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Abstract: It is well-known that the least-squares identification method generally gives
biased parameter estimates when the observed input-outputdata are corrupted with noise.
If the noise acting on both the input and output is white, and if the noise variances are
known, or if estimates of the noise variances are available,then the principle of biased-
compensated least-squares (CLS) can readily be used to obtain consistent estimates. In
this paper an extended version of the CLS (ECLS) method basedon an overdetermined
linear system of equations is investigated. By consideringthe ECLS problem as a
separable nonlinear LS problem, it is also shown that the noise variance parameters can
be obtained from solving a variable projection minimization problem.Copyrightc
2005
IFAC.
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1. INTRODUCTION

Least-squares (LS) methods play a fundamental role
in identification of linear systems. However, it is well
known that the classical LS approach generally gives
biased parameter estimates. For systems where the
disturbance acts only as a white noise, the bias can be
estimated and the parameter estimates can be compen-
sated (compensated-bias least-squares, CLS) to ob-
tain consistent estimates. For the case of white output
noise, the CLS estimate can be computed by solving
an eigenvalue problem, see for example (Levin, 1964),
(Aoki and Yue, 1970) and (Stoica and Söderström,
1982).

Identification of systems with noise-corrupted input
and output measurements (errors-in-variables) has re-
ceived increasing attention recently. A comprehen-
sive description of perspectives on errors-in-variables

estimation for dynamic systems can be found in
(Söderströmet al., 2002). Different approaches for
identification of errors-in-variables models can for ex-
ample be be found in (Fernando and Nicholson, 1985),
(Söderström, 1981), (Söderström and Mahata, 2002)
and (Mahata and Söderström, 2002). In (Beghelliet
al., 1990) it is suggested to use the Frisch scheme
for estimating the noise variance and model parame-
ters. Several recursive algorithms for identification of
errors-in-variables models (the BELS method) based
on CLS techniques, have been proposed in (Zheng
and Feng, 1989), (Zheng and Feng, 1992) and (Zheng,
1999).

In this paper an off-line method based on CLS solution
of an overdetermined system of equations and separa-
ble nonlinear LS, see e.g. (Hannan, 1971) and (Golub
and Peryra, 1973), for estimating the parameters in
dynamic errors-in-variables models is presented. The



method is developed from the fact that the original
nonlinear CLS optimization problem is separable. It is
observed that the model parameters and the noise vari-
ance parameters in the resulting nonlinear loss func-
tion can be estimated separately. Thus, instead of us-
ing for example the Frisch scheme, see e.g. (Beghelli
et al., 1990) and (Soverini and Söderström, 2000),
estimates of the noise variances are obtained from
solving a variable projection problem. Once the noise
variances are available, asymptotically unbiased esti-
mates of the model parameters can be obtained using
a CLS technique. The CLS method used in this paper
will hereafter be called the extended CLS (ECLS)
method.

2. EXTENDED CLS ESTIMATES

The following discrete-time, stochastic SISO system
will be consideredx(t) = B(q�1)A(q�1)u0(t); (1)

whereA(q�1) and B(q�1) are polynomials of the
type A(q�1) = 1 + a1q�1 + : : :+ anaq�naB(q�1) = b1q�1 + : : :+ bnbq�nb : (2)

It is presumed thatA(z), z being an arbitrary com-
plex variable replacingq�1, has all zeros outside the
unit circle and thatA(z) andB(z) have no common
factors. Since we are investigating dynamic errors-in-
variables models, we assume that the observations are
corrupted by additive measurement noise. Thus, the
available signals are of the formy(t) = x(t) + e(t)u(t) = u0(t) + v(t); (3)

wherey(t) is the measured output andu(t) is the mea-
sured input. The sequencese(t) andv(t) are mutually
uncorrelated zero-mean white noises with unknown
variances�2y and�2u, respectively. It is assumed that
the noise sequences are uncorrelated with the noise-
free signalsx(t) andu0(t). Moreover, it is assumed
that the order of the model is known and thatu0(t) is
persistently exciting of a sufficiently high order.

