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1. INTRODUCTION

The robust output regulation problem aims to design
a feedback control law for an uncertain plant such
that the output of the plant can asymptotically track
a class of reference inputs and/or reject a class of
disturbances while maintaining the closed-loop stabil-
ity. Here both the class of reference inputs and the
class of the disturbances are generated by autonomous
differential equations. For continuous-time systems,
the problem has been extensively studied since 1970s
for linear systems ( Davison (1976), Francis and Won-
ham (1976), Francis (1977) et al.) and since 1990s for
nonlinear systems (Isidori and Byrnes (1990), Huang
and Rugh (1990), Huang and Rugh (1992), Huang and
Lin (1993a), Huang and Lin (1994a), Khalil (1994),
Byrneset al.(1997),Khalil (2000), and Huang (2001),
to name just a few). Recently, a new framework for
studying the robust output regulation problem was
proposed in Huang and Chen (2004). Under this new
framework, the robust output regulation problem for
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a given plant can be systematically converted into
a robust stabilization problem for an appropriately
augmented plant, thus setting a stage for solving the
robust output regulation problem using a variety of
stabilization techniques.

In spite of extensive research on the continuous-time
nonlinear robust output regulation problem for over
a decade, the research on the discrete-time nonlinear
output regulation problem has been limited only to
the special case where the plant is assumed to con-
tain no uncertainty, e.g., Castillo and Gennaro (1991),
Castillo et al. (1993), Huang and Lin (1993b), and
Huang and Lin (1994b). The objective of this pa-
per is to study the robust output regulation problem
for a general class of discrete-time uncertain nonlin-
ear systems in a spirt similar to the recent work on
continuous-time nonlinear systems given in Huang
and Chen (2004).

Due to the page limit, the proof of the most results of
this paper is omitted. A full version of this paper can
be found in Lan and Huang (2005),



2. PROBLEM DESCRIPTION

Consider a discrete-time nonlinear system described
by

x(t + 1) = f(x(t), u(t), v(t), w), x(0) = x0,
e(t) = h(x(t), u(t), v(t), w), t = 0, 1, · · · (1)

wherex(t) ∈ <n is the plant state,u(t) ∈ <m the
plant input,e(t) ∈ <p the plant output representing
the tracking error,w ∈ <N the plant uncertain pa-
rameters, andv(t) ∈ <q the exogenous signal repre-
senting the disturbance and/or the reference input. It
is assumed thatv(t) is generated by an autonomous
system

v(t + 1) = A1v(t), v(0) = v0, t = 0, 1, · · · (2)

where all the eigenvalues ofA1 are simple and located
on the unit circle. Without lost of generality, assume
A1 is given by

A1 = diag{S0, S1, · · · , Sk} (3)

whereS0 = 1, 2k + 1 = n and

Si =
[

cos ωi sinωi

− sinωi cos ωi

]
, ωi > 0, i = 1, 2, · · · , k.

We will consider the class of dynamic state feedback
control laws of the form

u(t) = k(x(t), z(t))
z(t + 1) = g(x(t), z(t), e(t)) (4)

wherez(t) is the compensator state vector of dimen-
sionnc to be specified later. The dynamic output feed-
back controller can be viewed as a special case of (4)
when x(t) does not explicitly appear in (4). Letting
xc = col(x, z), the resulting closed-loop system can
be written as

xc(t + 1) = fc(xc(t), v(t), w), xc(0) = xc0

e(t) = hc(xc(t), v(t), w) (5)

where

fc(xc, v, w) =
[

f(x, k(x, z), v, w)
g(x, z, h(x, k(x, z), v, w))

]

hc(xc, v, w) = h(x, k(x, z), v, w)

For simplicity, all the functions involved in this setup
are assumed to be sufficiently smooth and defined
globally on the appropriate Euclidean spaces, with the
value zero at the respective origins. We also assume
that0 is the nominal value of the uncertain parameter
w, and f(0, 0, 0, w) = 0, h(0, 0, 0, w) = 0 for all
w ∈ <N .

Discrete-time Robust Output Regulation Problem.
Design a feedback control law of the form (4) such

that,
R1: the matrix ∂fc(0,0,0)

∂xc
is a Schur matrix, i.e., the

modulus of all the eigenvalues of the matrix∂fc(0,0,0)
∂xc

are smaller than1.
R2: the solution of the closed-loop system (5) is such
thatlimt→∞ e(t) = 0.

