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Abstract: Control laws are designed to stabilize three unstable equilibriums of a
planar double link pendulum. A flywheel, actuated by an electrical drive equips the
first link. The control signal - voltage is applied to this drive. The limits imposed
on the voltage are explicitly taken into account. Our under actuated system is
controllable. The number of unstable modes, one or two, depends on the considered
unstable state. The control laws are designed to suppress the unstable modes
using the linear models of the motion near each unstable state. The numerical
investigations of the nonlinear model with the designed nonlinear control laws are
presented Copyright c©2005 IFAC.
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1. INTRODUCTION

Many mechanical systems have fewer indepen-
dent control actuators than degrees of freedom.
The stabilization of under actuated processes is
difficult and there has been major interest in
developing stabilizing algorithms which use lin-
ear and non linear control laws, energy based
controllers, etc. For example inverted pendulums
are considered in (Akensson, 2000; Aström and
Furuta, 2000; Beznos et al., 2003; Chung and
Hauser, 1995; Fantoni et al., 2001; Grishin et
al., 2002). The challenge is to deal with an un-
stable equilibrium point. The control law has to
”suppress” the instability. Another difficulty with
actuated mechanical systems is to take into ac-
count the limit on the control, as for example
in (Aoustin and Formal’sky, 2005; Aström and

Brufani, 1997; Beznos et al., 2003; Gilbert et
al., 1994; Grishin et al., 2002; Martynenko et
al., 2004). In (Beznos et al., 2003; Fantoni et
al., 2001; Grishin et al., 2002), one-link inverted
pendulums with a flywheel are considered. It is
shown that one inverted pendulum can be sta-
bilized, using a flywheel with an energy-based
control and linear feedback designed with the
Jordan form of the motion equations. These re-
sults are expanded by experiments in (Beznos et
al., 2003; Grishin et al., 2002).
This paper is devoted to the stabilization of un-
stable equilibriums of a two-link pendulum with
a flywheel. The control law design is based on
a pole placement method and/or on the Jordan
form of the motion equations. The limits of the
input voltage are explicitly taken into account.



The organization of the paper is the following.
Section 2 is devoted to the model of the two-link
pendulum with a flywheel. The linear model of
the double-link mechanism motion around each
unstable equilibrium is presented in Section 3. The
statement of the problem is defined in Section
4. Section 5 considers the stabilization problem
of two equilibriums with only one link inverted.
Section 6 presents the stabilization problem of the
third equilibrium with the two inverted links. Sec-
tion 7 presents our conclusion and perspectives.

2. MODEL DESCRIPTION OF THE
TWO-LINK PENDULUM WITH FLYWHEEL

2.1 Motion equations

We consider a two-link planar mechanism with a
flywheel (see its diagram in Figure 1). The stator
of the electrical actuator is connected to link 1, the
output shaft is connected to the flywheel. Thus,
the actuator rotates the flywheel with respect to
link 1. Let mi (i = 1, 3) be the masses of the links.
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Fig. 1. Diagram of the two-link pendulum with a
flywheel.

The inertia moment of link 1 around point O is
denoted I1. Let OO1 = b and OC1 = a1 be the
length of link 1 and the distance between joint
O and the center of mass C1 respectively. The
mass and the inertia moment around the center
of mass C2 of the flywheel are denoted m2 and
I2 respectively. The distance between joint O and
the center of mass C2 of the flywheel is equal to
OC2 = a2. The inertia moment of the second
link around its center of mass C3 is denoted I3.
The distance between joint O1 and the center of
mass C3 of link 2 is O1C3 = a3. The variable ϕ1

(ϕ3) is the angle between the vertical axis Y and
the first (second) link, ϕ2 is the absolute flywheel
rotation angle. The generalized coordinates ϕ1,
ϕ2, ϕ3 and the three associated velocities ϕ̇1,
ϕ̇2, ϕ̇3 characterize the behavior of our system.
The generalized force is the torque Γ due to the
electrical actuator of the flywheel. This torque is
directly proportional to the electrical current in
the armature winding. By neglecting the armature

inductance, this torque can be written in the form
(Gorinevsky et al., 1997):

