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1. INTRODUCTIONFuzzy logi
-based 
ontrol systems have been sub-je
ted to a big growth of industrial appli
ationsduring the re
ent years as well as to big e�ort tostudy their properties and in
rease their reliabil-ity, mainly be
ause of their satisfa
tory results indealing with highly nonlinear systems with a good
ompromise between simpli
ity and a

ura
y.Among fuzzy systems, those de�ned in (Takagiand Sugeno 1985) have been 
onsidered as themost 
onvenient for analysis and design, be
auseof their simpli
ity and eÆ
ien
y in modelling non-linear systems. First attempts on investigation ofstability of Takagi-Sugeno fuzzy systems (TSFS)were made employing 
ommon Lyapunov fun
-tions as in (Tanaka and Sugeno 1990), (Tanaka1 This work has been supported by the proje
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and Sugeno 1992), (Chen and Ying 1993) and(Farinwata and Va
htsevanos 1993). Controllersynthesis under this s
heme was a
hieved, in
lud-ing a lot of performan
e requirements as de
ayrate, input or output 
onstraints, robustness andoptimality (Tanaka and Sano 1994), (Wang etal. 1996), (Tanaka et al. 1998) and (Tanaka andWang 2001).Nevertheless, analysis and design based on 
om-mon Lyapunov fun
tions la
k 
exibility be
auseof their 
onservativeness. In order to relax thisrestri
tions, a number of re
ent stability analy-sis pro
edures based on pie
ewise quadrati
 Lya-punov fun
tions have been developed (Johans-son et al. 1999), (Rantzer and Johansson 2000),(Feng 2004). In a very re
ent work (Feng 2003),
ontroller synthesis under this s
heme was madepossible by 
onstru
ting 
ontrollers in su
h a waythat a pie
ewise 
ontinuous Lyapunov fun
tion
an be used to establish the global stability withH1 performan
e. Moreover, this synthesis 
an bea
hieved by means of linear matrix inequalities



(LMIs), whi
h 
an be solved with 
ommer
iallyavailable software.In the present paper, two performan
e 
hara
teris-ti
s are added to the 
ontroller designed in (Feng2003): 
onstraints on the input and 
onstraintson the output. Both of them 
an be implementedindependently via LMIs and follow naturally fromthe elementary 
ases in (Tanaka et al. 1998).This paper is organized as follows: se
tion 2 intro-du
es the dynami
al fuzzy systems and pie
ewisequadrati
 design this work is based on; se
tion3 shows new results on input and output 
on-straints; se
tion 4 illustrates the previous resultswith some examples and, �nally, se
tion 5 drawssome 
on
lusions.2. FUZZY SYSTEMS AND PIECEWISEQUADRATIC DESIGNConsider the following Takagi-Sugeno fuzzy sys-tem as in (Feng 2003):Rl : IF x1 is F l1 AND � � � xn is F ln THEN_x(t) =Alx(t) +Blu(t) +Dlv(t)zl(t) =Hlx(t); (1)l = 1; 2; � � � ;mwhere Rl denotes the lth fuzzy rule, m is thenumber of rules, F lj the fuzzy sets, x(t) 2 Rnthe state ve
tor, u(t) 2 Rp the 
ontrol input,z(t) 2 Rr the 
ontrolled output and Al; Bl; Dl; Hlthe lth lo
al model of the fuzzy system (1).The previous s
heme 
an be 
ompa
tly rewritten
onsidering membership fun
tions �l(x) � 0, asfollows:_x(t) = A(�)x(t) +B(�)u(t) +D(�)v(t)z(t) = H(�)x(t) (2)where A(�) = mXl=1 �lAl B(�) = mXl=1 �lBlD(�) = mXl=1 �lDl H(�) = mXl=1 �lHlPie
ewise quadrati
 stability is based on statespa
e partitioning. In (Feng 2003) a partition'smethod is proposed in order to a
hieve globallystable 
ontroller with disturban
e attenuation.Following similar lines, let us divide the state-spa
e as follows:Sl = Sl [ �Sl; l = 1; 2; � � � ;m (3)

whereSl = fx j �l(x) > �i(x); i = 1; 2; � � � ;m; i 6= lgand its boundary�Sl = fx j �l(x) = �i(x); i = 1; 2; � � � ;m; i 6= lg:In addition, let us de�ne L as the set of subspa
eindexes, so we 
an des
ribe (2) as follows:_x(t) = (Al +�Al)x(t) + (Bl +�Bl)u(t)+(Dl +�Dl)v(t)z(t) = (Hl +�Hl)x(t)for x(t) 2 Sl, where�Al = Xi2Ml �i�Ali �Bl = Xi2Ml �i�Bli�Dl = Xi2Ml �i�Dli �Hl = Xi2Ml �i�Hli�Ali = Ai �Al �Bli = Bi �Bl�Dli = Di �Dl �Hli = Hi �HlMl = fi j �i 6= 0; �l � �ig:Pie
ewise Lyapunov fun
tion is 
onstru
ted as in(Johansson et al. 1999):V (t) = xTRlx; x 2 Sl; l 2 L (4)with Rl = F Tl TFl; l 2 LFlx = Fjx; x 2 Sl \ Sj ; l; j 2 L:Employing parallel distributed 
ompensation (PDC)u(t) = Kx(t) = mXl=1 �lKlx(t) x 2 Sl; l 2 L(5)the system (1) be
omes:_x(t) = A
(�)x(t) +D
(�)v(t)z(t) = H
(�)x(t) (6)whereA
(�) = A(�) +B(�)K(x) D
(�) = D(�)H
(t) = H(�)Then, 
ontroller synthesis 
an be a
hieved a

