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Abstract: The the problem of minimizing the transient energy of a linear system
following a unit energy initial disturbance is considered in this paper. This paper
extends previous results on the state feedback case to the output feedback case.
Furthermore, it is shown that the problem can be solved by convex optimization of
the free parameter following a Q-parametrization. The techniques are illustrated
by numerical examples. Copyright c©2005 IFAC
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1. INTRODUCTION

In some stable linear systems the trajectory of
the system states, following an initial perturba-
tion to the system states, may temporarily move
a great distance from the origin before return-
ing to approach the origin later. Such behaviour
is highly undesirable in some non-linear systems
where analysis of eigenvalues of the linearized sys-
tem at the equilibrium point indicates very good
stability, but the behaviour of the trajectories
means that even very small perturbations in the
state variables can cause the states to leave the
domain of attraction and so become unstable.

This phenomenon is particularly prevalent in fluid
dynamic systems. For example, it is known that
a laminar flow can become turbulent even for
Reynolds numbers for which linear stability anal-
ysis predicts stable eigenvalues. In fact, the rea-
son for this phenomenon was unknown to fluid
dynamicists until fairly recently (Trefethen et

al., 1993). In the fluid dynamics community, the
distance from the equilibrium is usually measured
by the energy of the perturbations, and the max-
imum transient energy growth is of interest in

many fluid systems (e.g. Reddy and Henning-
son, 1993). For fluid control systems, a useful con-
trol objective is the minimization of the maximum
transient energy of the flow perturbations (Bewley
and Liu, 1998).

The problem of constraining transient trajec-
tory norms has been considered elsewhere (re-
cent results have bee reported in Hinrichsen and
Pritchard, 2000; Pritchard, 2000; Hinrichsen et

al., 2002; Plischke and Wirth, 2004; Wirth, 2004).
An LMI approach to minimization of maximum
transient energy growth has been proposed by
Boyd et al. (1994). The state feedback problem
of minimization of maximum transient energy
growth has also been considered by Whidborne
et al. (2004).

This paper extends some of the results of Whid-
borne et al. (2004) to the output feedback case.
Conditions for the existence of controllers that re-
strict the transient energy growth to unity are es-
tablished along with a characterization of all such
controllers. For systems where such controllers
do not exist, it is shown that the problem may
be solved by convex optimization over the free



parameter in a Q-parametrization of the problem.
The theory is illustrated with some numerical
examples.

Notation

MT denotes the transpose of a matrix M
M† denotes the Moore-Penrose inverse of the
matrix M
M⊥ denotes the left null space of a matrix M , that
is M⊥ = UT

2 where [ U1 U2 ]
[

Σ11 0
0 0

] [
V1

V2

]
= M is

the singular value decomposition of M
‖M‖ := max

{√
λi : λi are the eigenvalues of

MT M
}

denotes the spectral norm of a real matrix
M
‖x‖ :=

√
xT x denotes the Euclidian 2-norm of a

vector x
λmax(M) and λmin(M) denote, respectively, the
largest and smallest eigenvalues of the matrix M
In represents the identity matrix of dimension
n × n

2. MAXIMUM TRANSIENT ENERGY
GROWTH

Consider the stable linear time-invariant system
described by

ẋ = Ax, x(0) = x0, (1)

with A ∈ Rn×n, x(t) ∈ Rn which has the solution

x(t) = Φ(t)x0, (2)

where Φ(t) is the state transition matrix given by
Φ(t) = eAt =

∑∞
i=0 Aiti/i!.

Definition 1. The transient energy, E(t), is de-
fined as

E(t) := max
‖x(0)‖=1

‖x(t)‖2
. (3)

Definition 2. The maximum transient energy gro-
wth, Ê , is defined as

Ê := max
t≥0

E(t). (4)

The following lemma gives the conditions on the
state matrix, A, for there to be no transient energy
growth. The proof is straightforward, and can be
found in Whidborne et al. (2004).

Lemma 1. The maximum transient energy gro-
wth, Ê , of the system described by (1) is unity
if and only if A + AT < 0.

It is well known that

max
‖x‖=1

‖Mx‖ = ‖M‖ , (5)

so to evaluate Ê for cases where A+AT ≮ 0, a line
search over time, t, is performed on the spectral
norm of Φ(t).

