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Abstract: This work extends the synthesis of controllers for Takagi-Sugeno fuzzy
systems based on a piecewise Lyapunov function to include constraints on the input
or the output. Extension follows naturally from the existing results based on a
common Lyapunov function and can be implemented via linear matrix inequalities,
which are numerically solvable with commercial available software. An illustrative
example is provided. Copyright (©2005 IFAC
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1. INTRODUCTION

Fuzzy logic-based control systems have been sub-
jected to a big growth of industrial applications
during the recent years as well as to big effort to
study their properties and increase their reliabil-
ity, mainly because of their satisfactory results in
dealing with highly nonlinear systems with a good
compromise between simplicity and accuracy.

Among fuzzy systems, those defined in (Takagi
and Sugeno 1985) have been considered as the
most convenient for analysis and design, because
of their simplicity and efficiency in modelling non-
linear systems. First attempts on investigation of
stability of Takagi-Sugeno fuzzy systems (TSFS)
were made employing common Lyapunov func-
tions as in (Tanaka and Sugeno 1990), (Tanaka

1 This work has been supported by the project INGO
1P2004LA231 from the Ministry of Education of the Czech
Republic, by the Mexican Council of Science and Technol-
ogy (CONACYT) via scholarship 121109 and the project
GACR 102/04/P050, sponsored by the Grant Agency of
the Czech Republic.

and Sugeno 1992), (Chen and Ying 1993) and
(Farinwata and Vachtsevanos 1993). Controller
synthesis under this scheme was achieved, includ-
ing a lot of performance requirements as decay
rate, input or output constraints, robustness and
optimality (Tanaka and Sano 1994), (Wang et
al. 1996), (Tanaka et al. 1998) and (Tanaka and
Wang 2001).

Nevertheless, analysis and design based on com-
mon Lyapunov functions lack flexibility because
of their conservativeness. In order to relax this
restrictions, a number of recent stability analy-
sis procedures based on piecewise quadratic Lya-
punov functions have been developed (Johans-
son et al. 1999), (Rantzer and Johansson 2000),
(Feng 2004). In a very recent work (Feng 2003),
controller synthesis under this scheme was made
possible by constructing controllers in such a way
that a piecewise continuous Lyapunov function
can be used to establish the global stability with
H_, performance. Moreover, this synthesis can be
achieved by means of linear matrix inequalities



(LMIs), which can be solved with commercially
available software.

In the present paper, two performance characteris-
tics are added to the controller designed in (Feng
2003): constraints on the input and constraints
on the output. Both of them can be implemented
independently via LMIs and follow naturally from
the elementary cases in (Tanaka et al. 1998).

This paper is organized as follows: section 2 intro-
duces the dynamical fuzzy systems and piecewise
quadratic design this work is based on; section
3 shows new results on input and output con-
straints; section 4 illustrates the previous results
with some examples and, finally, section 5 draws
some conclusions.

2. FUZZY SYSTEMS AND PIECEWISE
QUADRATIC DESIGN

Consider the following Takagi-Sugeno fuzzy sys-
tem as in (Feng 2003):

R :IF z, is Fl AND ... 2, is F. THEN

#(t) = Az (t) + Bru(t) + Dy(t)
2(t) = Hiz(t), (1)
1=1,2,---,m

where R! denotes the [th fuzzy rule, m is the
number of rules, Fj the fuzzy sets, z(t) € R"
the state vector, u(t) € RP the control input,
z(t) € R" the controlled output and A;, B, Dy, H,
the Ith local model of the fuzzy system (1).

The previous scheme can be compactly rewritten
considering membership functions p(z) > 0, as
follows:

where
A(p) =Y mA B(p) =Y B
=1 =1
D(p)=> D H(p) = wH
=1 =1

Piecewise quadratic stability is based on state
space partitioning. In (Feng 2003) a partition’s
method is proposed in order to achieve globally
stable controller with disturbance attenuation.
Following similar lines, let us divide the state-
space as follows:

EZZSZUBSZ, l=1,2,---,m (3)

where
St=Az (@) > pi(z),i =1,2,---,m,i # 1}
and its boundary
S ={z | m(z) = pi(x),i=1,2,--- ., m,i #1}.

