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Abstract: A real-time non-invasive method for mean arterial blood pressure
(MAP) estimation is presented. MAP is estimated by effectively combining two
components: one describing the low frequency behaviour and one the fast variations
of MAP. The method, developed on 20 volunteers under anaesthesia allows for
statistically significant improvement with respect to the standard cuff system. This
approach represents a major improvement to surgical routine by providing more
information about the patient’s haemodynamic state without requiring additional
sensors. Further, it allows for the use of automatic MAP control also in those
routine operations where only the standard non-invasive MAP monitoring is
applied. Copyright c©2005 IFAC.
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1. INTRODUCTION

Blood pressure is a patient’s vital parameter and
is therefore constantly monitored during surgery
or intensive care. Mean arterial blood pressure
(MAP) is related to the haemodynamic state of
the patient and various events such as blood loss,
surgical stimulation or drug infusions can lead to
MAP changes during surgery. A strong external
painful stimulation, i.e. skin incision by the sur-
geon, triggers the autonomic stress response of
the patient, which leads to fast MAP and heart
rate (HR) increases. This reaction of the body to
external painful stimulation represents one of the
most important causes of blood pressure changes
in the surgical theater.
During surgery the patient is anaesthetized. A
balanced anaesthesia can be defined as a reversible
pharmacological state where the patient’s muscle

relaxation, analgesia and hypnosis are guaranteed.
Thus, a fundamental component of anaesthesia
is the suppression of pain and consequently of
patient’s reactions to the painful surgical stimu-
lation. However, since pain is a highly subjective
feeling, no specific measurement of pain is avail-
able for unconscious patients. The International
Association for the Study of Pain defines pain as
an unpleasant sensory and emotional experience
associated with actual or potential tissue damage.
Thus, it may even be improper to speak about
pain during general anaesthesia when the subject
is unconscious (Petersen-Felix et al., 1998). There-
fore, the intraoperative administration of opiates
is not directly related to pain treatment (Habibi
and Coursin, 1996), but to the suppression of
the patient’s autonomic stress reactions to surgi-
cal stimulation, which must be minimized during



surgery (Prys-Roberts et al., 1990). In this sense,
continuous control of blood pressure represents an
end point for balanced anaesthesia. The differ-
ent existing methods to acquire MAP can be di-
vided into two main categories: invasive and non-
invasive methods. The invasive method consists of
a cannula inserted into the arteria radialis. This
procedure, however, is expensive, time consum-
ing and poses risks of trauma and infections for
the patient. Thus, in order to contain the occur-
rence of complications and the cost of treatment,
non-invasive (oscillometric) measurement of blood
pressure is generally preferred to the insertion of
an intra-arterial catheter, whenever an invasive
monitoring is not required for specific clinical
reasons. Different methods of non-invasive blood
pressure monitoring already exist, some of them
deliver a continuous beat-to-beat measurement
(Yamakoshi et al., 1980; Mackay, 1964). All these
methods, however, require additional equipment
and are sensitive to the positioning of the sensor.
Therefore, the simple cuff system is still the most
widely used non-invasive blood pressure monitor-
ing device.
Due to physical limitations of the device and pa-
tient’s comfort, the standard sampling time for
the oscillometric determination of blood pressure
is relatively high (5 min). This sampling time is
too long compared to the frequency of the fast
blood pressure variations caused by the autonomic
stress reaction. Due to this mismatch the system
is not capable of keeping track of the important
fast variations in the MAP signal, leading to a
considerable lack of information.
A robust and reliable estimation of blood pres-
sure during two consecutive non-invasive measure-
ments would cover the lack of information caused
by the long sampling time of the device. Having a
continuous estimation of the blood pressure signal
would represent a major improvement, providing
the anesthetist continuous blood pressure infor-
mation, while keeping the stress for the patient,
risks and costs minimal. Further, it would repre-
sent a key step in the development of automatic
control of blood pressure. In anaesthesia different
control loops already exist to control, for example,
depth of hypnosis (Gentilini et al., 2001), muscle
relaxation (Stadler et al., 2003) or MAP (Gentilini
et al., 2002). However, up to now it has not been
possible to use the MAP controller when only non-
invasive MAP measurements are available, which
still represent the standard clinical procedure.
Various attempts to relate blood pressure to other
physiological signals already exist (Allen and Mur-
ray, 1999; Gulcur and Bahadirlar, 1998; Pinna et
al., 1996). An estimation method based on pulse
arrival time as additional signal has also been pub-
lished (Chen et al., 2000). The method, however,
suffers from long time lags and is therefore not
applicable to on-line estimation.
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Fig. 1. Estimation algorithm

Unlike MAP, HR is always acquired at high fre-
quency. The aim of our investigation was to eval-
uate whether additional information about the
high frequency behaviour of MAP could be de-
rived from a routinely available signal such as HR
and whether, despite inter-patient variability, an
efficient algorithm could be developed to reliably
estimate MAP, allowing us to non-invasively mon-
itor MAP in real time without requiring to add
sensors to the standard cuff system.

