frequency domains. (a) spatial-limited 3D 
distribution; (b) projection spectrum with nonband-
limited shape; (c) bounded spectrum in ( , , )y zxω ω ω

0
0 0

tΩ

Ω = Ω⎜

2t M

 
domain; (d) projection spectrum with band-limited 
shape 
 

4. OPTIMAL SAMPLING PATTERN FOR 
PROJECTION DATA 

 
Owing to the acquired basic shape of the projection 
spectrum as head-to-head adhered double-cone of 
finite-length, an optimal sampling pattern can be 
obtained to improve efficiency. This occurs in 
observing how the 3-D frequency space can be 
optimally covered by the periodic replication of the 
double-cones. It can be proved that merely about 
one-fourth of samples compared to originally needed 
samples are really required to avoid the adulteration 
of the projection data. 
 
Traditionally, the projection data is progressively 
sampled on a rectangular grid. This scheme is 
illustrated in figure 7. Correspondingly, the sampling 
matrix is to be defined straightforward as  

                                                  (17) 

0 0
0 .ϑ

ϕΩ

⎛ ⎞
⎜ ⎟

⎟
⎜ ⎟
⎝ ⎠

Due to the acquired knowledge about the basic shape 
of the projection spectrum, the values of individual 
elements in the sampling matrix can be determined as 
Ω ω= | |2( 1)M MRϑ ϕΩ Ω ω⎡ ⎤⎣ ⎦, = = + . With the 



relation between the sampling matrix Ω  and the 
period matrix T  

                                                                    (18) 
1

,2t Tπ −
Ω =

the period matrix can be calculated as 

[ ]
[ ]

( | | 1)
( | 1)

0 0
0 0
0 0

0 0
0 0
0 0
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M M

T T
T

R
R

T

ϑ

ϕ

π ω
π ω

π ω

=

+

+

⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜
⎜ ⎟
⎝ ⎠|

.⎟

ϕω

tω

ϑω ϑ

ϕ

t

2 tT

2Tϕ

2Tϑ

(19) 

Consideration of figure 7 indicates apparently that 
the 3-D frequency space is not optimally filled by 
progressive sampling procedure. The gaps between 
the double-cones denote lavishness in the frequency 
domain. On the basis of the double-cone shape, an 
interleaving sampling pattern can be utilized to 
eliminate the gaps and to increase the information 
content. In figure 8 such an interleaved sampling 
pattern is illustrated. 

ϑ
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ϕ
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t
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 Fig. 7. Schematic description of the progressive 
sampling on the rectangular grid 
 
According to the illustration in figure 8, the new 
optimal sampling matrix can be depicted as 

                 

2 2 2
02 2

0 0 2

.

t t t

opt
ϑ ϑ

ϕ

Ω Ω Ω

Ω Ω
Ω = −

Ω

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

       (20) 

Using the relation defined in (18), the new period 
matrix is correspondingly determined as 

                         

2

0
0

t t

opt
T T T

T T T

T T

ϑ ϑ

ϕ ϕ ϕ

=

− −

⎛ ⎞
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

                 (21) 

with T , T
t ϑ

and T
ϕ

 calculated in (19).  

 
Comparing the support point grid in figure 7 and the 
optimized support point grid in figure 8, it turns out 
that only one-fourth of the original points are needed. 
The individual double-cones do not touch each other, 
so that no aliasing arise. Therefore the projection 
signals can be adequately represented by the 
samples. 

 
Fig. 8. Schematic description of the interleaved 

sampling pattern 
 

5. CONCLUSIONS AND FUTURE WORK 
 
In this paper, the spectral behaviour of 3-D 
projection signals, especially in the case of plane 
integrals, in 3-D tomography is analysed. The 
approach involves exclusively a 3-D point of view. 
With the acquired knowledge that the band region of 
the projection spectrum is a head-to-head adhered 
double-cone of finite-length, a new optimized 
sampling pattern is proposed. This sampling pattern 
reduces the number of sampling points by the factor 
4 compared to the rectangular grid. 
 
Since the projection spectrum of a function of finite 
spatial extent is nonband-limited in the frequency 
domain in an exact sense, the effective band-width 
has to be considered. By analysing spatially non-
limited distributions, sharp band-limitations in the 
frequency domain can be achieved. However, 
detailed discussions of such an approach are very 
complex and beyond the scope of this paper. 
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