Remark 2.1.Using the center manifold theory for
map (Carr, 1981), it can be shown that condition
R1 implies that, for all sufficiently smallxc0, v0

andw, the solution of the closed-loop system (5) is
bounded for allt = 0, 1, 2, · · · . It can also be seen
that a special case of the above problem where the
plant does not contain the uncertain parameterw was
solved in Castillo and Gennaro (1991) and Huang
and Lin (1993b). From Theorem 2.2 of Huang and
Lin (1993b), it can be deduced that the robust output
regulation problem defined above is solvable only if
the following assumption holds.

A1: there exist sufficiently smooth functionsx(v, w)
andu(v, w) defined inV × W whereV andW are
some open neighborhoods of the origins of<q and
<N , respectively, such thatx(0, 0) = 0, u(0, 0) = 0,
and

x(A1v, w) = f(x(v, w),u(v, w), v, w) (6)

0 = h(x(v, w),u(v, w), v, w) (7)

Equations (6) and (7) are called discrete regulator
equations for uncertain nonlinear systems. However,
like the continuous-time case, solvability of the dis-
crete regulator equations is not sufficient for the solv-
ability of the robust output regulation problem. Addi-
tional assumption has to be imposed on the solution
of the discrete regulator equations. This additional
assumption is made to guarantee the existence of the
steady state generator introduced in the next section.

3. PROBLEM CONVERSION

In this section, we will establish a framework for tack-
ling the robust output regulation problem for discrete-
time nonlinear systems which is a discrete analog of
what was obtained in Huang and Chen (2004). Similar
to the continuous case, this framework will be estab-
lished in two steps. First, introduce the concepts of
discrete-time steady state generator and discrete-time
internal model, and establish the existence conditions
of the discrete-time steady state generator, and the
internal model. The internal model and the given plant
together defines an augmented system. Second, show
that, in a suitable set of coordinate and input trans-
formations, the solvability of the robust stabilization
problem for the augmented system will lead to the
solvability of the robust output regulation problem of
the original plant. As a result, we can convert the
robust output regulation problem of the given plant



into a robust stabilization problem of the augmented
system.

Discrete-time Steady State Generator. Let go :
<n+m → <l be a mapping for some positive integer
m ≤ l ≤ n + m. Under assumption A1, the discrete-
time nonlinear system (1) and (2) is said to have a
discrete-time steady state generator with outputgo if
there exists a triple{θ, α, β}, whereθ : <q+n → <s,
α : <s → <s, andβ : <s → <l for some integers are
sufficiently smooth functions vanishing at the origin,
such that

θ(v(t + 1), w) = α(θ(v(t), w))
go(x(v(t), w),u(v(t), w)) = β(θ(v(t), w)) (8)

If, in addition, the linearization of the pair(β(θ), α(θ))
at the origin is observable, then{θ, α, β} is called a
linearly observable discrete-time steady state genera-
tor with outputgo.

Remark 3.1.(i) The above definition is clearly a dis-
crete analog of the continuous steady state generator
introduced in Huang and Chen (2004). However, un-
like the continuous case where the steady state genera-
tor is a set of nonlinear differential equations, here the
steady state generator is a set of nonlinear difference
equations.

(ii) In the sequel, we will always assume thatgo(x, u) =
col(x1, · · · , xd, u) for some integer0 ≤ d ≤ n. In this
case, the steady state generator is a dynamic system
that can generate the partial (whend < n) or whole
(whend = n) solution of the discrete regulator equa-
tions. It is known that the information provided by the
solution of the discrete regulator equations is neces-
sary for designing a feedback control law to solve the
output regulation problem. But since the solution of
the discrete regulator equations relies on the uncertain
parameter, it cannot be directly used in the feedback
control design. In contrast, the steady state generator
is independent ofv andw, the information provided
by the steady state generator can be used for feedback
design.

As will be seen later, the concept of the steady state
generator will lead to a general characterization of the
internal model. At this stage, let us first establish the
existence conditions for the discrete-time steady state
generator which is parallel to the one given in Lemma
3.1 of Huang and Chen (2004) for continuous-time
case. To this end, let us introduce a property of the
polynomial functions. Letπ(v, w) be a polynomial
in v with coefficients depending onw, we have the
following equivalent conditions.

Lemma 3.1.Assumeπ(v, w) is anm-dimensional an-
alytic function of v. Along the trajectory of (2), the
following are equivalent.