ord-ing to the following theorem (Feng 2003):



Theorem 1 : Given a 
onstant 
 > 0, (6) isglobally stable with disturban
e attenuation 
, ifthere exist 
onstants �l > 0, l = 1; 2; � � � ;m, asymmetri
 matrix T and a set of matri
es Ql; l 2L su
h that withPl = (F Tl Fl)�1F Tl TFl(F Tl Fl)�1Pl = R�1l ; l 2 L (7)the following LMIs are satis�ed:0 < Pl; l 2 L24 
l Pl QTlPl �M�1Pl 0Ql 0 �M�1Ql 35 < 0; l 2 L (8)where 
l=PlATl +AlPl+QTl BTl +BlQl+�l(ElAETlA+ElBETlB)+
�2�1+ 1�l�DlDTl +
�2(1+�l)ElDETlDMPl = 1�l I+�1+ 3�l�HTl Hl+�1+2�l+ 1�l�ETlHElHMQl = 1�l I[�Al(�)℄[�Al(�)℄T � ElAETlA[�Bl(�)℄[�Bl(�)℄T � ElBETlB[�Dl(�)℄[�Dl(�)℄T � ElDETlD[�Hl(�)℄[�Hl(�)℄T � ElHETlHwith matri
es ElA, ElB , ElC , ElD and ElH beingupper bounds for the un
ertainty terms that 
anbe easily 
al
ulated (see (Feng 2003)).The 
ontroller gain for ea
h lo
al subsystem isgiven by Kl = QlP�1l ; l 2 L: (9)The pie
ewise Lyapunov fun
tion 
an be thenexpressed as in (4).3. CONSTRAINTS ON INPUT AND OUTPUTResults in (Feng 2003), brie
y des
ribed in theprevious se
tion, 
an be extended by 
onsidering
onstraints on input and output.Theorem 2 Assume that the initial 
ondition x(0)in system (6) is known. The 
onstraint ku(t)k2 <� is enfor
ed at all times t � 0 if the LMIs

� 1 x(0)Tx(0) Pl � � 0; l 2 L (10)� Pl QTlQl �2I � � 0; l 2 L (11)hold, where Pl and Ql are de�ned as in Theorem1. Then Kl = QlP�1l ; l 2 L.Proof: Without loss of generality, suppose thatV (0) = xT (0)Rlx(0) � 1; l 2 L; x(0) 2 Sl: (12)From (7) and (12), we have 1�xT (0)P�1l x(0) � 0,so by S
hur 
omplement we arrive to the LMI (10).Condition ku(t)k2 < � 
ombined with (5) 
an berewritten as follows:uT (t)u(t) = mXl=1 mXj=1 �l(x)�j(x)xT (t)KTl Kjx(t)� �2from whi
h1�2 mXl=1 mXj=1 �l(x)�j(x)xT (t)KTl Kjx(t) � 1: (13)Noti
e that sin
e xT (t)P�1l x(t) � xT (0)P�1l x(0) �1 for t > 0, if1�2 mXl=1 mXj=1 �l(x)�j(x)xT (t)KTl Kjx(t)� xT (t)P�1l x(t)then (13) holds. Therefore, 
ondition (11) 
an beobtained from the previous inequality, whi
h 
anbe transformed as follows:mXl=1 mXj=1 �l(x)�j(x)xT (t)� 1�2KTl Kj � P�1l �x(t)� 0and by S
hur 
omplementmXl=1 �l(x) � P�1l KTlKl �2I � � 0:Congruen
e with the full rank matrix� Pl 00 I �leads to (11), where Kl = QlP�1l ; l 2 L, whi
h
ompletes the proof.Theorem 3 Assume that the initial 
ondition x(0)in system (6) is known. The 
onstraint kz(t)k2 <� is enfor
ed at all times t � 0 if the LMIs



