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Abstract: It is well-known that the least-squares iderdiitn method generally gives
biased parameter estimates when the observed input-alatauare corrupted with noise.
If the noise acting on both the input and output is white, drttié noise variances are
known, or if estimates of the noise variances are availabéx the principle of biased-
compensated least-squares (CLS) can readily be used tm @btasistent estimates. In
this paper an extended version of the CLS (ECLS) method basexh overdetermined
linear system of equations is investigated. By considethiy ECLS problem as a
separable nonlinear LS problem, it is also shown that theenedriance parameters can
be obtained from solving a variable projection minimizatfroblem.Copyright©2005
IFAC.
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1. INTRODUCTION estimation for dynamic systems can be found in
(Soderstromet al, 2002). Different approaches for
identification of errors-in-variables models can for ex-

Least-squares (LS) methods play a fundamental roleample be be found in (Fernando and Nicholson, 1985),
in identification of linear systems. However, itis well (sgderstrom, 1981), (Soderstrom and Mahata, 2002)
known that the classical LS approach generally gives gng (Mahata and Soderstrom, 2002). In (Beghelli
biased parameter estimates. For systems where the, 1990) it is suggested to use the Frisch scheme
disturbance acts only as a white noise, the bias can bgo estimating the noise variance and model parame-
estimated and the parameter estimates can be compefers, Several recursive algorithms for identification of
sated (compensated-bias least-squares, CLS) 10 Obgrrors-in-variables models (the BELS method) based
tain consistent estimates. For the case of white outputyy CLS techniques, have been proposed in (Zheng

noise, the CLS estimate can be computed by solvingand Feng, 1989), (Zheng and Feng, 1992) and (Zheng,
an eigenvalue problem, see for example (Levin, 1964), 19gg).

(Aoki and Yue, 1970) and (Stoica and Soderstrom, . ) )
1982). In this paper an off-line method based on CLS solution

o . ] . of an overdetermined system of equations and separa-
Identification of systems with noise-corrupted input pje nonlinear LS, see e.g. (Hannan, 1971) and (Golub
and output measurements (errors-in-variables) has reypq Peryra, 1973), for estimating the parameters in

ceived increasing attention recently. A comprehen- gynamic errors-in-variables models is presented. The
sive description of perspectives on errors-in-variables



method is developed from the fact that the original

2. Now, let us consider the following overdetermined

nonlinear CLS optimization problem is separable. Itis system of equations

observed that the model parameters and the noise vari-

ance parameters in the resulting nonlinear loss func-

tion can be estimated separately. Thus, instead of us-

ing for example the Frisch scheme, see e.g. (Beghelli
et al, 1990) and (Soverini and Soderstrom, 2000),

estimates of the noise variances are obtained from
solving a variable projection problem. Once the noise
variances are available, asymptotically unbiased esti-
mates of the model parameters can be obtained usin
a CLS technique. The CLS method used in this pape
will hereafter be called the extended CLS (ECLS)
method.

r

2. EXTENDED CLS ESTIMATES

The following discrete-time, stochastic SISO system
will be considered
B ')

z(t) = ——=

() Alg™")

where A(¢q~!) and B(¢~!) are polynomials of the
type

Al =14+aiqg ' +... +an,qg™
Bl =big7'+... + bn,qg ™.

Uq (t)= (1)

)

It is presumed thatd(z), z being an arbitrary com-
plex variable replacing~!, has all zeros outside the
unit circle and thatd(z) and B(z) have no common
factors. Since we are investigating dynamic errors-in-
variables models, we assume that the observations ar
corrupted by additive measurement noise. Thus, the
available signals are of the form

y(t) = z(t) + e(t)
u(t) = uo(t) + v(t),

wherey(t) is the measured output andt) is the mea-
sured input. The sequencgs) andwv(t) are mutually
uncorrelated zero-mean white noises with unknown
variances:;j ando?, respectively. It is assumed that
the noise sequences are uncorrelated with the noise
free signalse(t) andug(t). Moreover, it is assumed
that the order of the model is known and thg{t) is
persistently exciting of a sufficiently high order.