The following notations are introduced�(t) = [Yt; Ut℄TYt = [�y(t� 1); : : : ;�y(t� na)℄Ut = [u(t� 1); : : : ; u(t� nb)℄�̂ = [â1; : : : ; âna ; â1; : : : ; b̂nb ℄T ;
where�̂ is the vector of estimated model parameters.
It is obvious that the true system is given byy(t) = �(t)T �0 + w(t); (4)

wherew(t) is a stochastic disturbance term and�0 is
the vector of ‘true’ parameters. Assume thatz(t) is a
vector with dimension(nzj1), wherenz � na + nb+

2. Now, let us consider the following overdetermined
system of equations1N NXt=1 z(t)w(t) = 1N NXt=1 z(t)(y(t)� �(t)T �); (5)

where the unknown model parameter vector,�, is re-
quired to satisfy (5). Choosing the entries of the vectorz(t) as signals uncorrelated with the disturbancew(t)
will give rise to the well-known extended instrumental
variable (IV) estimates of�0, see e.g. (Söderström
and Stoica, 1989). However, since we are interested
of estimating the noise variances as well as the model
parameters, we will choose at least some of the entries
in z(t) correlated withw(t).
Using the result from e.g. (Jameset al., 1972), it fol-
lows that the extended CLS estimate for the overdeter-
mined system of equations (5) is given by�̂ECLS = (Rz� � S(�))y(Rzy � ��); (6)

where(Rz��S(�))y is the pseudo-inverse of(Rz��S(�)). It is assumed that(Rz��S(�)) has full column
rank, which in general is a mild assumption.S(�) is
a (nzjna + nb) matrix function of the noise variances� = [�2y ; �2u℄T and� is a (nz j2) matrix. Further, we
haveRz�= 1N NXt=1 z(t)�(t)T; Rzy= 1N NXt=1 z(t)y(t): (7)

The choice of the entries in the vectorz(t) will de-
termine the structure of the matricesS(�) and � in
(6). Choosingz(t) = �(t) will give rise to the basic
CLS method, where� = 0 and the inverse can be used
instead of the pseudo-inverse in (6).

The elements of the augmentedz(t) vector for the
extended CLS can be chosen in many ways. One
special choice, which will be investigated here, is to
let the entries ofz(t) be given byz(t) = [y(t); Yt; Yp; u(t); Ut; Up℄T ; (8)

whereYp=[�y(t� na � 1); : : : ;�y(t� na � p)℄Up=[u(t� nb � 1); : : : ; u(t� nb � p)℄:
Then, we havenz = na+nb+2p+2, and it is now
possible to write the structure of the noise matrices asS(�)=266664 0 0�2yIna 00 00 �2uInb0 0 377775g 1g nagp+ 1g nbg p ; �=�1 00 0�gnz�1 ; (9)

where Ina and Inb are na � na and nb � nb unity
matrices, respectively. The structures above follow
from e.g. (Jameset al., 1972), and from the fact thatYp andUp are uncorrelated withw(t).
Remark 1.Assuming that we have a consistent esti-
mate of�, it is possible to conclude, from previous



consistency result concerning basic CLS and IV meth-
ods, see for example (Jameset al., 1972), (Stoica and
Söderström, 1982) and (Söderström and Stoica, 1989),
that the ECLS estimate in (6) is consistent.

3. SEPARABLE NONLINEAR LEAST-SQUARES

Considering the ECLS estimate in (6), it can be seen
that in order to obtain the estimatê�ECLS we need an
estimate of the noise variances�. One way to estimate� from the observations is to solve (5) in a LS sense.
Formulating the loss function asf(�; �)= jjRzy����(Rz��S(�))�jj2; (10)

an estimate of� is given as the minimal point�̂ = argmin� hmin� f(�; �)i: (11)

However, the optimization problem (11) is separable
and can be solved for� and� separately. If the loss
function (10) is minimized analytically with respect
to �, then, for a given� the minimum is achieved by
the ECLS estimate in (6). Substituting (6) in (10), we
have the loss functionf1(�) =jjRzy����(Rz��S(�))(Rz��S(�))y(Rzy���)jj2;

(12)

and the optimization problem in (11) reduces to�̂ = argmin� f1(�): (13)

The optimization problem in (13) is referred to as a
variable projection problem. Once a minimizing�̂ is
found from (13), then̂�ECLS can be obtained from (6)
by replacing� by �̂ in (6).

One interesting observation is that the loss function in
(10) can be rewritten asf(�; �)= jjRzy�Rz��+�(S1�V1+S2�V2)����jj2;

(14)

whereS1 andS2 are(nzjna+nb) matrices defined byS1 = 266664 0 0Ina 00 00 00 0377775 ; S2 = 2666640 00 00 00 Inb0 0 377775 ; (15)

and V1 = [ 1 0 ℄; V2 = [ 0 1 ℄: (16)

Thus, for a given� the loss function (14) can be analyt-
ically minimized with respect to� and the minimum
is then achieved at�̂ = �(S1�V1 + S2�V2)� ��y(Rz�� �Rzy): (17)

Substituting (17) in (14), we have the loss functionf2(�)= jjRzy�Rz����(S1�V1+S2�V2)�����(S1�V1+S2�V2)���y(Rzy�Rz��)jj2; (18)

and the solution to the variable projection problem can
instead be written as�̂ECLS = argmin� f2(�): (19)

Following the previous procedure, the noise variance
estimates are obtained in the second step by replacing� by �̂ECLS in (17).