2. METHODS

The data used for the development of the method
were obtained from a volunteer study. A de-
tailed description of the study design is given in
the appendix. For each patient two sets of data
were available: the HR signal and the invasively
recorded MAP signal, referred to as the ”true
data”. From the true MAP signal, two signals
were constructed to mimic the intermittent non-
invasive measurements. Two different sampling
methods were considered:

- constant sampling frequency of 5 min;
- variable sampling frequency, according to the

following algorithm: starting from a sampling
time of 5 min, if the difference in two sub-
sequent measurements exceeds ± 7 mmHg,
the sampling time is decreased to 2.5 min
and re-set to 5 min if the difference between
two subsequent measurements with sampling
time 2.5 min is lower than ± 7 mmHg.

The MAP signals obtained in this manner are re-
ferred to as ”MAP measurements” with constant
resp. with variable sampling rate. The hypothesis
to be tested is that MAP can be estimated by
combining two components: MAP measurements
with variable sampling rate, keeping track of the
slow variations in MAP, and an estimation of fast
MAP variations based on HR, as shown in Fig.
1. The so obtained signal is referred to as the
estimated MAP.
The relationship between HR variations and MAP
variations was postulated to be linear and mod-
elled by a discrete ARX model structure:

y(t) + a1 · y(t − 1) + ... + ana
· y(t − na) =

= bnk
· u(t − nk) + bnk+1 · u(t − nk − 1) +

+ bnk+nb
· u(t − nk − nb) + e(t) (1)



The hypothesis test consists of two main steps:
estimation of model order and coefficients and
performance assessment by comparison of the
estimated MAP signal with the true data, as
described in the following paragraphs.

2.1 Parameter Estimation

The identification of model order and coefficients
was based on the true data, acquired at 128 Hz
during the volunteer study. The true HR and
MAP signals were preprocessed to remove out-
liers, mean and trends. Both signals were filtered
through a 3rd order band-pass Butterworth filter
with a low cut-off frequency of 0.0003 Hz and a
high cut-off frequency of 0.003 Hz, according to
the frequency range of the fast variations chosen
to be investigated. The sampling time adopted for
the ARX model was 10 sec. For each volunteer,
half of the data available were used as identifi-
cation and half as validation data set. The model
coefficients were determined through a single least
squares (LS) estimation procedure on the whole
identification data set. The model estimated in
this way allows to estimate the fast variations of
MAP on the basis of the HR signal. The input
signal to the model is the HR signal, the output is
an estimate of the fast variations of MAP, which
added to the MAP measurements with variable
sampling rate generates the estimated MAP. The
estimated MAP to be compared with the true
data was generated starting from a HR signal with
a sampling time of 10 sec.
Since the order of the linear model to be used was
not known a priori, different model orders were
tested by repetition of the estimation procedure.
Models with number of coefficients (na and nb)
varying from 1 to 5 and a delay (nk) of 0 or 1
were estimated and their performance distribution
among the volunteers was evaluated as described
in the following section. The best order was then
selected as the one having the highest mean per-
formance among the volunteers.
So far, the model was assumed to be generally
valid for all volunteers. However, inter-patient
variability represents a fundamental issue in de-
veloping biological models. Not always is it pos-
sible to identify a generally valid model able to
adequately describe the behaviour of all subjects
without requiring individual estimation of the pa-
rameters. Thus, in addition to the described iden-
tification of the generalized model over the whole
volunteer set, a best model was estimated for each
of the considered subjects with ”individualized”
model order and parameter values. These models
are referred to as the ”individualized models”.

2.2 Performance Assessment

For validation of the method, the estimated MAP
was compared with the true MAP and perfor-
mance of the estimation was assessed by Pearson
correlation coefficients (CC), root mean square of
estimation errors (RMSE) and fit. This compari-
son was performed for every volunteer on the cor-
responding validation data, so that a distribution
of CC, RMSE and fit among the volunteers was
obtained. The estimation errors are defined as:

eestim = 100 ·
(ŷ − y)

y
(2)

where ŷ is the estimated value of the considered
variable y. The fit defines the percentage of output
variations around its mean, which could be de-
scribed by the model, according to the standard fit
definition in system identification (Ljung, 1999):

fit = 100 ·

(

1 −

∥

∥ŷ − y
∥

∥

∥

∥y − y
∥

∥

)

(3)

where ŷ is the estimated value of the considered
variable y and y its mean value. Note that the
fit can also take negative values, meaning that
the estimate of the signal is worse than the one
obtained by just averaging it.
In order to assess the performance improvement
attributable to the estimation of fast variations,
the performance of the estimation was compared
with that of the measurement with variable sam-
pling rate alone. In addition, to evaluate the im-
portance of inter-patient variability, the perfor-
mance for the individualized and the generalized
models were compared.

