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Abstract: In this work a prioritized multiobjective model predictive control configuration 
for nonlinear processes is proposed. The process is modeled by an adaptive radial basis 
function neural network so that modifications through time can be identified. The 
different control targets are formulated in a multiobjective optimization problem which is 
solved using a prioritized evolutionary algorithm. The request for adequate information in 
order to adapt the dynamics of the model is considered as the top priority objective. The 
algorithm is tested through the control of a pH reactor and the results are in favor of the 
proposed methodology. Copyright © 2005 IFAC 
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1. INTRODUCTION1

 
During the last two decades, Model Predictive 
Control (MPC) has found great acceptance from both 
the academic and the industrial communities. Its 
success as control methodology is mainly due to its 
capability to incorporate all kinds of constraints, 
handle multi-input multi-output (MIMO) systems and 
be applied to processes where fundamental equations 
are not easily obtained (Qin and Badgwell, 2003; 
Camacho and Bordons, 1999). It is an optimal control 
method that selects a finite number of future moves in 
order to minimize an objective function, which 
considers both the deviation of the controlled 
variables from their set points and the control energy. 
Even though the theory of MPC is well matured, a 
number of difficulties arise, which mainly include the 
identification of the process and the on-line solution 
of the optimization problem that is formulated 
(Morari and Lee, 1999).  
 
More precisely, the implementation of such a control 
method requires a model capable of describing the 
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dynamics of the real process adequately. There is a 
great variety of models that have been incorporated in 
MPC methodologies and since the method is strictly 
associated with the use of computers, the most 
applicable are discrete time models. The wide spread 
of the MPC methodology is highly associated with its 
capability to handle non linear process models such 
as neural networks (Hussain, 1999; Henson, 1998). 
Lennox, et al. (2001) showed that utilization of 
neural networks instead of other models improved the 
performance of process control systems in a number 
of industrial applications. Among other neural 
network architectures, radial basis functions networks 
(RBF) seem to be quite popular for system modeling 
and control because of their relatively simple 
structure and their fast learning algorithms (Pottmann 
and Seborg, 1997).  

 

Another significant issue that concerns the selection 
of the appropriate model is the time dependency of 
the process. Quite often, adaptation of the process 
model is necessary in order to preserve the accuracy 
of the model over time. However, in order to 
implement a successful adaptation in a closed loop 
operation, sufficient information should be available. 
A commonly used methodology to achieve this, is to 

. 



introduce a persistent excitation constraint in the 
MPC configuration (Genceli and Nikolaou, 1996).  
 
It is obvious that such a requirement is contrary to the 
control target to drive the manipulated variables to a 
steady state. However, this is not a unique case in 
control applications. Very often multiple and 
competitive targets should be addressed 
simultaneously. The most common method to 
confront such difficulties is to weight each control 
goal in a single objective function. The main 
disadvantage of this method is that the closed loop 
performance depends on the successful selection of 
the weights, which are supposed to assign to each 
objective the proper importance. Consequently, a 
time consuming procedure is required to select those 
weights. To avoid it, multiobjective configurations of 
MPC have been tested by Tyler and Morari (1999), 
who used integer variables to prioritize the different 
objectives and by Kerrigan and Maciejowski (2002), 
who recommended the formulation of a hierarchy of 
the objectives depending on their importance. The 
concept was also exploited by Aggelogiannaki, et al., 
(2004), who considered adaptation of a linear finite 
impulse response (FIR) process model as a first 
priority objective.  
 
As mentioned before, a key issue in the 
implementation of nonlinear MPC configurations is 
the efficiency of the algorithm which is used to solve 
the on-line optimization problem. Among other 
methodologies, the requirement of efficient 
optimization algorithms in control engineering has 
been confronted by using evolutionary computation. 
Evolutionary algorithms are search methods that have 
borrowed their principles from natural selection. 
Fleming and Purshouse (2002), review the 
applications of those algorithms in control 
engineering, while a number of publications 
recommend the implementation of such algorithms in 
MPC configurations (Sarimveis and Bafas, 2003; 
Potočnik and Grabec, 2002; Martinez, et al., 1998). 
During the last two decades a number of evolutionary 
multiobjective optimization methods based on the 
idea of genetic algorithms and simulated annealing 
(Zitzler, et al., 2000; Deb, et al., 2000; Suman, 2004) 
have been developed. A significant advantage of 
those algorithms is that they can be used to optimize 
the different objectives simultaneously. In this way, a 
set of optimal solutions, known as the Pareto optimal 
set, can be obtained. Nevertheless, those algorithms 
ignore any knowledge relative to the importance of 
each objective and intend to find solutions that 
maintain the diversity and distribution of the optimal 
set. Consequently, those methodologies are more 
appropriate for design problems and not for on line 
optimization where a unique solution must be 
supplied the process.  
 