®3)

The following notations are introduced

o) = [V, Ui]"

Y, = [_y(t_ 1)7"'7_y(t_na)]
U =[u(t—1),...,u(t —np)]

0 =1a1, .. an, a1, 00,7,

wheref is the vector of estimated model parameters.
It is obvious that the true system is given by

y(t) = () 6 + w(t), 4)

wherew(t) is a stochastic disturbance term ahydis
the vector of ‘true’ parameters. Assume thét) is a
vector with dimensiorin . |1), wheren, > n, +n, +

N

1 > atw(t) =

N
t=1

N

Y =By - o(1)"6), (5)

t=1

1

N

where the unknown model parameter vectyiis re-

quired to satisfy (5). Choosing the entries of the vector
z(t) as signals uncorrelated with the disturbande)

will give rise to the well-known extended instrumental
variable (IV) estimates o#,, see e.g. (Soderstrom
%nd Stoica, 1989). However, since we are interested

of estimating the noise variances as well as the model
parameters, we will choose at least some of the entries
in z(t) correlated withw(¢).

Using the result from e.g. (Jamesal,, 1972), it fol-
lows that the extended CLS estimate for the overdeter-
mined system of equations (5) is given by

éECLS = (Rz¢ - S(U))T(Rzy - fo’)’ (6)

where(R. s — S(0))! is the pseudo-inverse 60f2. 5 —

S(0)). Itis assumed thdiR.,—S(o)) has full column
rank, which in general is a mild assumptid(o) is

a(nz|n, + np) matrix function of the noise variances
2

o = [o},02]" and¢ is a(n.|2) matrix. Further, we
have
1 & . 1
Rep=2: 2(0)6(1)", Rey=2 D 2(0)y(t) (7)

t=1 t=1

The choice of the entries in the vectoft) will de-
termine the structure of the matricé%o) and¢ in

£6). Choosingz(t) = ¢(t) will give rise to the basic

CLS method, wher¢ = 0 and the inverse can be used

instead of the pseudo-inverse in (6).

The elements of the augmentect) vector for the
extended CLS can be chosen in many ways. One
special choice, which will be investigated here, is to
let the entries ot (t) be given by

2(t) = [y(t), Ve, Y, u(t), Up, Up) ", (8)

where

C Yy=[—ylt—ng —1),...,—y(t — ng — p)]
Up=[u(t—npy —1),...,u(t — ny — p)].

Then, we haver, = n,+np+2p+2, and it is now
possible to write the structure of the noise matrices as

0 01
50) 0 b e [1 0} (©)
ag)= D+ s = 1>
0 U'ZInb } ne 0 0}77,2 1
0 0 |} p

where I,,, and I,,, aren, x n, andn;, x n; unity
matrices, respectively. The structures above follow
from e.g. (Jamest al, 1972), and from the fact that
Y, andU,, are uncorrelated with(t).

Remark 1.Assuming that we have a consistent esti-
mate ofo, it is possible to conclude, from previous



consistency result concerning basic CLS and IV meth-

ods, see for example (Jametsal, 1972), (Stoica and

Sodderstrom, 1982) and (Soderstrom and Stoica, 1989),

that the ECLS estimate in (6) is consistent.

3. SEPARABLE NONLINEAR LEAST-SQUARES

and the solution to the variable projection problem can
instead be written as

OpcLs = arg moin fa(8). (19)

Following the previous procedure, the noise variance
estimates are obtained in the second step by replacing
0 bybOrcrsin (17).

