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Abstract: The neuro fuzzy system based on two independent structures is described, the 
first a neuro-observer system developed by use of dynamical neural networks, and the 
second as the control system based on fuzzy logic system. These structures are described 
by independent way and their properties are analyzed. Besides, the neuro-fuzzy system 
performance is proved by the application to the Bergman th blood Insulin-Glucose 
interaction model, the simulations show the neuro-fuzzy output as the insulin infusor 
output (insulin concentration), the glucose concentration estimated state is also described, 
as well as the inferential rules and the membership functions in the fuzzy. 
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1. INTRODUCTION 

 
The hybrid control designs based on neural networks 
and fuzzy systems have increased their applications 
mainly due to their accuracy, adaptability, and 
stability characteristics among others. These systems 
have worked using the best properties of both 
structures. For example Fuzzy inference provides an 
efficient way of handling imprecision and 
uncertainty while neural learning permits 
determining the model parameters using input-output 
data of the process. The hybrid system combines the 
capability of fuzzy reasoning in handling uncertain 
information (Wang 1997), and the capability of 
artificial Neural Networks in learning from processes 
(Poznyak et al. 1999); (Narendra and Parthasarathy 
1995); (Park et al. 1996); (Poznyak et al. 2001). 
Thus, the merits of the Fuzzy Neural scheme are 
faster convergence speed with smaller network size 
as compared to the general Neural Network (Jang  
1992); (Gorrini and Bersini 1994). Recently, 
considerable research has been devoted toward 
developing recurrent Neuro-Fuzzy models that are 
divided into two major classes. The former class 
includes those models with external feedback (Zhang 
and Morris 1999); (Mouzouris and Mendel 1997); 
(Jang 1992), while the later one includes fuzzy 
models with internal recurrency (Theocharis and 

Vachtsevanos 1996). However, the designs based on 
the mixing of the independent neural and fuzzy 
description have been applied poorly. These kinds of 
systems are simple because these have a structure 
compound by two parts: the first part the neural 
network and the fuzzy system in the second part. 
These structures are different of the neuro-fuzzy 
structures mentioned above because in some way the 
applications consists the connection between the 
Dynamic Neural Network (DNN) instead of the 
Static Neural Network like neuro-observer (Cabrera 
et al. 2003) and the Fuzzy system like a fuzzy 
control. So this system is not properly a Neuro-fuzzy 
system but that represents another alternative in this 
kind of system. 
 
The rest of this paper is organized as follows: section 
2 shows the structure of the suggested model for each 
one of the subsystems. In section 3, we applied the 
system to the Bergman’s insulin-glucose interaction 
model in blood while the simulations results are 
presented in section 4. In section 5 the results are 
discussed. Finally in the last section the conclusions 
are shown. 
 
 
 
 



     

2. INDEPENDENT NEURO-FUZZY 
STRUCTURE (INFS) 

 
In this section: the Dynamical Neural Network 
(DNN) (Poznyak et al. 1999), applied as a neuro-
observer and the fuzzy controller are described, the 
neuro-observer estimates the unmeasured states of 
the plant then the estimate states are applied to the 
fuzzy system to develop the control output signal. 
 
2.1 Differential Neural Networks 

The differential neural network (DNN) structure is 
proposed as in (Poznyak et al. 2001) to develop the 
model’s state estimate. The structure of this DNN is 
presented in (Fig. 1) and corresponds to a multilayer 
ANN of Hopfield’s (Catfollis 1994). The DNN-
observer dynamics is continuous in time is given by 
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where: 
- n

tx ℜ∈ˆ is the neural network vector of states, 

- m
tu ℜ∈  is the input, 

-  the matrix nxmA ℜ∈  is a feedback stable matrix 
, and should be selected a priori, 

- the matrices nxm
tW ℜ∈,1 , nxm

tV ℜ∈,1 and 

are nxm
tW ℜ∈,2 , nxm

tV ℜ∈,21 the weights 
matrices describing the connection among the 
hidden layers and output layer, 
 
 )( tuγ  is the control vector field, ( ) mℜ∈⋅σ they 
are functions of the sigmoidal type and are 
diagonal: 
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(2) 
with the elements as the sigmoidal functions 
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The learning laws for the weights of the DNN are 
given by a system of differential equations defining 
the matrix evolutions for nxm

tW ℜ∈,1 , 
mxn

tV ℜ∈,1 , nxk
tW ℜ∈,2 and kxn

tV ℜ∈,2  
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where ( )4,...,1=iki  are positive constants, and P is 
the positive solution of the following Riccati 
equation given by 
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Here A is a Hurwitz (stable) matrix providing the 
existence of a positive solution for (6) and 

[ ] 0,: >+= δδδ IHN T  (7) 
 

The function ( ) ks ℜ→ℜ⋅ :γ  is assumed to be 
bounded within a working zone, that is, ( ) uu ≤γ . 
Below we select ( ) uu =γ . The gain-matrix is 

mxnHPK ℜ∈Λ= −
ξ

1  . The constant matrices 1
1

−ΛW , 
1

2
−ΛW , 1−Λξ , iWΛ  are the procedure parameters that 

should be selected by the "try-to-test method". 