3. RESULTS

3.1 Parameter Estimation

Mean observation time per patient was 266 min,
ranging from 227 to 302 min. Volunteers No. 10
and No. 15 presented an almost flat MAP over the
duration of the study despite external stimulation
and were therefore excluded from the analysis.
The highest mean correlation coefficient cri-
terium, the highest mean fit criterium and the
minimum mean RMSE criterium all led to the
identification of the same model order as the best
one. For this model order the LS-estimates of
model coefficients and the delay are reported in
Table 1.

3.2 Performance Assessment

For the best performing model, the performance
indicators are summarized in Table 2. The fit



Table 1. LS coefficients estimation for
the best performing model.

a1 -0.9995

b1 1.0626

b2 -2.5289

b3 2.2326
b4 -0.7689

nk 1

Table 2. Performance indicators among
the volunteers for the best performing

model.

Vol.No. Fit(%) CC RMSE(%)

1 40.5 0.81 4.99

2 48.04 0.87 6.24

3 39.18 0.83 4.62

4 56.60 0.90 3.79

5 66.02 0.94 4.68

6 65.43 0.94 5.34

7 66.99 0.95 4.68
8 74.83 0.97 4.20

9 72.44 0.96 4.64

10 - - -
11 41.65 0.87 6.16

12 60.40 0.92 5.81
13 71.18 0.96 4.25

14 61.52 0.92 5.58
15 - - -
16 65.28 0.94 3.95

17 67.39 0.95 4.10
18 64.14 0.93 3.59
19 66.54 0.95 4.87

20 73.08 0.96 4.12
mean 61.18 0.92 4.76

sd 11.40 0.05 0.80

distribution among the volunteers ranged from
39.18% to 74.83% with a mean value of 61.18%
and a standard deviation of 11.4%. The corre-
lation coefficients between estimated and actual
values of MAP ranged from 0.81 to 0.97 among
the volunteers with a mean value of 0.92 and
a standard deviation of 0.05. The RMSE values
varied from 3.59% to 6.24% with a mean value of
4.76% and a standard deviation of 0.8%.
Fig. 2 shows the different fit distributions ob-
tained by measurements with constant sampling
rate (a), measurements with variable sampling
rate (b) and estimated MAP (c). Performance
improvement between the latter two cases was sta-
tistically assessed by a paired t-test (p=0.0003).
The results of the performance comparison be-
tween the generalized and the individualized mod-
els is reported in Fig. 3. The fit of the individual-
ized models reached from 39.61% to 76.03% with a
mean value of 61.95% and a standard deviation of
11.5%. The statistical significance of the accuracy
loss caused by neglecting inter-patient variability
was evaluated by a paired t-test (p=0.077).
Fig. 4 and 5 show the signal evolution of true and
measured MAP, estimate MAP and HR for two
volunteers.
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Fig. 2. Fit between true MAP and (a) measured
MAP with constant sampling rate (b), mea-
sured MAP with variable sampling rate and
(c) estimated MAP. Distribution among the
volunteers.
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Fig. 3. Fit between true and estimated MAP
obtained by (a) the generalized model or
(b) the individualized models. Distribution
among the volunteers.
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Fig. 4. Temporal signal evolution of true and mea-
sured MAP with variable sampling rate (top),
estimated MAP (middle) and HR (bottom)
for volunteer No.11.

4. DISCUSSION

The limit of the non-invasive cuff measurement
device lies in its high sampling interval that
doesn’t allow for tracking of fast blood pressure
changes. Fast blood pressure changes, however,
represent an important factor during surgery,
since they are linked to the autonomic stress re-
action of the patient, which has to be minimized
through intraoperative opiates infusion.
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Fig. 5. Temporal signal evolution of true and mea-
sured MAP with variable sampling rate (top),
estimated MAP (middle) and HR (bottom)
for volunteer No.14.