In addition, let us define L as the set of subspace
indexes, so we can describe (2) as follows:

(1) = (A + AA)2(t) + (B + ABu(?)
+(D; + ADy)v(t)
o) = (Hy + AH)a(t)

for z(t) € S;, where

AA = Z wiAA; AB = Z i ABy;

ieM, ieM,
AD; = Z wiADy;  AH) = Z pi AHy;
ieM, ieM,
AA; =A; — A AB; = B; — B
AD; =D;—D; AH; =H; — H

My ={i| pi#0,m > pi}.

Piecewise Lyapunov function is constructed as in
(Johansson et al. 1999):

V(t)=a2"Rz, z€S;, 1€L (4)
with

R =F'TF, lelL
Fiz=Fjz, 1€ 5 n8S;, 1,j€ L.

Employing parallel distributed compensation (PDC)
m —
u(t) = Kz(t) = Y wkKiz(t) = €S, leL>)
=1

the system (1) becomes:

Then, controller synthesis can be achieved accord-
ing to the following theorem (Feng 2003):



Theorem 1: Given a constant v > 0, (6) is
globally stable with disturbance attenuation -y, if
there exist constants ¢ > 0,1 = 1,2,---,m, a
symmetric matrix 7' and a set of matrices Q;,1 €
L such that with

P=(F'R)™ F'TR(F 7)™
P =R;', leL (7)

the following LMIs are satisfied:

0<P, leL
Q P Qf
P —Mgp' 0 <0,l€eL (8)
@ 0 —M@l

where

Y =PA +AP+Q] Bf +BiQ,
+e(Eia B+ EsElR)

1
4972 (”5) DDl +772(1+¢)EpE],

1
Mp ==1+ <1+§> HH,
€l €l

with matrices Fja, Eip, Eic, Eip and E;g being
upper bounds for the uncertainty terms that can
be easily calculated (see (Feng 2003)).

The controller gain for each local subsystem is
given by

K =P, leL. (9)

The piecewise Lyapunov function can be then
expressed as in (4).

3. CONSTRAINTS ON INPUT AND OUTPUT

Results in (Feng 2003), briefly described in the

previous section, can be extended by considering
constraints on input and output.

Theorem 2 Assume that the initial condition x(0)
in system (6) is known. The constraint ||u(t)||2 <
A is enforced at all times ¢ > 0 if the LMIs

1 z(0)7T
[w(o) o } >0,l€el (10)
g’l%ﬂzo,za (11)

hold, where P, and (); are defined as in Theorem
1. Then K; = QP !, 1 € L.

Proof: Without loss of generality, suppose that
V(0) =27 (0)Riz(0) <1, 1 € L, (0) € S;. (12)

From (7) and (12), we have 1—27(0) P, '2(0) > 0,

so by Schur complement we arrive to the LMI (10).

Condition |Ju(t)||2 < A combined with (5) can be
rewritten as follows:

uT(But) =YY @) (@) (K] Kja(t)

=1 j=1
< )2

from which

712 DO m@p(@)e” () K Ke(t) <1. (13)

=1 j=1

Notice that since 27 (#) P, ' 2(t) < 27(0) P, '2(0) <
1for t > 0, if

<aT(t)F z(t)
then (13) holds. Therefore, condition (11) can be

obtained from the previous inequality, which can
be transformed as follows:

and by Schur complement
Zm P K]
> 0.
2 (@) [ K x1|20

Congruence with the full rank matrix

i

leads to (11), where K; = Qlel, l € L, which
completes the proof.

Theorem 3 Assume that the initial condition x(0)
in system (6) is known. The constraint ||z(t)||2 <
A is enforced at all times ¢ > 0 if the LMIs



[wl ”S(O)T} >0, 1€l (14)

0) B
P RH'
|:HlPl \2p |20, 1€l (15)

hold, where P, and (); are defined as in Theorem
1. Then K; = QP !, 1 € L.

Proof: Proof follows the same lines as that for
Theorem 2.