(i) There exist some set ofr real numbersa1, a2, · · · ,
ar such that

π(v(t + r), w)− a1π(v(t), w)− a2π(v(t + 1), w)

− · · · − arπ(v(t + r − 1), w) = 0 (9)

(ii) Let Ω = {ω | ω = l1ω1 + · · · + lkωk ≥
0, l1, · · · , lk = 0,±1,±2, · · · }. Then there exist
ω̂0 = 0, andω̂1, · · · , ω̂nk

∈ Ω for some finite integer
nk such that

π(v(t), w) =
nk∑

l=−nk

Cl(w, v0)ejω̂lt (10)

wherej =
√−1, and for l = 0,±1, · · · ,±nk, Cl

arem-dimensional column vectors, forl 6= 0, ω̂l =
−ω̂−l, and C∗l = C−l where C∗l is the conjugate
complex ofCl.

(iii) There exist some integers and functionsψl(w, v0) ∈
<m, l = 1, · · · , s, such that

π(v(t), w) =
s∑

l=1

ψl(w, v0)v[l](t) (11)

where

v[l] = [vl
1, vl−1

1 v2, · · · , vl−1
1 vq,

vl−2
1 v2

2 , vl−2
1 v2v3, · · · , vl−2

1 v2vq, · · · , vl
q].

Remark 3.2.By Lemma 3.1, if π(v, w) is a poly-
nomial function ofv or a trigonometric polynomial
function of t along the trajectory of (2), then there
exist an integerr and real numbersa1, · · · , ar such
thatπ(v, w) satisfies a difference equation of the form
(9). We will call the monic polynomialP (λ) =
λr − arλ

r−1 − · · · − a2λ − a1 a zeroing polyno-
mial of π(v, w) if π(v, w) satisfies (9).P (λ) is called
a minimal zeroing polynomial ofπ(v, w) if P (λ)
is a zeroing polynomial ofπ(v, w) of least degree.
Let πi(v, w), i = 1, · · · , I, for some positive inte-
ger I, be I polynomials inv. They are called pair-
wise coprime if their minimal zeroing polynomials
P1(λ), · · · , PI(λ) are pairwise coprime. Without lost
of generality, assumeCl 6= 0, l = 0, 1, · · · , nk in
(10). Then from (10), a minimal zeroing polynomial of
π(v, w) can be defined asP (λ) = (λ− 1)

∏nk

l=1(λ−
ejω̂l)(λ − e−jω̂l). Clearly, all the zeros ofP (λ) are
simple and lie on the unit circle.

We are now ready to give the sufficient conditions of
the existence of a discrete-time steady state generator.

Lemma 3.2.Under assumption A1, and assume there
exist I polynomialsπi(v, w) in v with their minimal
zeroing polynomialsPi(λ) = λri −airiλ

ri−1−· · ·−
ai2λ − ai1, i = 1, · · · , I, and a sufficiently smooth
function Γ : <r1+···+rI → <d+m vanishing at the
origin such that for allv(t) of the exosystem and all
w ∈ <N ,



go(x(v, w),u(v, w))

= Γ(π1(v, w), · · · , π1(Ar1−1
1 v, w), · · · ,

πI(v, w), · · · , πI(ArI−1
1 v, w)) (12)

then, the system (1) and (2) has a discrete-time steady
state generator with outputgo(x, u) as follows,

θ(v, w) = Tcol(θ1(v, w), · · · , θI(v, w))

α(θ) = TΦT−1θ (13)

β(θ) = Γ(T−1θ)

where T is any nonsingular matrix of dimension
rsum = r1 + r2 + · · · + rI , and fori = 1, 2, · · · , I,
θi = col(πi(v, w), πi(A1v, w), · · · , πi(Ari−1

1 v, w),
andΦ = diag(Φ1, · · · ,ΦI) whereΦi are the compan-
ion matrix ofPi(λ). Moreover, letE = (E1, · · · , EI)
be the jacobian matrix ofΓ at the origin of<(d+m)×rsum

whereEi ∈ <(d+m)×ri . If πi(v, w), i = 1, · · · , I, are
pairwise coprime, and the pair{Ei,Φi} is observable
for all i = 1, · · · , I, then the generator (13) is linearly
observable.

Based on the discrete-time steady state generator, the
discrete-time internal model is defined as follows.

Discrete-time Internal Model. Assume, for the non-
linear system (1) and (2),(θ, α, β) is a discrete-time
steady state generator with outputgo(x, u), the follow-
ing system

η(t + 1) = γ(η(t), x(t), u(t)) (14)

is called a discrete-time internal model with output
go(x, u) if

γ(θ(v, w),x(v, w),u(v, w)) = α(θ(v, w)) (15)

Attaching the internal model (14) to the given plant
(1) yields an augmented system as follows

x(t + 1) = f(x(t), u(t), v(t), w)

η(t + 1) = γ(η(t), x(t), u(t)) (16)

e(t) = h(x(t), u(t), v(t), w)