3. OPTIMAL STATIC GAIN FEEDBACK
CONTROLLERS

Now consider the linear time-invariant plant

ẋ = Ax + Bu, x(0) = x0,

y = Cx,
(6)

with A ∈ Rn×n, x(t) ∈ Rn, B ∈ Rn×ℓ, u(t) ∈ Rℓ,
C ∈ Rm×n, y(t) ∈ Rm. Furthermore, it is assumed
that BT B > 0, that is B has full column rank,
and CCT > 0, that is C has full row rank, (i.e. all
actuators and sensors are independent).

3.1 Unity maximum transient energy growth

In this section, conditions are given for all con-
trollers that obtain unity maximum transient en-
ergy growth for static output feedback control.

Theorem 1. For the system of (6), the following
are equivalent:

(1) There exists a control u = Ky where K is a

constant matrix such that Ê = 1 where Ê is
given by Definition 2.

(2) The following two conditions hold

B⊥
(
A + AT

)
B⊥T < 0 or BBT > 0, (7)

CT⊥
(
A + AT

)
CT⊥T < 0 or CT C > 0. (8)

Furthermore, if the above statements hold, all
controller matrices K are given by

K = −R−1BT ΨCT (CΨCT )−1

+ S1/2L(CΨCT )−1/2 (9)

where

S := R−1

− R−1BT
[
Ψ − ΨCT (CΨCT )−1CΨ

]
BR−1

(10)

where L is an arbitrary matrix such that ‖L‖ < 1
and R > 0 is an arbitrary matrix such that

Ψ :=
(
BR−1BT − A − AT

)−1
> 0. (11)

Proof: From Lemma 1, the closed-loop system
has unity maximum transient energy growth if
and only if

(A + BKC) + (A + BKC)T < 0. (12)

The remainder follows directly by application of
Theorem 2.3.12 of Skelton et al. (1998, p. 29), with
the condition that B is full column rank and C has
full row rank. 2



Remark 1. A matrix R that satisfies (11) can
be obtained by R = I/ρ. For the case where
BBT > 0 (i.e. B is full rank n), ρ is obtained
simply by rearranging BRBT −A−AT > 0 giving
the inequality

ρ > λmax(B
−1(A + AT )(BT )−1). (13)

For the case where B⊥(A + AT )B⊥T < 0, ρ is
obtained by an application of Theorem 2.3.10, of
Skelton et al. (1998, p. 26), this being an extension
to Finsler’s Theorem.

Finsler’s Theorem is presented below in an appro-
priate form for use with Theorem 1.

Theorem 2. (Finsler’s Theorem). Given Γ = (A+
AT ), the following statements are equivalent:

(1) There exists a scalar ρ such that

ρBBT − Γ > 0. (14)

(2) The following condition holds

P := B⊥ΓB⊥T < 0. (15)

If the above statements hold, then all scalars ρ
satisfying (14) are given by

ρ > ρmin := λmax

{
B†(Γ − ΓB⊥T P−1B⊥Γ)B†T

}
.

(16)

4. OPTIMAL DYNAMIC FEEDBACK
CONTROLLERS

Consider the linear time-invariant plant

ẋ = Ax + Bu, x(0) = x0,

y = Cx,
(17)

with A ∈ Rn×n, x(t) ∈ Rn, B ∈ Rn×ℓ, u(t) ∈ Rℓ,
C ∈ Rm×n, y(t) ∈ Rm with controller

ẋk = Akxk + Bky, xk(0) = xk0,

u = Ckxk + Dky,
(18)

with Ak ∈ Rnk×nk , xk(t) ∈ Rn
k , Bk ∈ Rnk×m,

C ∈ Rnk×ℓ, D ∈ Rm×ℓ. The closed loop system is
given by

ẋc = Acxc, xc(0) = xc0 (19)

where

Ac :=

[
A + BDkC BCk

BkC Ak

]
, xc :=

[
x
xk

]
. (20)

4.1 Unity transient energy growth

Lemma 2. A necessary condition for unity tran-
sient energy growth, Ê = 1, of the plant (17)
with a stabilizing feedback controller (18) is that
(A + BDkC) + (A + BDkC)T < 0.