Remark 2.Note that the ECLS method should more
correctly be referred to as the estimates given by (6),
assuming that the noise variances are known. How-
ever, in this section the ECLS method will also include
solving the variable projection problem (13). We will
also refer the solving of the variable projection prob-
lem (19) and the corresponding equation (17) as the
ECLS method.

One question that appears is which of the two loss
functions,f1(�) andf2(�), in (12) and (18) respec-
tively, that should be used as a first minimization step
in the identification problem. The question will be
partly answered in the next section through simulation
studies. However, some concluding remarks about this
issue can be given already at this stage. Minimizingf1(�) andf2(�) is a nonlinear optimization problem,
which in general has to be solved numerically. De-
spite of minimization techniques, it is obvious that
if dim(�) > dim(�), then the minimizing of the
loss functionf2(�) will require a larger computational
load than minimizingf1(�). Thus, for systems of high
orders it is more preferable to minimizef1(�) thanf2(�). However, there is another reason why it might
be easier to solve the, in general non-convex, variable
projection problem (13) instead of (19). This is due to
the fact that the search space for a global minimum of
the loss functionf1(�) can be reduced by considering
the result from (Beghelliet al., 1990). By defining new
matrices asRY Y = 1N NXt=1�[y(t);�Yt;�Yp℄T[y(t);�Yt;�Yp℄�;RUU = 1N NXt=1�[u(t); Ut; Up℄T[u(t); Ut; Up℄�;RY U = 1N NXt=1�[y(t);�Yt;�Yp℄T[u(t); Ut; Up℄�;=RTUY ; (20)

the following theorem can be stated.

Theorem 1.The maximal admissible value for the
output noise variance�2y is the least eigenvalue of the
matrix RY Y �RTUY R�1UURUY (21)

and, similarly, the maximal admissible value for the
input noise variance�2u is the least eigenvalue of the
matrix RUU �RUY R�1Y YRTUY : (22)



Proof.See ((Beghelliet al., 1990)).

Remark 3.It has not been mentioned anything about
consistency of the estimated parameters, obtained
from solving the separable nonlinear LS optimization
problem (11)-(13) or (17)-(19). However, in Remark
1 the case where it is assumed that we have consistent
estimate from the variable projection problem (13) is
discussed. Interesting results concerning consistency
and accuracy for general variable projection problems
can be found in (Mahata, 2003).

4. SIMULATION RESULTS

In this section the same standard example as the one
described in (Söderström, 1981), and also used in e.g.
(Soverini and Söderström, 2000), has been used in the
simulations. The system is described byx(t) = B(q�1)A(q�1)u0(t); (23)

where A(q�1) = 1� 1:5q�1 + 0:7q�2B(q�1) = 1:0q�1 + 0:5q�2: (24)

The undisturbed inputu0(t) is modeled asu0(t) = C(q�1)D(q�1)r(t); (25)

where C(q�1) = 1D(q�1) = 1� 0:9q�1; (26)

andr(t) is white noise with variance�2r = 1.

A comparative study, where the above derived method
is compared with a standard IV method and the Frisch
Scheme approach (FR), has been performed. For the
IV method the system was identified using the de-
layed inputs,Up=4, as instruments. Both the ECLS
and the CLS method were used in the study. For
the ECLS method,z(t) was chosen as in (8) wherep = 2, see further Remark 2. Moreover, the vari-
able projection problem (13) and (19) were solved
by the Nelder-Mead minimization method using the
fminsearchfunction in Matlab optimization toolbox.
In the standard CLS method, the same noise variance
estimates as for the ECLS method were used, i.e. the
estimates obtained from the variable projection prob-
lem (13). Moreover, as mentioned above, for the CLS
method we havez(t) = �(t).
4.1 Example 1.

In the first comparative study, Monte Carlo simula-
tions based on one hundred independent realizations
with N = 500 data points were performed. The mea-
surement noise variances are�2y = �2u = 1. For the IV

method, the estimates were rejected ifj�0 � �̂j > 10.

The initial values,� = [0 0℄T and� = �LS, were
used for the variable projection problems (13) and
(19), respectively.�LS is the standard LS estimate.
Tables 1 and 2 show the mean values and the stan-
dard deviations of the estimated model parameters.
From the tables it can be seen that the IV estimates
are not very accurate. The FR and the CLS methods
have approximately the same level of accuracy. The
ECLS method shows an overall better accuracy than
the other methods. Table 3 reports the mean values and
the standard deviations of the estimated noise variance
parameters for the ECLS and the FR methods. From
the table it can be seen that the accuracy is approx-
imately the same for both the output noise variance
estimate and the input noise variance estimate.

