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Abstract: A dynamic PEM fuel cell model has been developed, taking into account spatial 
dependencies of voltage, current, material flows, and temperatures. The voltage, current, and 
therefore the efficiency, are dependent on the temperature and other manipulated variables, 
which can be optimized on the fly to improve fuel efficiency. Here we demonstrate that model 
predictive control can accurately satisfy setpoint changes in the power demand, while at the 
same time, reduce fuel consumption to maximize the efficiency. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Fuel cells convert chemical potential into electrical 
power, and since they are not based on temperature 
differences, are not subjected to Carnot’s limit of 
efficiency. Furthermore, as combustion is not 
involved, common pollutants such as sulphur dioxide 
and nitrous oxides are avoided. These advantages, 
together with the reduction of greenhouse gases and 
fuel consumption due to higher efficiencies and the 
possibility of alternative energy sources, have gener-
ated enormous interest in fuel cells for stationary as 
well as mobile applications. 
 
Models of different complexity have been suggested, 
describing the performance of fuel cells under an 
array of conditions (Costamagna, 2001; Yi and 
Nguyen, 1998; Lee and Lalk, 1998). These models 
are then used to evaluate optimal schemes of external 
heating, water management and fuel composition.  
 
The regulation of the transient response of fuel cells 
is important for vehicular applications, since the 
power demands fluctuate, and the fuel cell will not 
always be operating at the optimal steady state 
designed by its manufacturer. It is desirable to con-
trol the fuel cell so that acceptable response time for 
the power demand is ensured, while achieving high 
efficiencies. Dynamic models facilitate the design 
and testing of control systems. To this end, a 
dynamic empirical model for the transient response 
of a fuel cell was developed by Amphlett, et al. 

(1996). This is a lumped model with no spatial 
dependence. Kang et al. (2001) present an analysis of 
a dynamic model for a molten-carbonate fuel cell 
(MCFC) where the system is modelled as a collection 
of first order transfer functions with dead times. In 
previous work (Golbert and Lewin, 2004), a first-
order, time dependent model of a fuel cell has been 
developed, which is fast enough to use for on-the-fly 
optimization of operating parameters to ensure con-
vergence to required power. It has been demonstrated 
that model predictive control (MPC) relying on this 
model is more robust than standard linear control, 
especially in regions of high power density.  
 
The objective of this paper is to demonstrate that 
MPC can be exploited to achieve both robust per-
formance and improved fuel efficiency. We begin by 
briefly reviewing the reduced-order fuel cell model 
utilized by the controller. This is followed by a 
detailed description of the MPC formulation for fuel 
efficiency. Finally, we present the results obtained, 
comparing the performance with and without 
accounting for optimal efficiency. 

2. FUEL CELL MODEL 
 
The model developed by Golbert and Lewin (2004) 
is based on the concept presented by Yi and Nguyen 
(1998), in which a fuel cell is modelled along its 
channel, a schematic drawing of which is presented 
in Figure 1. The model accounts for heat transfer 



     

between the solid and the two gas channels, and 
between the solid and cooling water. In addition, the 
water content is modelled, accounting for conden-
sation and evaporation, water drag through the mem-
brane, and water generation at the cathode. The 
model accounts for transients in the energy balance 
on the solid but all of the other equations are 
assumed to be at quasi-steady-state for each solid 
temperature profile. This spatially-dependent model 
is referred to as the “full-order” model, and is used to 
represent the true process in closed-loop simulations. 
 

 
Fig. 1: Schematic diagram of fuel cell channel. 

 
The main equations include the electrochemical 
Nernst equation accounting for overpotentials:  
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The solution of this equation gives the instantaneous 
current density. The concentrations of the reactant 
hydrogen and oxygen and the water product are gov-
erned by simple mass balances where their produc-
tion/consumption rates are dependent on the current 
density: 
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Finally, the water content is modelled by the rate of 
condensation in the respective channels: 
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and the rate of vapour accumulation; for instance, in 
the anode channel the vapour is consumed by water 
drag and well as by condensation: 
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The spatially-dependent model is simplified to enable 
rapid calculation for control and optimization 
purposes by lumping the spatial dependencies, which 
results in simple algebraic equations (for details, see 
Golbert and Lewin, 2004). 

3. CONTROL OF A FUEL CELL 
 
It is necessary to regulate the power output of the 
fuel cell to the levels required by the user. Since one 
of the applications for fuel cells will be automotive 
vehicles, we can expect the required load to change 
frequently in response to the drivers needs. In addi-
tion, there will be a degree of uncertainty in the 
behaviour of fuel cell components due to degradation 
of the materials, external temperatures and fuel com-
position and conditions. In spite of these uncertain-
ties, the control system must be robust enough to 
satisfy the load demands by manipulating the input 
variables appropriately.  
 