Following the issues mentioned above, a new 
nonlinear MPC configuration is proposed in this 
work, which is based on an RBF neural network 
dynamic model of the real process. The weights that 

multiply the outputs of the hidden layer are adapted 
over time to follow the changes of the process. Then, 
a hierarchy of the control targets is formulated and 
optimized with a simulated annealing based 
multiobjective evolutionary algorithm. The top 
priority objective is the requirement of the persistent 
excitation as far as the outputs of the hidden layer are 
concerned, so that the successful adaptation of the 
weights is guaranteed. The target of this specially 
designed evolutionary algorithm is to produce a 
single solution and not the entire optimal Pareto front. 
 
The rest of the article is formulated as follows. In 
section 2 the adaptive RBF-MPC configuration is 
described in more details. In section 3 the prioritized 
multiobjective simulated annealing based algorithm is 
presented. The overall methodology is tested through 
the control of a pH reactor in section 4. Finally, the 
conclusions derived from this work are outlined in 
the last section.  
 
 

2. THE PROPOSED ADAPTIVE RBF-MPC 
CONFIGURATION 

 
2.1 MPC and identification. 
 
A typical MPC methodology based on an FIR process 
model predicts the value of the controlled variables 
over a finite horizon (ph) using n previous values of 
the manipulated variables. The optimization problem 
solved at each time point is of the following form:  
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where is the vector of the predicted values of the cv 
controlled variables at each future time point t+i, u is 
the vector of the mv  manipulated variables, G

∧
y

j  
j=1,…,n are the cv× mv FIR model coefficients, ch is 
the control horizon, d is the estimated disturbance at 
time point t, W and R are weight matrices. The 
optimization problem (1) is solved subject to Eq. (2) 
that poses upper and lower limits on the input 
variables. In order to simplify the problem, output or 
input move constraints are not considered in the MPC 
formulation. To satisfy the persistent excitation of the 
input variables and provide to the control scheme the 
capability of closed loop model adaptation, an 
additional constraint has been added (Genceli and 
Nikolaou, 1996; Ǻström and Wittenmark, 1995). This 
constraint requires the information matrix (that is 
formulated at each future time point t+i, i=1,…, ph, 
as a function of the m last regression vectors ( )tφ ) to 
be well conditioned (Eqs. (4), (5)): 
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The value of variable µ is minimized with respect to 

e next future values of the manipulated variables 
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where ρ1, ρ2 are positive real numbers, I is the n×n 
identity matrix, λ is the forgetting factor and A>B 
means that the square matrix A- B is positive definite. 
 
2.2 Adaptive RBF neural network. 
 
Radial basis function networks are simple in structure 
neural networks that consist of three layers, namely 
the input, the hidden and the output layer. 
Development of an RBF network based on input-
output data includes the computation of the number 
of nodes in the hidden layer and the respective 
centers and the calculation of the output weights, so 
that the deviation between the predicted and the real 
values of the output variables over a set of training 
data is minimized. The method utilized to train neural 
networks in this work is based on a fuzzy partition of 
the input space and is described in details in 
Sarimveis et al. (2002). Due to the special RBF 
architecture, although the relationship between the 
input and the output variables in the produced model 
is nonlinear, the output of the model is a linear 
combination of the responses of the hidden nodes. 
Thus, the RBF network model can easily correct itself 
over time by adapting the output weights, using a 
linear adaptation technique such as the recursive least 
squares (RLS) with forgetting factor method (Ǻström 
and Wittenmark, 1995),  that is adopted in this work. 
To incorporate a proper closed loop adaptation of the 
RBF network in an MPC configuration, the 
implementation of a persistent excitation constraint 
similar to the one introduced in the previous section, 
can also guarantee the collection of adequate on-line 
information. However, the regression vector now 
contains the outputs of the hidden layer and Eqs. (4), 
(5) should be converted as follows:  
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onse of the th hidden node. The upper bound of 
Eq. (4) is satisfied anyway since there are upper 
limits for the values of the input variables and 
sequentially for the outputs of the hidden layer. The 
request to keep the outputs of the hidden layer excited 
is applied only on the next time step of the prediction 
horizon, in order to reduce the computational burden 
of the algorithm. That means that we apply Eq. (6) 
only for i=1. 
 