Performing coordinate and input transformation

η̄ = η − θ(v, w)

x̄i =
{

xi − βi(η), i = 1, · · · , d
xi − xi(v, w), i = d + 1, · · · , n

(17)

ū = u− βu(η) = u− [βd+1(η), · · · , βd+m(η)]T

on the augmented system (16) gives the following
system

x̄(t + 1) = f̄(η̄(t), x̄(t), ū(t), v(t), w)

η̄(t + 1) = γ̄(η̄(t), x̄(t), ū(t), v(t), w) (18)

e(t) = h̄(η̄(t), x̄(t), ū(t), v(t), w)

Theorem 3.1.Under assumption A1, and suppose that
the system (1) and (2) has a discrete-time steady
state generator(θ, α, β) with output go(x, u) =
col(x1, · · · , xd, u) and a discrete-time internal model
described by (14). Then, in the new coordinates and
input (17), the augmented system (18) has the property
that, for all trajectoriesv(t) of the exosystem, and all
w ∈ <N ,

f̄(0, 0, 0, v(t), w) = 0

γ̄(0, 0, 0, v(t), w) = 0 (19)

h̄(0, 0, 0, v(t), w) = 0

Remark 3.3.Theorem 3.1 states that, for all trajecto-
riesv(t) of the exosystem, and anyw ∈ <N , the origin
(η̄, x̄) = (0, 0) is the equilibrium point of the unforced
augmented system, and the error output equation is
identically zero at(η̄, x̄, ū) = (0, 0, 0). Thus, if a
controller of the form

ū(t) = k(x̄1(t), · · · , x̄d(t), ξ(t), e(t))
ξ(t + 1) = ζ(x̄1(t), · · · , x̄d(t), ξ(t), e(t))

(20)

whereξ ∈ <Z , k(0, · · · , 0) = 0, andζ(0, · · · , 0) = 0,
robustly stabilizes the equilibrium point of the closed-
loop system of (18) locally or globally for allv(t) ⊂
V andw ∈ W , then the following controller

u(t) = βu(η(t)) + k
(
x1(t)− β1(η(t)),

· · · , xd(t)− βd(η(t)), ξ(t), e(t)
)

η(t + 1) = γ(η(t), x(t), u(t)) (21)

ξ(t + 1) = ζ
(
x1(t)− β1(η(t)),

· · · , xd(t)− βd(η(t)), ξ(t), e(t))

solves the robust output regulation problem for the
original system (1) and (2) locally or globally. There-
fore, Theorem 3.1 has converted the discrete-time ro-
bust output regulation problem for the given plant into
a stabilization problem of the augmented system (18).

4. SOLVABILITY OF (LOCAL) ROBUST
OUTPUT REGULATION PROBLEM

In this section, we will solve the local robust output
regulation problem for the plant (1) by stabilizing the
corresponding augmented system. For this purpose, let

A =
∂f

∂x
(0, 0, 0, 0), B =

∂f

∂u
(0, 0, 0, 0)

C =
∂h

∂x
(0, 0, 0, 0), D =

∂h

∂u
(0, 0, 0, 0)

Theorem 4.1.Under assumption A1, and suppose that
(A,B) is stabilizable,(A,C) is detectable. If the



system (1) and (2) has a linearly observable discrete-
time steady state generator(θ, α, β) of the form (13)
with output go(x, u) = u, and for all λ such that
Pi(λ) = 0, i = 1, · · · , I,

rank

[
A− λI B

C D

]
= n + m (22)

Then the discrete-time robust output regulation prob-
lem is solvable by an output feedback control law.

Proof: Since the system (1) and (2) has a linearly ob-
servable discrete-time steady state generator(θ, α, β)
of the form (13) with outputgo(x, u) = u, letting
(M, N) be some controllable pair whereM is a Schur
matrix with appropriate dimensions, andT a nonsin-
gular matrix such thatTΦ − MT = NE gives a
discrete-time internal model of the form

η(t + 1) = Mη(t) + N(u(t)− β(η(t)) + ET−1η(t))

(23)

with output go(x, u) = u, whereΦ and E are as
defined in Lemma 3.2. Then there exists a coordinate
and input transformation of the form (17) withd = 0,

η̄ = η − θ(v, w), x̄ = x− x(v, w), ū = u− β(η)

This transformation converts the augmented system
(16) into the form of (18) with

f̄(η̄, x̄, ū, v, w)

= f(x, u, v, w)− f(x,u, v, w)

= f(x̄ + x, ū + β(η), v, w)− f(x,u, v, w)

= f(x̄ + x, ū + β(η̄ + θ(v, w)), v, w)− f(x,u, v, w)

γ̄(η̄, x̄, ū, v, w)