Γ = cuU − cv(ϕ̇2 − ϕ̇1) (1)

where cu, cv are positive constants, U is the
voltage supplied to the motor

|U | ≤ U0, U0 = const (2)

The difference ϕ̇2 − ϕ̇1 is the velocity of the
flywheel with respect to link 1.
The expressions for the kinetic energy Ec and
potential energy Π of the mechanism are the
following (g is the gravity acceleration):

2Ec = a11ϕ̇
2
1 + a22ϕ̇

2
2 + a33ϕ̇

2
3 + ...

2a13ϕ̇1ϕ̇3cos(ϕ1 − ϕ3)
(3)

Π = −c1cosϕ1 − c3cosϕ3 (4)

where a11 = I1 + m2a
2
2 + m3b

2, a22 = I2, a13 =
m3a3b, a33 = I3 + m3a

2
3, c1 = (m1a1 + m2a2 +

m3b)g, c3 = m3a3g and u0 = cu/c1U0.
The motion equations can be derived using La-
grange’s method and expressions (1), (3), (4):

a11ϕ̈1 + a13cos(ϕ1 − ϕ3)ϕ̈3 + ...
a13sin(ϕ1 − ϕ3)ϕ̇

2
3 + c1sinϕ1

= −cuU + cv(ϕ̇2 − ϕ̇1)
(5)

a22ϕ̈2 = cuU − cv(ϕ̇2 − ϕ̇1) (6)

a13cos(ϕ1 − ϕ3)ϕ̈1 + a33ϕ̈3 − ...
a13sin(ϕ1 − ϕ3)ϕ̇

2
1 + c3sinϕ3 = 0

(7)

The motion equations (5) - (7) do not depend on
angle ϕ2. This cyclic variable is not important
for the problem of the pendulum stabilization.
System (5) - (7) has three unstable equilibriums:

ϕ1 = 0, ϕ3 = π (8)

ϕ1 = π, ϕ3 = 0 (9)

ϕ1 = π, ϕ3 = π (10)

The determinant of the controllability matrix
(Kalman et al., 1969) of the model (5) - (7),
linearized around each instable equilibrium is:

a2

13
c2
1
c4
3
c6
4

a22(a11a33−a2

13
)6
.

Then the linear model is controllable near each
unstable equilibrium, if a3 6= 0, b 6= 0, cu 6= 0 and
m1a1 +m2a2 +m3b 6= 0.

2.2 Dimensionless motion equations

Let us introduce the dimensionless variables τ , α22

α13, α33, β, c and u:



τ = t/T (T =
√

a11/c1), α22 = a22/a11,
α13 = a13/a11, α33 = a33/a11, c = c3/c1,

β = cv/
√
a11c1, u = cuU/c1, |u| ≤ u0,

Substituting the dimensionless quantities in (5)-
(7), we rewrite these non linear equations in a
simpler form with only five parameters (′≡ d/dτ):

ϕ
′′

1 + α13cos(ϕ1 − ϕ3)ϕ
′′

3 + sinϕ1 + ...

α13sin(ϕ1 − ϕ3)ϕ
′2
3 = −u+ β(ϕ

′

2 − ϕ
′

1)
(11)

α22ϕ
′′

2 = u− β(ϕ
′

2 − ϕ
′

1) (12)

α13cos(ϕ1 − ϕ3)ϕ
′′

1 + α33ϕ
′′

3 − ...