� 1 x(0)Tx(0) Pl � � 0; l 2 L (14)� Pl PlHTlHlPl �2I � � 0; l 2 L (15)hold, where Pl and Ql are de�ned as in Theorem1. Then Kl = QlP�1l ; l 2 L.Proof: Proof follows the same lines as that forTheorem 2. 4. EXAMPLEIn order to illustrate the in
uen
e of the input andoutput 
onstraints, 
onsider the following exampletaken from (Feng 2003), 
orresponding to a balland beam system:R1 : IF x1 > 0 THEN_x(t) = A1x(t) +B1u(t) +D1v(t)z1(t) = H1x(t)R2 : IF x1 < 0 THEN_x(t) = A2x(t) +B2u(t) +D2v(t)z2(t) = H2x(t) (16)whereA1 = 2664 0 1 0 00 0 �bg �2b�0 0 0 10 0 0 0 3775 ; B1 = 2664 0001 3775D1 = [0 0 0 1℄T ; H1 = [1 0 0 0℄A2 = 2664 0 1 0 00 0 �bg 2b�0 0 0 10 0 0 0 3775 ; B2 = 2664 0001 3775D2 = [0 0 0 1℄T ; H2 = [1 0 0 0℄� = 0:01; b = 0:7143; g = 9:81and x(t) = [x1 x2 x3 x4℄T is the state ve
tor,where x1 represents the ball position, x2 the ballvelo
ity, x3 the beam angle and x4 the beam'sangular velo
ity. Noti
e also that z1 = z2 = x1.Fig. 1 shows the membership fun
tions employedin the example. A

ording to the state-spa
e par-tition (3), we will have two subspa
es for whi
h thefollowing 
hara
terizing and bounding matri
es
an be taken:F1 = � �1 0 0 0I4�4 � ; F2 = � �1 0 0 0I4�4 �E1A = E2A = 0:5(A2 �A1)E1B = E2B = 0:5(B2 �B1)
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Fig. 1. Membership fun
tions and state-spa
e par-tition
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Fig. 2. Comparison of output signal x1 with andwithout 
onstraint
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Fig. 3. Comparison of input signal with and with-out 
onstraintE1D = E2D = 0:5(D2 �D1)E1H = E2H = 0:5(H2 �H1)Employing the synthesis pro
edure des
ribed inTheorem 1 with 
 = 100; �1 = �2 = 10, we havea feasible solution for LMIs (8) giving 
ontrollergainsK1 = [ 8.0334 10.4772 �40.0059 �11.2510℄and K2 = [ 7:9824 10:4272 �39:8936 �11:2299 ℄whi
h stabilize the system output x1 as is shown
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Fig. 4. Constrained output signal x1
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Fig. 5. Constrained input signalwith a solid line in Fig. 2. Corresponding 
ontrolsignal is also shown with a solid line in Fig. 3.In order to redu
e the magnitude of the 
on-trol input signal, LMIs (10-11) should be addedto those of (8). Choosing � = 3 under initial
onditions x(0) = [0 0:1 0:1 0:1℄T , these LMIsproved to be feasible with 
ontroller gains K1 =[1.3398 1.9901 �9.4936 �3.6913℄ and K2 =[1.3248 1.9847 �9.5022 �3.6899℄. In Fig. 3,
ontrol signal is shown with a dashed line to make
lear the di�eren
e between non-
onstrained and
onstrained 
ase. Constraint ku(t)k2 � � has beensatisfa
tory a

omplished.Constraints on the output 
an be satis�ed byadding LMIs (14-15) to the original design in (8).With � = 0:009 under initial 
onditions x(0) =[0 0:1 0:1 0:1℄T , these LMIs proved to be feasiblewith 
ontroller gains K1 = [ 5020.3 710.9 �690.1�47.3℄ and K2 = [ 6439.1 878.3 �847.8 �55.2℄.In Fig. 2 output signal z(t) = x1 is shown with adashed line so 
an be 
ompared with the originalone. Constraint kz(t)k2 � � holds.Finally, 
ombining all the previous s
hemes underthe initial 
onditions x(0) = [0 0:1 0:1 0:1℄Tto a
hieve kz(t)k2 � 0:009 and ku(t)k2 � 4:2,LMIs (10-11), (14-15) and (8) proved to be fea-sible giving 
ontroller gains K1 = [ 284.5527

107.0897 �127.2083 �14.0323℄ and K2 =[347.2602 120.0060 �139.7417 �15.0352℄. Fig.4 shows the output signal z(t) = x1 while Fig. 5exhibits the 
orresponding 
ontrol input.5. CONCLUSIONController synthesis for Takagi-Sugeno fuzzy sys-tems (TSFS) based on pie
ewise Lyapunov fun
-tion remains a 
hallenging task, whi
h has beendeveloped just re
ently. Extensions from thoseresults available for 
ommon Lyapunov fun
tionbased TSFS are ne
essary in order to in
rease the
apabilities of this approa
h.In this paper, two new results regarding perfor-man
e requirements have been added to the ex-isting disturban
e reje
tion theorem. Considering
onstraints on the input and output signals isa typi
al demand whi
h in
reases 
ontrol qual-ity. Both of them have been established in thispaper and 
an be implemented via LMIs, whi
h
an be easily solved with 
ommer
ially availablesoftware. The examples provided illustrate thee�e
tiveness of the developed te
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