2.3 The propo
 
In this subsection the prioritized MPC configurati
is

aims at the simultaneous identification of the process 
changes through the adaptation procedure, and the 
improvement of the closed loop response. 
Furthermore the tuning effort required for the typical 
design of such a controller is reduced. In order to 
achieve this, a hierarchy of the different control goals 
is formulated instead of weighting them in a single 
objective. This hierarchy is of descending order so 
that the high priority objectives are optimized first.  
 
The first modification of the proposed configuratio
c
relaxing the hard constraint of keeping inputs excited 
firstly suggested by Genceli and Nikolaou (1996) is 
further exploited. In this work the constraint is 
transformed to an optimization problem by 
introducing an additional variable µ in the persistent 
excitation equation (6), which is modified as follows: 
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subject to the constraints of the initial optimization 
problem (Eq. (2)) and the modified persistent 
excitation constraint (Eq. (8)). This optimization 
problem is regarded as the top priority one and is 
solved first: 
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his modification avoids infeasibility iss
 the choice of parameter ρ  that may arise when the 

separated in 
v new functions, one for each controlled variable. 

 
T ues related 
to 1
requirement is expressed as a hard constraint. The 
proposal of Genceli and Nikolaou (1996) to add the 
parameter µ in the objective function of Eq. (1) can 
also avoid infeasibilities but has the drawback that an 
extra tuning effort is necessary to assign an 
appropriate weight to this control target. 
 
Then the objective function of Eq. (1) is 
c
These objective functions weigh the deviation of the 
particular variable from its set point value and the 
control energy of the manipulated variables:  
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for j=1,…, cv , where the order depends on the 
portance of each variable. Each optimization 

 

im
problem is solved subject to constraint (Eq. (2)), but 
should also satisfy the persistent excitation criterion 
(Eq. (8)) for µ=µ* and should not deteriorate previous 
in rank objectives. For each controlled variable j, one 
(if the system is square, cv=mv) or a group of 
manipulated variables can be associated based on the 
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experience on the process. Tuning of the move 
suppression weights Rj is performed by assigning 
large weights to the inputs associated to the next in 
rank controlled variables. In this way control energy 
is preserved for all the controlled variables. 
 
 

3. MULTIOBJECTIVE OPTIMIZATION 
ALGORITHM BASED ON THE PRINCIPLES OF 

 
The multio esented in 
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bjective MPC configuration pr
section requires the calculath

unique solution at each time step and not the entire 
Pareto front. This section describes the new 
stochastic algorithm that is proposed to approximate 
this unique solution of the multiobjective 
optimization problem. The algorithm is a random 
search methodology based on the simulated annealing 
principle that also considers the known hierarchy of 
objectives (Eq. (12)). 
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To improve its performance the optimal value found 
t each time step is used as the initial point for the 

 

a
next optimization problem. Also, a non-uniform 
mutation operation is applied to accelerate the 
convergence. The parameters of the algorithm are the 
initial temperatures corresponding to the different 
objectives Tin,j, the number of iterations maxiter  and 
the rate that the temperatures change rb , which is 
positive and less than 1. Finally, an additional penalty 
parameter b is used to incorporate the persistent 
excitation criterion in the first objective. Thus, the top 
priority objective is augmented according to the 
following equation:  
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search space. Set T =T . 

2) objective functions for 
the initial solution . Set iter=1. 

3) algorithm. The 
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4) ution according to the 
non-uniform mutation: 

ber 0≤ rand ≤1 

 binary number bin  
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z w(l 5) 
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 END 

the probabilities of the new solution to 
survive: 

 

ming eig=z
 
T e given below. 
 
1) Define the parameters of the algorithm and the

j in,j
 

Calculate the values of all 
z1

 
If iter>maxiter terminate the 
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Produce a new random sol

FOR l=1 to mv·ch +1 
 Generate a random num

 Generate a random
IF in=0 
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 ELSE IF bin=1 
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END 
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THEN ziter+1=znew  

ELSE z =ziter   

 
7)  Tj·rb 1,…,cv+1 and iter=iter+1 

introduce to the algorithm the 
rioritization of the control targets, a different initial 

N 

4.1 Description 

n is tested through a 
H reactor. This process is highly nonlinear and is 

iter+1
END 

Set Tj = , j=
 
8) Return to step 3. 
 
Remark. In order to 
p
temperature is used in the simulated annealing 
concept for each objective. If the temperatures are 
given in a ascending order then the probabilities of 
accepting a worse than the current solution are higher 
for the objectives of less priority. 
 

4. APPLICATIO
 

of the process. 
 