Considering the ECLS estimate in (6), it can be seenRemark 2.Note that the ECLS method should more

that in order to obtain the estimaigcr.s we need an
estimate of the noise variancesOne way to estimate

o from the observations is to solve (5) in a LS sense.
Formulating the loss function as

f(8,0)= [|Roy-E0—(R.5—S(0))6]]%  (10)
an estimate of is given as the minimal point
¢ = arg min [mgin f(, a)]. (11)

However, the optimization problem (11) is separable
and can be solved far andf separately. If the loss
function (10) is minimized analytically with respect
to 4, then, for a givery the minimum is achieved by
the ECLS estimate in (6). Substituting (6) in (10), we
have the loss function

filo) =
|1Roy=€0—(Rzp—5(0))(Ro6—5(0)) ' (Rzy —£0)| %,
(12)
and the optimization problem in (11) reduces to
6 =arg mgin fi(o). (13)

The optimization problem in (13) is referred to as a
variable projection problem. Once a minimiziags
found from (13), thed g 1.5 can be obtained from (6)
by replacings by & in (6).

One interesting observation is that the loss function in
(10) can be rewritten as

f(0,0)=||Rsy—R.s0+((S10V1 +520V2) —¢)

00 00
I,, 0 00
Si=(00],S=]00 (15)
00 0 I,
00 00
and
Vi=[1 0], Vo=[0 1]. (16)

Thus, for a giverd the loss function (14) can be analyt-
ically minimized with respect te- and the minimum
is then achieved at

5= (($10V1 + $20V0) — €)' (R.y6 — R.,). (17)
Substituting (17) in (14), we have the loss function
fQ (0) = HRZy—RwH—((SlGVl +520V2) —f) X

((S16V1+820V2) — &) (R.,—R-40)| |, (18)

correctly be referred to as the estimates given by (6),
assuming that the noise variances are known. How-
ever, in this section the ECLS method will also include
solving the variable projection problem (13). We will
also refer the solving of the variable projection prob-
lem (19) and the corresponding equation (17) as the
ECLS method.

One question that appears is which of the two loss
functions, f; (o) and f2(6), in (12) and (18) respec-
tively, that should be used as a first minimization step
in the identification problem. The question will be
partly answered in the next section through simulation
studies. However, some concluding remarks about this
issue can be given already at this stage. Minimizing
fi(o) and f»(#) is a nonlinear optimization problem,
which in general has to be solved numerically. De-
spite of minimization techniques, it is obvious that
if dim() > dim(o), then the minimizing of the
loss functionyz (#) will require a larger computational
load than minimizingf, (o). Thus, for systems of high
orders it is more preferable to minimizg (o) than
f2(8). However, there is another reason why it might
be easier to solve the, in general non-convex, variable
projection problem (13) instead of (19). This is due to
the fact that the search space for a global minimum of
the loss functiory; (¢) can be reduced by considering
the result from (Beghelkt al., 1990). By defining new
matrices as

N
Ry =23 000, Ve, 5y(0), Vi, %),
1 t;l
RUU = NZ([u(t)a Ut: UP]T[u(t)7 Ut: Up])a

N
Ry =3 (10, e, a0, U T3),

_pT
_RUY=

the following theorem can be stated.

(20)

Theorem 1.The maximal admissible value for the
output noise variancej is the least eigenvalue of the
matrix

Ryy — Rly Ry Ruy (21)
and, similarly, the maximal admissible value for the

input noise variance? is the least eigenvalue of the
matrix

Ruyv — Ruy Ryy Ry (22)



Proof. See ((Beghellet al, 1990)). The initial valuesg = [0 0]” andf = 65, were
used for the variable projection problems (13) and
Remark 3.1t has not been mentioned anything about (19), respectivelyf; s is the standard LS estimate.
consistency of the estimated parameters, obtainedraples 1 and 2 show the mean values and the stan-
from solving the separable nonlinear LS optimization dard deviations of the estimated model parameters.
problem (11)-(13) or (17)-(19). However, in Remark From the tables it can be seen that the IV estimates
1 the case where it is assumed that we have consistengre not very accurate. The FR and the CLS methods
estimate from the variable projection problem (13) is have approximately the same level of accuracy. The
discussed. Interesting results concerning consistencyECLS method shows an overall better accuracy than
and accuracy for general variable projection problems the other methods. Table 3 reports the mean values and
can be found in (Mahata, 2003). the standard deviations of the estimated noise variance
parameters for the ECLS and the FR methods. From
the table it can be seen that the accuracy is approx-
4. SIMULATION RESULTS imately the same for both the output noise variance