2.2 Fuzzy System 
 
The fuzzy interference method suggested by Takagi, 
Sugeno and Kang, known as the fuzzy model (Takagi 
et al. 1992) and (Takagi and Hayashi 1991), follows 
a multi-model approach and usually implement using 
neuro-fuzzy networks, based on process knowledge 
and input-output data. A Fuzzy model is composed 
of fuzzy rules that can be written in the following 
general form: 

( ) :lR  IF  ( )ku1  is lA1  and ( )ku2  is 
a lA2  AND …. AND   ( )kum   is  

l
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 where ( )lR  denotes the fuzzy rule, r is the number 
of rules, and ( ) ( ) ( ) ( )[ ]Tm kukukuku ,,, 21 K= is the 
input vector to the model at time k with. 

( ) ( )miku ii ,...,1=ℜ⊂ℵ∈ . ( )( )kugl  is a function 

describing the consequent part of ( )lR  which 
provides the rule output ( )kylˆ  at time k for a given 

input ( )ku , and ( )rlAl
i ,...,1=  are labels of fuzzy 

sets defined in the universe of discourse iℵ . 
 
Defining the number and the locations of the 
membership functions leads to partition of the 
premise space m

m ℵ×⋅⋅⋅×ℵ=ℵ 1 . The collection of 

fuzzy sets ( ) { }l
m

ll AAA ,....,1=  pertaining to the 

premise part of ( )lR  formulates a fuzzy region in iℵ  
that can be regarded as a multi-dimensional fuzzy set 
whose membership function is determined by 
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The above equation provides the degree to which a 
particular input vector u(k) belongs to the fuzzy 
region ( )lA . From a different point of view, ( )klµ  

represents the firing strength of the lth rule, ( )lR  
.The output of the model at time k, ( )kŷ , is 
determined using the weighted average 
defuzzification method: 
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The equation above indicates that the Fuzzy model 
follows a local modelling approach. The input space 
is first decomposed into r fuzzy regions. In each 
fuzzy region ( )rlAl

i ,...,1= , the behaviour of the 
system is locally described by the rule submodel 

( ) ( )kl ugky =ˆ  and the overall model output is 
derived as a fuzzy blending of the local sub-models. 
 
The INFS system structure in a block diagram is 
shown in the figure 
 

 
Fig. 1 Independent Neuro Fuzzy Structure. 
 
 

3. APPLICATION EXAMPLE 
 

To improved the INFS network it is necessary a 
model that has the observable property. The 
Bergman’s model (Bergmann 2002); (Khoo 2000), 
fulfills this condition and it is described by 

2

13323

23212

1111

)()(
)/)(()(

xy
xpxpx

tGxxxpx
Vtuxnx

B

=
+−=

Ρ++−−=
+Ι+−=

&

&

&

 

 

(11) 

 

where the states are insulin concentration (x1); 
glucose concentration (x2); insulin concentration in 
the remote compartment (x3). Due to the necessity of 
developing observer's system in the model, the 
observability study was done in a previous study 
with successful results see (Cabrera et al. 2003), and 
in this paper the Bergman’s is considered observable 
in a sense of non lineal system theory (Giccarela and 
Mora 1993). 

3.1 DNN parameters 
 
The Neuro-observer parameters was selected by 
several experiments and these are described below, 
first the Hurwitz matrix 
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then the Riccati matrix and the another matrices in 
the DNN algorithm described above 
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the initial conditions for the weight matrices in the 
external layer 
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the initial conditions for the weight matrices in the 
internal layer 
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The initials weight matrix values was determined by 
trial and error tests. 