The input variables of such a system include the fuel 
and oxidant flowrates, composition and temperatures, 
coolant flowrate and temperature, anode and cathode 
pressures and, finally, the external resistance. The 
current density is often cited as an internal variable, 
using terms like “drawing current from the fuel cell” 
implying that it is determined arbitrarily by the 
operator. This, however, is akin to saying that liquid 
flowrate “is drawn” through a valve from an open 
tank. In reality, only the valve can be manipulated 
arbitrarily, which together with the liquid level 
determines the actual liquid flow. In practice, the 
valve is manipulated to satisfy a required flowrate. In 
the same fashion, the external resistance in a fuel cell 
is manipulated to satisfy a desired current density.  

4. MPC FOR FUEL EFFICIENCY 
 
Golbert and Lewin (2004) have shown that nonlinear 
MPC can satisfy changes in load demands robustly. 
The use of multiple variables can improve the 
response time of the system, with the target function 
to be minimized being the sum of square errors from 
the setpoint, with a penalty on the moves required in 
the manipulated variables. Clearly, there is potential 
for the optimizer to exploit the degrees of freedom 
inherent in the fuel cell design to improve the fuel-
efficiency. In this regard, efficiency is defined as the 
ratio between the actual power produced and the heat 
of formation of the water produced if all the hydro-
gen feed is consumed: 

2H

hL P
H M

η =
∆

 (5) 

Since the MPC solves a minimization problem, a 
waste variable is defined, 1 – η, which is to be 
minimized by the optimizer. The most obvious way 
to improve the efficiency is to lower the feed 
flowrate. This is offset with the need for sufficient 
hydrogen concentration to achieve satisfactory volt-



     

age. An attempt by the controller to excessively 
reduce the hydrogen feed rate will result in an 
unbearably high concentration overpotential and thus 
compromise the power output. The objective func-
tion to be minimized is defined as the weighted sum 
of the performance (the difference between the set 
point and the actual power), the size of the control 
steps and the local efficiency over time:  

( ) ( )1 1eff C effJ w J w η= − + −  (6) 

where weff is a coefficient that expresses the desired 
trade-off between performance and efficiency, and JC  
is the objective function for robust regulation: 
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The optimization problem is subject to a number of 
constraints. First, each optimization variable has a 
maximum and minimum value. Since the actual vari-
ables for the optimization problem are defined in 
terms of changes from the previous value, the 
following definitions are required: 
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In a similar fashion: 

min,1 1,

min,1 1,

1 2

min, ,

min, ,

k

k

n n k

n n k

u u

u u
A du b

u u

u u

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥

− ⋅ ≤ − − =⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (11) 

So far, the constraints ensure that the maximal values 
of the variables will not be exceeded at any step. If 
the fuel flowrate and the current density are to be 
manipulated there is a danger of the optimizer 
requesting an infeasible current density (above the 
limiting current density, which is largely influenced 
by concentration overpotential). Thus, for the sake of 
feasibility (as long as the current density is the input 
to the fuel cell model) a minimum ratio between the 
fuel and the current density must be enforced at all 
times: 
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where the ratio is a tuneable variable, which, in 
essence, ensures sufficient saturation of hydrogen. 
Translating from the values of u to the changes in u 
at each step and defining:  
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gives: 

3 3A du b⋅ ≤  (13) 
Note that when defining the matrix, the actual indices 
depend on the number of input variables being used. 
 
Similar constraints must be defined for the oxy-
gen/current ratio. However it is simpler to require 
that the oxygen always be in excess relative to the 
hydrogen flowrate by a certain ratio. Combining all 
of the constraints gives: 
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This defines all of the constraints. For the sake of 
sensitivity, the variables are all scaled by their 
respective values entering the optimization: 
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Substituting Eq. (16) into Eq. (14) gives: 
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These are the linear constraints on the optimization 
variables. Furthermore, in cases where the hydrogen 
or oxygen flow rates are not optimized, the current is 
limited to the permitted ratio between the current and 
the constant value of the reactant flowrate. In this 
case, the upper limit on the current is either the set 
maximum current density (imposed by the user) or 
the value determined by the permitted 
current/reactant flow ratio, the lower of the two. 