α13sin(ϕ1 − ϕ3)ϕ
′2
1 + csinϕ3 = 0

(13)

3. LINEAR MODEL OF THE PENDULUM
WITH FLYWHEEL

Let us linearize (11)-(13) near equlibriums (8)-
(10). If x is (5x1) state vector, then linear state
model has the form

x′ = Ax+Bu (14)

with

A =













02×2

(

1 0 0
0 0 1

)

D−1E D−1





−β β 0
β −β 0
0 0 0

















,

B =









02×1

D−1





−1
1
0













The matrices D, E and vector x are

(1) for ϕ1 = 0, ϕ3 = π:

D =





1 0 −α13

0 α22 0
−α13 0 α33



 , E =





−1 0
0 0
0 c



,

x = (ϕ1, (ϕ3 − π), ϕ̇1, ϕ̇2, ϕ̇3 )
T

(2) for ϕ1 = π, ϕ3 = 0:

D =





1 0 −α13

0 α22 0
−α13 0 α33



 , E =





1 0
0 0
0 −c



,

x = ((ϕ1 − π), ϕ3, ϕ̇1, ϕ̇2, ϕ̇3 )
T

(3) for ϕ1 = π, ϕ3 = π:

D =





1 0 α13

0 α22 0
α13 0 α33



 , E =





1 0
0 0
0 c



 ,

x = ((ϕ1 − π), (ϕ3 − π), ϕ̇1, ϕ̇2, ϕ̇3 )
T

Introducing a nondegenerate linear transforma-
tion x = Sy, with a constant matrix S, we obtain
the well-known Jordan form of equation (14):

y′ = Λy + du (15)

where, with the eigenvalues of A, λi (i = 1, ..., 5)

Λ = S−1AS = diag(λi), d = S−1B = [di]
T .(16)

Let the eigenvalues with positive real part have
the smaller subscripts. For the equilibriums (8)
and (9), we will obtain λ1 > 0, Reλi < 0 (i = 2−
5). For the equilibrium (10) λ1 > 0, λ2 > 0,
Reλi < 0 (i = 3, 4, 5).

4. PROBLEM STATEMENT

Let x = xe = 0 be the desired equilibrium
state of (14). Let us design the feedback con-
trol to stabilize this equilibrium xe = 0, under
constraints (2). Then, the objective is to design
an admissible (satisfying inequality (2)) feedback
control u = u(x) (|u(x)| ≤ u0) to ensure the
asymptotic stability of the desired state xe = 0.
Let W be the set of piecewise continuous functions
of time u(t), satisfying inequalities (2). Let Q be
the set of the initial states x(0), from which the
origin xe = 0 can be reached, using an admissible
control functions of time u(t) ∈ W . In other
words, system (14) can reach the origin xe = 0
with the control u(t) ∈ W , only when starting
from the initial states x(0) ∈ Q. The set Q is
called controllability region. If A has eigenvalues
with positive real part and the control variable
u is limited, then Q is an open subset of the
phase space X for (14) (Formal’sky, 1974). Let
us consider system (15), (16). If, for example,
only one eigenvalue λ1 is positive, then we can
extract from system (15), (16) first scalar equation
corresponding to one unstable mode

y′1 = λ1y1 + d1u (17)

Here, the controllability region Q is described by

|y1| < |d1|u0/λ1 (18)

When two eigenvalues have positive real part, the
origin xe = 0 can be reached, only if both initial
values y1(0) and y2(0) are bounded (see Sub-
section 6.1). For any admissible feedback control
u = u(x) (|u(x)| ≤ u0) the corresponding region
of attraction V ⊂ Q. Here, as usual, V is the set of
initial states x(0), from which system (14), with
the feedback u = u(x) asymptotically tends to the
origin point xe = 0 as t→∞.
Some eigenvalues of matrix A are located in the
left half of the complex plane. The other eigen-
values of A are in the right half. We will design a
control law which ”transfers” the latter eigenval-
ues to the left half.
The structure and the properties of this control
law depend on the unstable equilibrium that we
stabilize. These different cases will be now de-
tailed.