 



     

3.2 The inferential rules and membership functions 

The inferential rules were proposed to the 
Bergman’s model thinking in the performance of the 
insulin commercial infusion system (Medfusion, 
1994), these are described by thirteen statements in 
table 1 

Table 1 Inferential rules 

Rule Statement 

1 IF [glucosa] is muy alto AND [insulina] 
is muy bajo THEN [Suministro] is 
pasado 
 

2 IF [glucosa] is muy alto AND [insulina] 
is bajo THEN [Suministro] is su f iciente  
 

3 IF [glucosa] is muy alto AND 
[insulina] is normal THEN [Suministro] 
is escaso 

4 IF [glucosa] is muy alto AND 
[insulina] is alto THEN [Suministro] is 
muy escaso 

5 IF [glucosa] is muy alto AND 
[insulina] is muy alto THEN 
[Suministro] is nulo 

6 IF [glucosa] is alto AND [insulina] is 
muy bajo THEN [Suministro] is 
suficiente 

7 IF [glucosa] is alto AND [insulina] is 
bajo THEN [Suministro] is escaso 

8 IF [glucosa] is alto AND [insulina] is 
normal THEN [Suministro] is muy 
escaso 

9 IF [glucosa] is alto AND [insulina] is 
altol THEN [Suministro] is nulo 

10 IF [glucosa] is normal AND [insulina] 
is muy bajo THEN [Suministro] is escaso 

11 IF [glucosa] is normal AND [insulina] 
is bajo THEN [Suministro] is muy escaso 

12 IF [glucosa] is normal AND [insulina] 
is normal THEN [Suministro] is nulo 

13 IF [glucosa] is bajo AND [insulina] is 
bajo THEN [Suministro] is muy escaso 

 

The membership functions due to the above 
inferential rules are illustrated as follows 

 

Fig. 2 Specific Membership functions. 

for specific numerical values the graphs are shown in 
the figure 

 

Fig. 3 Specific Membership functions. 

 
We have got to edit membership function to describe 
fuzzy input as much as output system's states, being 
mostly triangular functions because of their easy 
programming and mathematical representation. 

4. RESULTS 

The Bergman’s states model were obtained when 
applying the INFS technique, these are shown in the 
next graphics Fig. 4 

 

Fig. 4 Glucose concentration evolution. 
 

The glucose concentration is shown in the graph Fig. 
5 



     

 

Fig. 5 Glucose concentration obtains by the INFS. 
 

The next graph shows the INFS output signal and 
the Bergman’s model output put together to be 
compared Fig.4 

 

Fig. 6 Glucose concentration. 
 

In the last graph is shown all Bergman’s estimate 
states, for (x1, x3) states the error was 7% between 
the INFS states. Fig. 6 

 
Fig. 7 Bergman’s states evolution. 
 
The simulation results show the state evolution in 
the Bergman’s model and the INFS structure, these 
states are compared with the insulin concentration to 
normal person Fig. 7, although the evolution of the 
variables is not the same, the estimate glucose 
concentration is inside the health normal margins 
(Guyton 2001). 

 

Fig. 8 Glucose concentration in normal conditions. 
 
The insulin-glucose interaction model allows 
knowing the remote compartment state evolution 
when the INFS is applied. This model offers good 
properties like observability and this is the main 
reason to be selected in this work. The graphs could 
be used like a tracking trajectory, in the diagnostics 
for the diabetes illness. 

The mentions before are get through fuzzy 
algorithms development, made in personal 
computer's platform, that allows at the same time to 
verify the created system's performance by 
modifying only input system's states to get a 
response in real parameters Fig.8 

It was possible to get a simulation that shows 
process input and output evolution Fig. 9 (non lineal 
in this case). 

 

Fig. 9 Insulin and Glucose concentrations. 
 

This evolution is referred to the Bergman's insulin-
glucose interaction model (Bergman, 2002), getting 
this way the possibility for the model's algorithm to 
become part of the feedback control scheme and 
making that way the patient's insulin supply analysis, 
which give us the opportunity to determinate fuzzy 
control system's efficiency. 

 



     

5. CONCLUSIONS 

The INFS application shows the estimate states are 
closed to the Bergman’s model variables so the 
neuro-observer works well. The neuro-observer 
estimated the non measured variables and these 
could be substitutes by the instrumental 
measurements in the Fuzzy control input. Input and 
output evolution parameters in temporal graphs 
analysis, as much as fuzzy controller response, 
confirm an efficient behaviour from the designed 
system about organism insulin requirement, by 
giving almost immediate insulin supplying when the 
glucose grows out the normal limit (as it happens in 
food ingest). This result gives the possibility to 
design a control system based on the INFS scheme 
which could determine the variants to control the 
glucose concentration for the improvement of 
diabetic patient health. 
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