Proof: From Definition 1, the transient energy
of the plant (17) is given by

E(t) := max
‖x(0)‖=1

‖x(t)‖2
. (21)

Let us replace E(t) by a modified energy function
Eǫ(t) where

Eǫ(t) := max
‖W−1

ǫ xc(0)‖=1
‖Wǫxc(t)‖2

. (22)

where Wǫ := diag(In, ǫInk
) and ǫ ∈ R+. Clearly

as ǫ → 0, Eǫ → E . Applying Lemma 1 to (20),
maxt{Eǫ(t)} = 1 if and only if Wǫ(Ac + AT

c )Wǫ <
0, that is
[

AD + AT
D (BCk + (BCk)T )ǫ

(BkC + CT BT
k )ǫ (Ak + AT

k )ǫ2

]
< 0, (23)

where AD = A + BDkC. It is known (e.g. Horn
and Johnson, 1985, p. 397) that all the diagonal
submatrices of a negative definite matrix are nega-
tive definite. Hence (A+BDkC)+(A+BDkC)T <
0 is a necessary condition for (23) to hold and for

Ê = 1. 2

Remark 2. From the above lemma, it is clear that
if no static controller that achieves unity transient
energy growth exists, then no dynamic controller
exists either.

4.2 Minimal transient energy growth by convex

optimization

The operation
max
t≥0

‖Φ(t)‖ (24)

represents a norm on the matrix function Φ(t).
By means of a Q-parametrization, control sys-
tem performance indices that are norms can be
minimized by exploiting the convex properties of
norms (Boyd and Barratt, 1991). For simplicity,
here we just consider the case for an open loop
stable system. Details on a parametrization for
the unstable case are given in Boyd and Barratt
(1991).

Assuming that the system given by (17) is stable,
a convex realization of the closed loop system is
given by

H(s) = U1(s) + U2(s)Q(s)U3(s) (25)

where U1(s) = (sI − A)−1, U2(s) = (sI − A)−1B
and U3(s) = C(sI − A)−1, and Q(s) is the free
parameter. It is clear that Φ(t) = L−1 [H(s)] =
1/2π

∫ ∞

−∞
H(jω)ejωtdω.

The problem is then posed as follows

Êmin = min
stable Q

max
t≥0

‖Φ(t)‖ (26)

The set of all stable, proper Q(s) can be param-
eterized by means of a Ritz approximation (Boyd
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Fig. 1. Example 1: open-loop transient energy
growth

and Barratt, 1991; Linnemann, 1999). The fi-
nal optimal controller is given by Kopt = (I +
QoptG)−1Qopt.

5. EXAMPLES

5.1 Example 1

The following example is adapted from Trefethen
et al. (1993). The system was studied for the state
feedback case in Whidborne et al. (2004). The
linear system is

ẋ =

[
−1/a 1

0 −2/a

]
x +

[
0
1

]
u

y =
[
1 0

]
u

(27)

where a = 40.

The maximum transient energy growth for the
open-loop system is calculated as Ê = 100.313.
The transient energy E(t) is shown in Figure 1.

From (11), for this example, the matrix R is a
scalar with value R = 1/ρ where ρ > ρmin,
ρmin = a/2−4/a = 19.9. Setting ρ = 20 and L = 0
and applying Theorem 1 provides a controller
K = −0.99502 that gives unity transient energy
growth. The closed-loop transient energy E(t) is
shown in Figure 2. The closed-loop eigenvalues are
−0.03750 ± 0.99743j.

For a simple second order system such as this
example, the conditions for unity transient energy
growth can be obtained in a straightforward man-
ner. The closed-loop system matrix is

A + BKC =

[
−1/a (1 + K)

0 −2/a

]
. (28)

From condition (12), we deduce that the maxi-
mum transient energy growth is unity if and only
if (1 + K)2 < 8/a2, that is (−1 − 2

√
2/a) < K <

(−1 + 2
√

2/a), or −1.07071 < K < −0.92929.
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Fig. 2. Example 1: closed-loop transient energy
growth
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Fig. 3. Example 1: maximum transient energy
growth as a function of controller gain K

Figure 3 shows the maximum transient energy
growth as a function of the controller gain K. This
confirms the bounds on K for unity maximum
transient energy growth as well as showing the
convex nature of the problem.

5.2 Example 2

The linear system is given by

ẋ = Ax + Bu

y = Cx
(29)

where

A =





−2 2 −8.5 3 3
−2.5 1 −14 7.5 6
−1 0.5 −6 3 2
−1 1.5 −9.5 4 3.5
0 −0.5 2.5 −1.5 −2.5




, (30)

B =





0 0 0
0 1 0
0 0 0
0 0 1
1 0 0




(31)



Table 1. Minimal maximum transient
energy growth for increasing order of Q

q Ê lower
min

Ê
upper

min
iterations

0 60.9869 60.9940 79

4 6.9820 7.0341 381

8 6.8020 7.0060 537

and

C =
[
1 0 0 0 0

]
. (32)

The system was studied for the state feedback
case by Whidborne et al. (2004). The maximum
transient energy growth for the open-loop system
is calculated as Ê = 138.572. The transient energy
E(t) is shown in Figure 4.