4. EXAMPLE

In order to illustrate the influence of the input and
output constraints, consider the following example
taken from (Feng 2003), corresponding to a ball
and beam system:

R':IF z, >0 THEN

i(t) = Az(t) + Byu(t) + Dyu(t)
Zl(t) = Hlilﬁ(t)
R?*:IF 7, <0 THEN
w(t) = AQ.’]Z(t) +Bgu(t) +D2’U(t)
2(t) =  Hyx(t) (16)
where
01 0 0 0
| 00 —bg —208 0
Q=190 0 1 |"B =0
00 0 O 1
Dy =[0001]", H =[1000]
01 0 0 0
| 00 —bg 208 10
L=1900 1 [P0
00 0 0 1
Dy=[0001)", H,=[1000]
B =001, b=0.7143, g = 9.81
and x(t) = [z z2 z3 z4]T is the state vector,

where z; represents the ball position, x5 the ball
velocity, x3 the beam angle and x4 the beam’s
angular velocity. Notice also that z; = 2o = .

Fig. 1 shows the membership functions employed
in the example. According to the state-space par-
tition (3), we will have two subspaces for which the
following characterizing and bounding matrices
can be taken:

-1000 -1000
F = 5 F =
' { Tsxa } 2 [ Iixy }

Eia = Byp = 0.5(4; — Ay)
Eip = Esp = 0.5(By — By)

S1 s2

Membership values
o
5

04F

021

Fig. 1. Membership functions and state-space par-
tition
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Fig. 2. Comparison of output signal z; with and
without constraint
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Fig. 3. Comparison of input signal with and with-
out constraint

Eip = Eysp = 0.5(Dy — Dy)
Eig = By = 0.5(Hy — Hy)

Employing the synthesis procedure described in
Theorem 1 with v = 100, ¢; = e; = 10, we have
a feasible solution for LMIs (8) giving controller
gains Ky = [8.0334 10.4772 —40.0059 —11.2510]
and Ky = [7.9824 10.4272 —39.8936 —11.2299]
which stabilize the system output z; as is shown
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Fig. 4. Constrained output signal z;
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Fig. 5. Constrained input signal

with a solid line in Fig. 2. Corresponding control
signal is also shown with a solid line in Fig. 3.

In order to reduce the magnitude of the con-
trol input signal, LMIs (10-11) should be added
to those of (8). Choosing A = 3 under initial
conditions z(0) = [0 0.1 0.1 0.1]7, these LMIs
proved to be feasible with controller gains K; =
[1.3398 1.9901 —9.4936 —3.6913] and K, =
[1.3248 1.9847 —9.5022 —3.6899]. In Fig. 3,
control signal is shown with a dashed line to make
clear the difference between non-constrained and
constrained case. Constraint ||u(t)||2 < A has been
satisfactory accomplished.

Constraints on the output can be satisfied by
adding LMIs (14-15) to the original design in (8).
With A = 0.009 under initial conditions z(0) =
[0 0.1 0.1 0.1]7, these LMIs proved to be feasible
with controller gains K; = [ 5020.3 710.9 —690.1
—47.3) and K, = [ 6439.1 878.3 —847.8 —55.2].
In Fig. 2 output signal z(t) = z is shown with a
dashed line so can be compared with the original
one. Constraint ||z(t)||2 < A holds.

Finally, combining all the previous schemes under
the initial conditions x(0) = [0 0.1 0.1 0.1]T
to achieve [|z(t)|]2 < 0.009 and ||u(t)]|l2 < 4.2,
LMIs (10-11), (14-15) and (8) proved to be fea-

sible giving controller gains K; = [ 284.5527

107.0897 —127.2083 —14.0323] and K, =
[347.2602 120.0060 —139.7417 —15.0352]. Fig.
4 shows the output signal z(t) = z; while Fig. 5
exhibits the corresponding control input.

5. CONCLUSION

Controller synthesis for Takagi-Sugeno fuzzy sys-
tems (TSFS) based on piecewise Lyapunov func-
tion remains a challenging task, which has been
developed just recently. Extensions from those
results available for common Lyapunov function
based TSFS are necessary in order to increase the
capabilities of this approach.

In this paper, two new results regarding perfor-
mance requirements have been added to the ex-
isting disturbance rejection theorem. Considering
constraints on the input and output signals is
a typical demand which increases control qual-
ity. Both of them have been established in this
paper and can be implemented via LMIs, which
can be easily solved with commercially available
software. The examples provided illustrate the
effectiveness of the developed techniques.
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