The standard sampling time of 5 min used in
clinical practice is not the minimum allowed by
physical considerations, so a simple increase in
the sampling frequency of the device could al-
ready result in a performance increase. In order
to perform a significant evaluation of the im-
provement achieved through the estimation proce-
dure proposed, the performance of the estimation
method was compared to the performance of an
improved cuff device. In the improved cuff device
the sampling frequency is increased according to
a variable sampling rate algorithm, still respect-
ing the limits imposed physical limitations and
patient’s comfort. The sampling rate algorithm
varies the measurement frequency adaptively de-
pending on the entity of the changes between
consecutive measurements, allowing for a perfor-
mance increase with respect to the standard cuff
measurements with constant sampling rate, as
shown in Fig. 2 (a)–(b). The remaining perfor-
mance lack is represented by those variations of
even higher frequency that cannot be covered by
simply increasing the sampling frequency further.
Thus, it represents the information lack addressed
by our estimation procedure.
In the volunteer study, external painful stimula-
tion triggered the patient’s autonomic stress re-
action. This reaction leads to both blood pres-
sure and heart rate increases. Therefore, it is rea-
sonable to assume that the fast changes due to
stress reaction in MAP and HR could be related.
However, there is no reason to assume that the
same should hold also for the slow variations.
Therefore, additional measurements of the low
frequency component are still needed in order to
track the whole signal evolution of MAP.
Application of anaesthetics and analgesics clearly
influences patient’s reactions to painful stimuli. In
order to take this into account, drug dosages and
administration patterns were changed between ex-
periments as well as during each single experi-

ment, so that the model derived can be assumed
to be valid over a broad range of infused drug
concentrations.
The estimated MAP obtained by combining the
low frequency measurement with variable sam-
pling rate and the estimation of high frequency
components shows a high correlation with the true
MAP signal over the validation data set, confirm-
ing that the proposed method leads to a reliable
estimation of MAP. Further, the estimation of
fast variations leads to a a statistically significant
improvement in the performance, as shown in Fig.
2 (b)–(c).
Addressing the issue of inter-patient variability,
the individualization of both model order and
model parameters did not significantly increase
the performance of the estimation as shown in
Fig. 3. Statistically, the generalized model can
be assumed to adequately describe all individuals
considered, with no significant loss in accuracy.
Thus, the generalized model identified proved to
be robust regarding inter-patient variability. A
close look at simulation results (Fig. 4 and 5)
shows that that performance could be further
increased by a more precise estimation of the
variation entity. The model proves to be accurate
in identifying the occurrence instants of fast varia-
tion in MAP, but less accurate in estimating their
amplitude. A major improvement would be repre-
sented by including in the estimation procedure a
further additional signal covering this remaining
lack of information.

5. CONCLUSIONS

We have presented an effective procedure to con-
tinuously on-line estimate mean arterial blood
pressure by means of HR and non-invasive inter-
mittent measurements. The method was proven
to be accurate and robust concerning inter-patient
variability. The model could be integrated in the
anaesthesia display to provide the anaesthetist
with important additional information on the
hemodynamic state of the patient when no contin-
uous measurement of blood pressure is available.
Further, the obtained improvement in the moni-
toring technique for MAP represents a key step
in the development of blood pressure automatic
control, allowing for using automatic MAP control
also in the standard clinical cases of non-invasive
blood pressure measurements.
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6. APPENDIX

The data set used for the analysis was obtained
from a volunteer study designed to explore the
effects of the hypnotic isoflurane and the anal-
gesic alfentanil on several clinical end-points and
to determine the reactions of such end-points to
experimental painful stimuli.
After local ethics committee approval, 15 male
and 5 female consenting healthy volunteers of
physical status ASA I were enrolled for the study.
From each subject, written informed consent was
obtained. The age of the group considered ranged
from 21 to 33 years, with an average value of
25 years. In addition to standard monitoring and
bispectral index monitoring (Rampil, 1998), the
neuromuscular activity of the volunteers was mon-
itored by stimulation electrodes over the ulnar
nerve. Arterial blood pressure was invasively mea-
sured with a catheter cannula inserted into the ar-
teria radialis. All parameters were recorded using
a Labview-based data acquisition system for off-
line analysis. General anaesthesia was induced by
the single breath technique with a mixture of 7%
sevoflurane in 60 % N2O and maintained by con-
tinuous administration of isoflurane in O2. Bolus
doses (0.15 mg/kg body weight) of mivacurium
were administered after loss of eyelid reflexes to
facilitate intubation.
The subjects were randomly assigned to two
groups receiving either fixed (predetermined) con-
centrations of alfentanil and stepwise varying con-
centrations of isoflurane or vice versa. Targeting
infusion policies algorithms maintained a con-
stant level of predicted drug concentration in the
plasma. Each volunteer was kept at seven dif-
ferent combinations of hypnotic and analgesic,
ranging between 0-400 ng/ml of alfentanil and
0-2.3% of isoflurane. Within each phase, after
reaching steady state conditions, a series of exper-
imental pain stimuli was applied in a randomized
sequence. Experimental stimulation applied con-
sisted of laryngoscopy, intubation, icewater-test,
trapezius squeeze, electrical tetanic stimulation of
the ulnar nerve (50 Hz, 60 mA, 5 sec) and auditory
evoked potential.