= Mη + N(u− β(η) + ET−1η)− α(θ)

= M(η̄ + θ) + N(ū + ET−1(η̄ + θ))− α(θ)

= (M + NET−1)η̄ + Nū + Mθ + NET−1θ − α(θ)

= (M + NET−1)η̄ + Nū

h̄(η̄, x̄, ū, v, w) = h(x, u, v, w)

= h(x̄ + x, ū + β(η̄ + θ(v, w)), v, w)

By Remark 3.3, it suffices to (locally) stabilize the
equilibrium point at the origin of (18) withv = 0
andw = 0. To this end, linearizing (18) at the origin
(x̄ = 0, η̄ = 0, ū = 0) with v andw being set to zero
gives

x̄(t + 1) = Ax̄(t) + BET−1η̄(t) + Bū(t)

η̄(t + 1) = (M + NET−1)η̄(t) + Nū(t) (24)

e(t) = Cx̄(t) + DET−1η̄(t) + Dū(t)

It can be shown that (24) is stabilizable and detectable.
In fact, noting that(A,B) is stabilizable andM is
a Schur Matrix, it is easy to conclude that (24) is
stabilizable by the decomposition

[
A− λI BET−1 B

0 M + NET−1 − λI N

]

=
[

A− λI 0 B
0 M − λI N

]


I 0 0
0 I 0
0 ET−1 I




To show that (24) is detectable, first note that(A,C) is
detectable andM+NET−1 = TΦT−1, the following
matrix




A− λI BET−1

0 M + NET−1 − λI
C DET−1


 (25)

has full rank for allλ /∈ σ(Φ) and |λ| ≥ 1. For the
caseλ ∈ σ(Φ), by Remark 3.2,λ is on the unit circle.
Thus, the following decomposition




A− λI BET−1

0 M + NET−1 − λI
C DET−1




=




A− λI 0 B
0 M − λI N
C 0 D







I 0
0 I
0 ET−1




shows that the matrix (25) also has full rank forλ ∈
σ(Φ) and |λ| ≥ 1 by the condition (22) andM is a
Schur matrix. Thus, (25) has full rank for all|λ| ≥ 1,
i.e., (24) is detectable.

As a result, system (24) can be stabilized by a dynamic
linear output control law of the form

ū(t) =−Kξ(t)

ξ(t + 1) = Qξ(t) + Le(t)

Finally, the following controller

u(t) =−Kξ(t) + β(η(t))

η(t + 1) = Mη(t) + N(u(t)− β(η(t)) + ET−1η(t))

ξ(t + 1) = Qξ(t) + Le(t)

solves the discrete-time robust output regulation prob-
lem for the original system (1) and (2).

5. CONCLUSIONS

In this paper, we have established a framework that
can convert the robust output regulation problem for a
class of discrete-time uncertain nonlinear plant into a
robust stabilization problem for an augmented system.
Due to this framework, similar to the continuous case,
the discrete-time robust output regulation problem can



always be tackled in two steps. The first step is to form
the augmented system which consists of the given
plant and the internal model. Whether or not the first
step can be accomplished depends on the existence of
the internal model, or what is the same, the steady
state generator. We have shown that the steady state
generator hence the internal model always exists if the
solution of the discrete regulator equations satisfies
conditions given in Lemma 3.2. The second step is to
robustly stabilize the augmented system either locally
or globally, which will in turn lead to the solution of
the local or global robust output regulation problem.

We have given the solvability conditions of the local
robust output regulation problem for a general class of
nonlinear systems.

Technically, the local version of the discrete-time ro-
bust output regulation problem does not pose more
specific difficulty than its continuous counterpart be-
cause the same eigenvalue placement technique works
for both the discrete-time and continuous-time sys-
tems. However, the global version of the discrete-time
robust output regulation problem seems to be more
challenging than its continuous counterpart because
the global robust stabilization problem for discrete-
time nonlinear systems is more difficult than that for
continuous-time systems. A simple example may be
motivating. Consider a scalar continuous-time linear
systemẋ = ax + u where the uncertain parametera
belongs to any fixed compact set. Clearly, a high gain
state feedback controlu = −Kx with K sufficiently
large robustly stabilizes the system. However, for a
scalar discrete-time linear systemx(t + 1) = ax(t) +
u(t), there exists no linear state feedback controller
that can robustly stabilizes the system when the uncer-
tain parametera belongs to an interval whose length
is greater than2.

Therefore, in order to handle the global robust output
regulation problem for discrete-time nonlinear sys-
tems, more research on the robust stabilization of the
discrete-time nonlinear systems has to be carried out
first. This is indeed one of our current research topics.
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