The proposed MPC configuratio
p
often considered as a benchmark problem for 
nonlinear control methodologies. (Krishnapura and 
Jutan, 2000; Nie, et al., 1996). A stream of acetic acid 
of flow rate F1 and a stream of sodium hydroxide 
base of flow rate F2 enter a continuous stirred tank 
reactor, as it is showed in Fig. 1. The concentrations 
of the reactants in the inlet streams are C1 and C2 
respectively.  The controlled variable of the process is 
the pH of the outlet stream and the manipulated 
variable is the base stream flow, F2. The dynamic 
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behavior of the process is described by the material 
balances as they are given by Eqs. (20), (21). 
  

 ( )1dw
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here V is the volume of the mixture inside the 
 
w
reactor and is supposed to remain steady and w1 and 
w2 are the concentrations of the acid and the base 
respectively in the outlet stream. The equilibrium 
relationships that hold for acetic acid and water 
associate the value of pH with the concentrations of 
the reactants according to the following equation: 
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here pKa=-log10Ka and Ka is the equilibrium 

 

 
w
constant for acetic acid. The process parameter values 
can be found in Krishnapura and Jutan (2000). The  
nonlinear character of the process is apparent, when 
the steady state behavior is studied (Fig. 2).  
 
 
4.2  Identification of the process using neural 
network. 
 
For the development of the RBF network 3000 input-
output data points were generated, by assigning 
random value between 300 and 530 l/min to the input 
variable. 2500 pairs were used to train the network 
while the rest of them were used for validation. The 
differential equations were solved using the ode45 
function of Matlab. Data were collected using a 
sampling interval of 1 min. The resulting network 
consisted of L=51 nodes in the hidden layer. The 
weights were subsequently adapted on line using the 
described method. 

 
 
Fig. 1. The continuous stirred tank pH reactor. 
 
4.3  Application of the proposed MPC configuration-
Results  
The proposed algorithm is compared with a 
conventional MPC algorithm that uses an FIR linear 
model to predict the future values of pH. The 
parameters of both controllers are summarized in 
Table 1, where R, W  refer to the scaled values of the 
input and output variables. The parameters of the 
optimization algorithm can be found in Table 2. 
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Fig. 2. Steady state pH curve by changing the flow 
rate of the base stream.  
 
 

Table 1 Parameters of the two MPC configurations 
 

Parameter Proposed MPC Conventional MPC 
ph 15 15 
ch 5 5 
n 10 10 
m 60 - 
λ 1 - 
ρ1 10-5 - 
R 0.1 0.1 
W - 1 
umin 460 460 
umax 515 515 
µmin 0 - 
µmax 10-5 - 

 
Table 2 Multiobjective optimization algorithm 

parameters  
 

Parameter Value 

Tin
4 1010 10

T
⎡ ⎤⎣ ⎦  

rb 0.99 
maxiter 3500 
Cv 1 
mv 1 
B 10 

 
To evaluate the proposed configuration a rapid 
change of a process parameter is enforced. Thus, at 
time point 10 the acid equilibrium constant is reduced 
from 1.76 10-5 to 10-6. The set point of the process is 
pH=7. The responses of both control methodologies 
are depicted in Fig. 3. It is obvious that the 
implementation of a linear non adaptive model is not 
adequate to follow such changes. On the contrary the 
non linear adaptive controller manages to reject the 
disturbance and drive the system to  pH=7 within 20 
time steps. The requirement of the persistent 
excitation is also satisfied as Fig. 3 denotes, and an 
unstable behavior of pH is avoided. The 
computational time for solving the multiobjective 
optimization problem using Matlab 6.5 in a Pentium 
IV 1400 MHz machine was on average 12s which is   
much less that the sampling time of 1 min that was 
utilized. 

F1, C1 F2, C2

pH, w1, w2V 

. 
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Fig. 3. Response of the two MPC configurations in a 

rapid change of the acid equilibrium constant Ka.  
 
 

CONCLUSIONS  
 
A new MPC configuration was suggested for the 
control of highly nonlinear and relatively slow 
systems, which can also be time varying. Using an 
adaptive RBF network simultaneously with the 
multiobjective configuration, closed loop 
identification of the process is successfully 
performed, mainly due to the high priority that is 
assigned to the persistent excitation requirement. 
Furthermore, the capabilities of evolutionary 
algorithms concerning the solution of the formulated 
multiobjective optimization problem were illustrated. 
A new algorithm based on simulated annealing with 
different initial temperatures for each objective 
function was introduced in order to obtain an optimal 
solution that satisfies the known hierarchy of 
objectives.  
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