5. RESULTS 
 
Applying MPC as defined above will lead to offsets 
from the desired power setpoint, since the objective 
function involves trade-offs between setpoint track-
ing error, usage of manipulated variables and the 
desire to maximize efficiency. However, in automo-
tive applications, the offset from desired power 
delivery is not really important, since the fuel cell 
and its control system are not required to meet a spe-
cific power – rather the driver manipulates the power 
delivery as needed to meet the desired vehicle speed. 
Thus, it is appropriate to model the fuel-cell control-
ler as a slave to a master controller (usually the 
driver), which supplies the power setpoint to the 
model predictive controller that then manipulates all 
the other variables (current density, flowrates, etc.). 
In such an arrangement, small offsets between the 
power setpoint and the actual power supplied by the 
fuel cell are acceptable. This type of setup is simu-
lated using a PID controller and a simple model of a 
vehicle that obtains its power from the fuel cell. The 
model accounts for the vehicle acceleration based on 
the fuel cell power output, and the drag that is 
linearly dependent on the square of the velocity. 
Obviously, under normal circumstances the control-
ler could be replaced by a human driver or cruise 
control. Figure 2 shows the Simulink® system 
diagram for this arrangement. 

The following results compare the performance and 
efficiency of the PID/MPC system shown in Figure 2 
when optimizing for performance exclusively and 
when optimizing for both performance and effi-
ciency. The simulations start with the vehicle at a 

velocity of 30 km/hr, with a set point change to 90 
km/hr imposed at t = 2 s. 
 

Fig. 2: Simulink® diagram for cascaded control sys-
tem. 

 
Figure 3 presents the results obtained when optimiz-
ing performance only, i.e., setting weff  = 0. As can be 
seen, the velocity settles at 90 km/hr with no offset. 
The average fuel efficiency is 19%, with transient 
efficiency computed using Eq. (5). It is clear that 
although the initial conditions are at 46% efficiency, 
the changes in the power setpoint and changes in the 
input variables progressively reduce the efficiency to 
a value of only 14% by the end of the transient. 
 
The results obtained for optimization accounting for 
efficiency as well as performance are presented in 
Figure 4. Note that a value of weff  = 0.2 is used, with 
no improvements noticed for higher values. There are 
a number of points of interest. First, the average 
efficiency increases to 25.5%. This improvement is 
achieved is at the price of slightly more sluggish per-
formance. The increased efficiency is obtained by the 
control that the MPC exerts on the hydrogen 
flowrate, reducing it when possible to conserve fuel. 
 
Figure 5 shows the results obtained when optimizing 
for efficiency, again with a value of weff  = 0.2, but 
now using the coolant temperature as an additional 
manipulated variable along with the current density 
and fuel flowrate. It is clearly seen that the extra 
degree of freedom afforded by the coolant tempera-
ture allows the controller to obtain almost the same 
performance as that in Figure 3 while increasing the 
average efficiency to 29%. 

6. CONCLUSIONS 
 
As has been previously established, model-based 
control scheme of a PEM fuel cell, relying on a 
reduced-order, nonlinear model of the process, can 
be used for robust regulation. In addition, as demon-
strated in this contribution, since the controller 
adjusts a number of manipulated variables, it takes 
advantage of all of the degrees of freedom to simul-
taneously satisfy power demands while optimizing 
the fuel efficiency of the entire system. The results 
indicate that significant fuel savings can be achieved. 
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Fig. 3: Velocity control using cascaded PID/MPC 

optimizing for performance only: (a) power and 
setpoint, (b) vehicle velocity, (c) local efficiency 
from Eq. (5), (d) input current density, hydrogen 
flowrate and coolant temperature. 
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Fig. 4: Velocity control using cascaded PID/MPC 

optimizing for performance and efficiency, with       
captions as in Figure 3. 
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Fig. 5: Velocity control using cascaded PID/MPC 

optimizing for performance and efficiency, with       
captions as in Figure 3. 
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NOMENCLATURE 

 
a Solid-gas heat transfer area per unit length 

along channel [cm] 
b Solid-coolant heat transfer area per unit 

length along channel [cm] 
Cp Solid heat capacity [J/gr K] 
D Diffusion coefficient [cm2/sec] 
e Area of current per unit length along channel 

[cm] 
f Cross-section of solid in direction of reactant 

flow [cm2] 
F Faraday constant [96,485 col/sec] 
h Channel width [cm] 
I Current density [amper/cm2] 
Io Exchange current density [amp/cm2] 
J Objective function for MPC 
L Channel length [cm] 
M Molar flow [mol/sec] 
P Power density [Watt/cm2] 
Pi Partial pressure of species i [atm] 
R Gas constant [8.314 J/mol K] 
T Temperature [Kelvin] 
tm Membrane thickness [cm] 
U Heat transfer coefficient [W/cm2K] 
V Voltage [volt] 

VOC Open circuit voltage [Volt] 
δ Length of diffusion layer [cm] 
η  Efficiency 
∆H Enthalpy of overall reaction [J/mol] 
∆Hvap Enthalpy of water condensation [J/mol] 
ρ Solid density [gr/cm3] 
σ Membrane conductivity [(ohm cm)-1] 
S Weight coefficient matrix for control moves 
W Weight coefficient matrix for setpoint track-

ing 
weff Weight coefficient of efficiency  
u Control variable value 
du Change in control variable value 

 