5. STABILIZATION OF THE EQUILIBRIUMS
WITH ONE LINK INVERTED

5.1 Control design for ϕ1 = 0, ϕ3 = π (link 2
inverted) and ϕ1 = π, ϕ3 = 0 (link 1 inverted)

Matrix A for both equilibriums has one real pos-
itive eigenvalue λ1 > 0. In this case, our system
contains only one unstable mode. Equation (17)
corresponds to this mode. This unstable mode can
be suppressed using control

u = γy1 (19)

with λ1 + d1γ < 0 (Grishin et al., 2002). For (14)
in closed loop with feedback (19), only pole λ1

is replaced with a negative pole λ1 + d1γ. Poles
λ2,3,4,5 do not change. Under feedback control (19)
with saturation (2)

u(x) =







u0, if γy1 ≥ u0

γy1, if |γy1| ≤ u0

−u0, if γy1 ≤ −u0

(20)

we obtain the largest possible region of attraction
V for (14) (or (15)), (2) (Grishin et al., 2002). The
region of attraction under control (20) is V = Q
and consequently it is described by inequality
(18).
Note that variable y depends on the original
variable x because x = Sy. Due to this, (20)
defines a control feedback, which depends on the
original variables xi (i = 1− 5).
We can “suppress” the instability due to λ1 > 0
also by using a pole placement design with a linear
feedback control,

u = −Kx (21)

To find the gains of feedback control (21), we use
Ackermann’s formula:

K =
[

0 0 0 0 1
]

C−∞ αc(A)

where, αc(A) represents the matrix polynomial
formed with the coefficients of the desired charac-
teristic polynomial αc(s). For (14) in closed loop,
any poles can be prescribed, because this system
is Kalman controllable.
If (2) is taken into account, we obtain from (21) a
linear feedback control with saturation,

u(x) =







u0, if −Kx ≥ u0

−Kx, if |Kx| ≤ u0

−u0, if −Kx ≤ −u0

(22)

According to Lyapounov’s theorem (Slotine and
Li, 1991) the equilibrium point x = 0 of the
nonlinear system is asymptotically stable under
control (22) with some region of attraction.

5.2 Numerical results with link 2 inverted

The following numerical values of the parameters
of our mechanism are considered:
m1 = 0.04 kg, m2 = 0.313 kg, m3 = 0.03 kg,
a1 = 0.15m, a2 = b = 0.3m, a3 = 0.12m,
I1 = 12.10−4 kg.m2, I2 = 803.10−7 kg.m2,
I3 = 144.10−6 kg.m2, cu = 0.0069N .m/V,
cv = 0.000099N .m/s, U0 = 19V.
In open-loop the poles (eigenvalues) of linear sys-
tem (14) are
λ1 = 1.3858, λ2,3 = −0.0003± 1.0115i,
λ4 = −0.2136, λ5 = −1.3858.
Our system contains only one unstable mode. Us-
ing control (20), we obtain the largest region of at-
traction (18). With inequality (18), the maximum
initial tilt of link 1, which can be handled for linear
model (14) under control (20) is ϕ1(0) = 12.38◦

(ϕ3(0) = ϕ1(0) + π = 192.38◦, ϕ̇1,2,3(0) = 0).
However, eigenvalues λ2,3 are too close to the
imaginary axis and, with control (20), the tran-
sient process is too long. We hereafter prescribe
the eigenvalues to avoid a long transient process.
Linear feedback control law (21) is designed to
obtain in closed loop the following poles: λ1,...,5 =
−1.0.
In simulation, control law (21) with the prescribed
poles and under saturation, i.e. control law (22)
is applied to the nonlinear model (11)-(13). Con-
sidering the initial position of link 1, the maxi-
mum tilt which can be handled is ϕ1(0) = 10◦

(ϕ3(0)) = ϕ1(0) + π = 190◦). The graphs of
variables ϕ1,2,3(t) as functions of time are shown
in Figure 2. At the end, the pendulum is steered
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to the desired equilibrium. When the stabilization
of the pendulum is reached, the rotation of the
flywheel is stopped. The maximum control voltage
is applied at initial time, as shown in Figure 3.