From Theorem 1, no unity maximum transient
energy growth controller was found to exist. To
obtain a minimizing controller, the problem was
posed as for (26).

The system is open-loop stable, hence the Q-
parametrization is as for (25). The free parameter
Q is given the form

Q(s) = Q0 + Qs(s) (33)

where Q0 is a constant matrix and Qs(s) is
parameterized using the state-space orthonormal
basis suggested by Linnemann (1999). Let {λi}∞i=1

be a sequence of real or complex (in conjugate
pairs) numbers such that

i) Re(λi) > 0 for all i, (34)

ii)

∞∑

i=1

Re(λi)

|λi|2
= ∞, (35)

and any λi may be repeated. Then there exists a
sequence of functions that provides an orthonor-
mal basis for the space L2. Thus we can ap-
proximate a function in L2 by a truncated se-
quence {λi}q

i=1 := Λq to an arbitrary accuracy.
A state-space realization of the orthonormal basis
is provided in Linnemann (1999). A multivariable
extension is also provided.

A set of eigenvalues Λs = {1, 10, (1 ±
√

3j)} is
chosen to provide the basis function sequences,
Λq, such that Λ0 = { }, Λ4 = {Λs}, Λ8 = {Λs,Λs},
Λ12 = {Λs,Λs,Λs}, etc. The ellipsoidal algorithm
(Boyd and Barratt, 1991) was used to solve the
convex optimization problem. The algorithm has
proven convergence properties and, at each iter-
ation, provides lower and upper bounds on Êmin.
The lower and upper bounds, respectively Ê lower

min

and Êupper
min , for q = 0, 4, 8 are shown in Table 1. It

can be seen that the solution has almost converged
for q = 8.

The minimizing controller for q = 0, K0, is given
by
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Fig. 4. Example 2: open-loop transient energy
growth
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Fig. 5. Example 2: closed-loop transient energy
growth for q = 0

Ak =





−2 2 −8.5 3 3
−1.489 1 −14 7.5 6
−1 0.5 −6 3 2

−0.2541 1.5 −9.5 4 3.5
−1.462 −0.5 2.5 −1.5 −2.5




(36)

Bk =





0
−1.011

0
−0.7459
1.462




(37)

Ck




−1.462 0 0 0 0
1.011 0 0 0 0
0.7459 0 0 0 0



 (38)

Dk




1.462
−1.011
−0.7459



 (39)

and the closed-loop transient energy growth is
shown in Figure 5. The minimizing controller for
q = 4, K4, is of 9th order and so is not presented.
The closed-loop transient energy growth is shown
in Figure 6.
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Fig. 6. Example 2: closed-loop transient energy
growth for q = 4

6. DISCUSSION AND CONCLUSIONS

Methods to calculate the maximum transient en-
ergy growth of linear systems by output feedback
are provided. All constant gain controllers that
restrict the maximum transient energy growth to
unity are provided. It is also shown that if no con-
stant gain controller that restricts the maximum
transient energy growth to unity exists, then no
dynamic controller exists either. It is shown that
by a Q-parametrization, the problem of minimiz-
ing the maximum transient energy growth is con-
vex in the free parameter Q. Hence, by means of a
Ritz approximation, sub-optimal controllers that
minimize the maximum transient energy growth
can also be obtained by convex programming.

The methods are illustrated by two numerical
examples. The energy responses for Example 2
show that the closed-loop systems are very res-
onant and the controllers clearly do not provide
good designs. The intention is not necessarily
to design controllers that meet all the required
closed-loop requirements, but to provide design-
ers with a means of determining the minimum
of the maximum transient energy gain so that
the specifications for the controller design can be
sensibly set. Alternatively, the convex optimiza-
tion over Q approach can be used to incorporate
other design objectives (Boyd and Barratt, 1991).
MATLAB software to achieve this is available
(Khaisongkram and Banjerdpongchai, 2003). A
weakness of the approach is that it is not clear how
to choose the set Λs. In the example it was chosen
after a small amount of trial and error. Faster con-
vergence could be obtained with another choice.
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