. ) estimate and the input noise variance estimate.
In this section the same standard example as the one

described in (Soderstrom, 1981), and also used in e.g.
(Soverini and Soderstrom, 2000), has been used in the

Table 1. Means and standard deviations for
coefficient estimates of (¢ 1).

simulations. The system is described by Method a1 = —15 ay = 0.7
B(g ) ECLS  -1.502+ 0.025  0.700t 0.019
2(t) = =L (1), (23) CLS  -1.502+0.048 0.70% 0.030
Alg™1) FR -1.509+ 0.034  0.705+ 0.024
Where v -1.491+ 0.602  0.692+ 0.391
Alg ) =1-1.5¢ 1 +0.7¢2 (24)
—1y _ -1 -2 L
B(q™") =1.0¢7" +0.5¢™". Table 2. Means and standard deviations for
The undisturbed input, () is modeled as coefficient estimates d8 (g ').
C(qg™h) Method by =1 by = 0.5
ug(t) = mr(t% (25) ECLS 0996+ 0.155 0.493F 0.191
CLS  0.986+0.249 0.507+ 0.400
where FR 1.007+0.199  0.459+ 0.272
Clg) =1 v 0.773+ 4780  0.736+ 5.448
(26)

D(g"")=1-0.9¢"",

andr(t) is white noise with variance? = 1. Table 3. Means and standard deviations for

A comparative study, where the above derived method noise variance estimates.

is compared with a standard IV method and the Frisch Method o2 =1 o2 =1
Scheme approach (FR), has been performed. For the ECLS | 0.995+0.094  0.992+ 0.120
IV method the system was identified using the de- rr 0.996+£0104 0.97% 0.110

layed inputs,Up,—4, as instruments. Both the ECLS
and the CLS method were used in the study. For
the ECLS method;(t) was chosen as in (8) where Some minor studies concerning the computational
p = 2, see further Remark 2. Moreover, the vari- load has also been performed. It can be established
able projection problem (13) and (19) were solved that both the FR and the IV method are faster than the
by the Nelder-Mead minimization method using the ECLS method. This is due to to the fact that in the
fminsearchfunction in Matlab optimization toolbox. ECLS method a nonlinear optimization problem has
In the standard CLS method, the same noise varianceo be solved. However, even if there exist faster and
estimates as for the ECLS method were used, i.e. themore efficient methods than the Nelder-Mead method,
estimates obtained from the variable projection prob- it is interesting to compare the computational load
lem (13). Moreover, as mentioned above, for the CLS required when minimizing the loss functiorfs(o)
method we have(t) = ¢(t). and f>(0), respectively. Minimizingf; (¢) and then
solve the equation (6) will give the same result as
minimizing f»(#) and then solve the equation (17),
4.1 Example 1. i.e. the same parameter values are obtained. However,
simulation studies reveal that solving the variable pro-
In the first comparative study, Monte Carlo simula- jection problem (19) and the corresponding equation
tions based on one hundred independent realizationg17) is approximately 2 times slower than solving (13)
with N = 500 data points were performed. The mea- and (6). Moreover, in order to find the global minima,
surement noise variances afg= o, = 1. Forthe IV sjmulation studies showed that it is more important
method, the estimates were rejectetif — é| > 10. to have a good initial guess of the parameters when



solving the minimization problem (19) compared to Current research within the framework of this paper is

solving (13). directed towards developing a recursive variant of the
ECLS method. Other topics for further research could
include a theoretical investigation of the accuracy of

4.2 Example 2. the parameter estimates when the CLS method is used.
A study of the performance of the ECLS method under

The robustness of the noise variance estimates for thenore general noise conditions could also be a topic for
ECLS and the FR methods has been investigated. Sixurther research.

different condition for the noise variances, i.e. all pos- Acknowledgment The financial support by the MIS-

sible pairs ofoj = {1, 10, 50} andoy, = {1, 3},  TRA program Sustainable Urban Water Management
have been tested. Again, Monte Carlo simulations jg gratefully acknowledged.
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