5.3 Numerical results with link 1 inverted

In open-loop the poles of linear system (14) are
λ1 = 1.0113, λ2,3 = −7.0 10−6 ± 1.3858i,
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λ4 = −0.2136, λ5 = −1.0119.
In this case, our system contains also one unstable
mode only. This mode can be suppressed using
feedback control (20) with saturation. Under this
control we obtain for system (14), (2) the largest
region of attraction (18). Using inequality (18),
the maximum initial tilt of link 1, which can be
handled for linear model (14) is ϕ1(0) = 186.1◦

(ϕ3(0) = ϕ1(0) − π = 6.1◦, ϕ̇1,2,3(0) = 0). How-
ever, poles λ2,3 are too close to the imaginary
axis and we prescribe new poles to avoid a long
transient process. To obtain large basin of attrac-
tion for nonlinear system we have tested different
poles. We have obtained a ”good” result with the
following poles in closed loop:
λ1 = −1.0113, λ2,3 = −1.04± 1.092i,
λ4 = −1.0, λ5 = −1.0113.
In simulation, the corresponding control law (22),
is applied to nonlinear model (11)-(13). Consider-
ing the initial position of link 1, the maximum
tilt which can be handled is ϕ1(0) = 185.9◦

(ϕ3(0) = ϕ1(0) − π = 5.9◦). Considering the
graphs of variables ϕ1,2,3(t), we can see that at
the end of process, the pendulum is steered to
the equilibrium and the flywheel is stopped. The
maximum voltage is supplied to the motor at
initial time.

6. STABILIZATION OF THE EQUILIBRIUM
WITH BOTH LINKS INVERTED

6.1 Control design for ϕ1 = π, ϕ3 = π

Matrix A has two real positive eigenvalues λ1,
λ2 and three eigenvalues in the left half of the
complex plane. Let us consider the first two scalar
differential equations of the system (15), (16)
corresponding to eigenvalues λ1 and λ2:

y′1 = λ1y1 + d1u, y′2 = λ2y2 + d2u (23)

System (14) is Kalman controllable. Then, (23)
is controllable too (Kalman et al., 1969). The

controllability region Q of (23), and consequently
of (15), is an open bounded set with the following
boundaries (Boltyanskii, 1969)

yi(t) = ±
diu0

λi

(

2e−λiτ − 1
)

, (0 ≤ τ <∞)

i=1,2
(24)

We can ”suppress” the instability of coordinates
y1 and y2 by a linear feedback control,

u = k1y1 + k2y2 (25)

With,

k1 = − (λ1 + µ0)
2

d1(λ1 − λ2)
, k2 =

(λ2 + µ0)
2

d2(λ1 − λ2)
, (26)

the characteristic equation of system (23), (25) is:

(µ+ µ0)
2 = 0 (27)

If we take into account constraints (2), we obtain
a linear feedback control with saturation,

u(x) =







u0, if k1y1 + k2y2 ≥ u0

k1y1 + k2y2, if |k1y1 + k2y2| ≤ u0

−u0, if k1y1 + k2y2 ≤ −u0

(28)

With µ0 > 0, solution (y1(t), y2(t)) of system
(23), (28) tends to 0 as t → ∞ for initial y1(0),
y2(0) belonging to the basin of attraction of this
system. But if y1(t) → 0 and y2(t) → 0, then
according to expression (28) u(t)→ 0. Therefore,
the solutions yi(t) (i = 3, 4, 5) of the third, fourth
and fifth equations of system (15) with any initial
conditions yi(0) (i = 3, 4, 5) converge to zero as
t → ∞ because Reλi < 0 for i = 3, 4, 5. Thus,
under control (28) and with inequality µ0 > 0,
the domain of attraction of system (15), (28) is
described by the same relations, which describe
the domain of attraction of (23), (28).