Table 1. Means and standard deviations for
coefficient estimates ofA(q�1).

Method a1 = �1:5 a2 = 0:7ECLS -1.502� 0.025 0.700� 0.019CLS -1.502� 0.048 0.701� 0.030FR -1.509� 0.034 0.705� 0.024IV -1.491� 0.602 0.692� 0.391

Table 2. Means and standard deviations for
coefficient estimates ofB(q�1).

Method b1 = 1 b2 = 0:5ECLS 0.996� 0.155 0.493� 0.191CLS 0.986� 0.249 0.507� 0.400FR 1.007� 0.199 0.459� 0.272IV 0.773� 4.780 0.736� 5.448

Table 3. Means and standard deviations for
noise variance estimates.

Method �2y = 1 �2u = 1ECLS 0.995� 0.094 0.992� 0.120FR 0.996� 0.104 0.971� 0.110

Some minor studies concerning the computational
load has also been performed. It can be established
that both the FR and the IV method are faster than the
ECLS method. This is due to to the fact that in the
ECLS method a nonlinear optimization problem has
to be solved. However, even if there exist faster and
more efficient methods than the Nelder-Mead method,
it is interesting to compare the computational load
required when minimizing the loss functionsf1(�)
and f2(�), respectively. Minimizingf1(�) and then
solve the equation (6) will give the same result as
minimizing f2(�) and then solve the equation (17),
i.e. the same parameter values are obtained. However,
simulation studies reveal that solving the variable pro-
jection problem (19) and the corresponding equation
(17) is approximately 2 times slower than solving (13)
and (6). Moreover, in order to find the global minima,
simulation studies showed that it is more important
to have a good initial guess of the parameters when



solving the minimization problem (19) compared to
solving (13).

4.2 Example 2.

The robustness of the noise variance estimates for the
ECLS and the FR methods has been investigated. Six
different condition for the noise variances, i.e. all pos-
sible pairs of�2y = f1; 10; 50g and�2u = f1; 3g,
have been tested. Again, Monte Carlo simulations
based on one hundred independent realizations withN = 500 data points were performed. The result is
reported in Table 4. The result shows that, the accuracy
is approximately the same and for both methods the
estimates get worst when the variances of the added
noise are high. However, the result indicates that the
FR method might have a slightly more robust behavior
when the amounts of noise on the data are unbalanced,
even if the ECLS method for some noise conditions
show better mean values.

Table 4. Means and standard deviations for
noise variance estimates.

Variances / Method ECLS FR�2y = 1 0.995� 0.094 0.996� 0.104�2u = 1 0.992� 0.120 0.971� 0.110�2y = 10 9.714� 1.776 9.726� 0.838�2u = 1 0.936� 0.396 0.860� 0.304�2y = 50 48.230� 7.700 49.53� 5.208�2u = 1 1.449� 0.769 0.907� 0.362�2y = 1 0.978� 0.100 0.975� 0.122�2u = 3 2.987� 0.264 2.932� 0.239�2y = 10 9.684� 2.198 10.443� 1.094�2u = 3 3.025� 0.556 1.357� 0.476�2y = 50 48.000� 3.405 47.426� 4.733�2u = 3 3.405� 0.965 2.525� 0.651

5. CONCLUSIONS

A new approach for estimating parameters in dynamic
errors-in-variables models is investigated in this paper.
The method is a version of the CLS method based on
an overdetermined system of equations, and is there-
fore called the extended CLS (ECLS) method. Utiliz-
ing the observation that the noise variance parameters
and the model parameters can be treated separately, a
two step procedure is developed, based on the princi-
ple of separable nonlinear LS. Simulation experiments
show that the ECLS approach provides a good accu-
racy of the parameter estimates, and a comparative
analysis has indicated that the ECLS method might
give an even better accuracy of the model parameter
estimates than the FR method. On the other hand,
the FR method seems to have a slightly more robust
behavior of the noise variance estimates. Moreover,
the ECLS approach relies on computationally more
demanding iterative minimizing procedures than the
FR approach.

Current research within the framework of this paper is
directed towards developing a recursive variant of the
ECLS method. Other topics for further research could
include a theoretical investigation of the accuracy of
the parameter estimates when the CLS method is used.
A study of the performance of the ECLS method under
more general noise conditions could also be a topic for
further research.
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