6.2 Numerical results

In open-loop the poles of linear system (14) are
λ1 = 1.4471, λ2 = 0.9684, λ3 = −0.2136,
λ4 = −0.9689, λ5 = −1.4472.
Using (24), we have designed the controllability
region Q for (23) that is shown in Figure 4. The
region of attraction V for (23) under control (28)
is also shown for µ0 = 0.7. The periodical mo-
tion (cycle) is the boundary of V . This cycle is
computed using the backward motion of system
(23), (28) from a state close to the origin. We have
computed the domains of attraction for different
values µ0. For µ0 = 0.7, V is close to Q.
In simulation, control law (28) with µ0 = 0.7
is applied to nonlinear model (11)-(13). The ini-
tial position with maximum tilt of the straight
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(ϕ1(0) = ϕ3(0)) double-link pendulum, which
can be handled is ϕ1,3(0) = 181.757◦; the initial
angular velocities are equal to zero. The graphs of
variables ϕ1,2,3(t) are shown in Figure 5. At the
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end, the pendulum is steered to the equilibrium
and the flywheel is stopped. The transient process
is long because λ3 is close to the imaginary axis.

7. CONCLUSION

Different strategies are defined to stabilize a two-
link pendulum with a flywheel around three un-
stable equilibriums. The Jordan form of the linear
model of the double-link mechanism and a pole
placement are used to extract the unstable modes
and to suppress them by the feedback control.
When the linear system in open loop has a unique
positive pole, an optimal (largest) domain of at-
traction for the system can be obtained, i.e., it
coincides with the controllability domain. We try
to increase the domain of attraction in the case
with two positive poles as possible. All these re-
alistic numerical results lead to test these control
laws experimentally. The results of paper for the
attraction domain allow to construct in future

the nonlinear and global control to transfert the
pendulum to the upright position.

REFERENCES

Akensson, J. (2000). Safe Manual Control of Un-
stable Systems. PhD thesis. Master thesis
Lund Institute of Technology, Lund, Sweden.

Aoustin, Y. and A. M. Formal’sky (2005). On the
stabilization of biped vertical posture in sin-
gle support using internal torques. Robotica,
23(1), 65–74.

Aström, K. J. and K. Furuta (2000). Swinging up
a pendulum by energy control. Automatica,
36(2), 287–296.

Aström, K. J. and S. Brufani (1997). Manual con-
trol of an unstable system with a saturating
actuator. In: Proc. IEEE Conf. Decision and
Control. pp. 964–965.

Beznos, A. V., A. A. Grishin, A. V. Lenskii, D. E.
Okhotsimsky and A. M. Formal’skii (2003). A
pendulum controlled by a flywheel. Doklady
Mathematical Sciences.

Boltyanskii, V. G. (1969). Mathematical Methods
of Optimal Control. Nauka, Moscow [In Rus-
sian], 408 p.

Chung, C. C. and J. Hauser (1995). Nonlinear
control of a swinging pendulum. Automatica,
31(6), 851–862.

Fantoni, I., R. Lozano and M. W. Spong (2001).
Stabilization of the reaction wheel pendulum
using an energy approach. In: Proc. European
Control Conf. ECC2001. pp. 2552–2557.

Formal’sky, A. M. (1974). Controllability and
stability of systems with limited ressources.
Nauka, Moscow [In Russian], 368 p.

Gilbert, E., I. Kolmanovsky and T. Tan (1994).
Nonlinear control of discret-time linear sys-
tems with state and control constraints: A
reference governor with global convergences
properties. In: Proc. IEEE Conf. Decision
and Control. pp. 144–149.

Gorinevsky, D. M., A. M. Formal’sky and A. Yu.
Schneider (1997). Force Control of Robotics
Systems. CRC Press, Boca Raton, 350 p.

Grishin, A. A., A. V. Lenskii, D. E. Okhotsimsky,
D. A. Panin and A. M. Formal’sky (2002).
A control synthesis for an unstable object.
An inverted pendulum. Computer and System
Sciences International, 41(5), 685–694.

Kalman, R. E., P. L. Falb and M. A. Arbib (1969).
Topics in mathematical system theory. Mc
Grow-Hill Book Compagny, 358 p.

Martynenko, Y. G., A. V. Lensky and A. I. Kobrin
(2004). The problem of controlling a mobile
single-wheel robot with an unperturbed gy-
rostabilized platform. In: Proc. ISR 04.

Slotine, J. J. E. and W. Li (1991). Applied nonlin-
ear control. Prentice Hall International, Inc.,
461 p.


