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1. INTRODUCTION

This paper presents anMPC method for nonlinear,
multivariable systems. It has been specifically de-
signed for the tracking of reference signals constant
after a certain time. In standard (linear and nonlinear)
MPC, asymptotic zero error regulation for constant
reference signals is usually obtained by forcing inte-
gral action on the manipulated variables. This solution
has the significant drawback that a state observer is
required even when the state itself is measurable, oth-
erwise any plant-model mismatch could lead to closed
loop instability, see (Magni, 2002). On the contrary,
in the control scheme proposed in this paper, integral
action is directly imposed on the error variables. In
so doing, when the plant state is available the use of
an observer is not required to compensate for uncer-
tainties. Moreover, it is easy to deal with nonsquare
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systems, where the number of manipulated variables
is greater than the one of controlled variables.

The proposed algorithm is derived by extending the re-
sults reported in (Magni and Scattolini, 2004), where a
pure regulation problem was considered. Specifically,
the plant under control, the state and control con-
straints and the performance index to be minimized
are described in continuous time, while the manip-
ulated variables are allowed to change at fixed and
uniformly distributed sampling times. In so doing,
one has to deal with the optimization with respect to
sequences, as in discrete time nonlinearMPC, while
taking into account the continuous time evolution of
the system.

A simulation example is reported and discussed in
depth to illustrate the characteristics of the method.
The proofs are not reported for space limitations.



2. PROBLEM STATEMENT AND PRELIMINARY
RESULTS

In the paper, for any vectorx ∈ Rn, ‖x‖ denotes
the Euclidean norm inRn, ‖x‖2

Π := x′Πx, where
Π > 0 is an arbitrary Hermitian matrix, denotes the
weighted norm. For any Hermitian matrixA, λmax(A)
andλmin(A) denote the largest and the smallest real
part of the eigenvalues of the matrixA, respectively
and‖A‖ stands for the induced 2-norm ofA. BΠ

r (x̄)
denotes the closed ball of radiusr and centerx̄
defined with the weighted normΠ, i.e. BΠ

r (x̄) =
{x ∈ Rn : ‖x − x̄‖Π ≤ r} , Π > 0. To properly for-
mulate theMPC problem, the plant and a number of
state augmentations must be defined.

Plant: The plant P is described by the nonlinear
continuous-time dynamic system

ẋp(t) = fp(xp(t), u(t)), t ≥ 0, xp(0) = xp0 (1)

y(t) = hp(xp(t))

wherexp ∈ Rn is the state,u ∈ Rm is the input,y ∈
Rp is the output. In (1) it is assumed that: (i)m ≥ p;
(ii) fp(·, ·) is aC1 function of its arguments; (iii)hp(·)
is a Lipschitz function with Lipschitz constantLh; (iv)
given a suitable sampling periodTs, and lettingtk =
kTs, k nonnegative integer, be the sampling instants,
the control variableu is restricted to be constant in
[tk, tk+1); (v) the following constants must be fulfilled

xp(t) ∈ Xp, u(t) ∈ U, t ≥ 0 (2)

whereXp andU are closed and compact subsets of
Rn andRm respectively. The movement of (1) from
the initial time t̄ and initial statexp(t̄) for a control
signalu(·) is denoted byϕp(t, t̄, xp(t̄), u(·)).

The tracking problem here considered consists in find-
ing a ”sampled” feedback control law guaranteeing
limt−→∞ e(t) = 0 with e(t) = y0(t) − y(t), for
reference signalsy0 such that

y0(t) = ȳ0, ∀t ≥ tk+Nr

whereNr is a nonnegative integer.

Lettingx̄p(ȳ
0) andū(ȳ0) such thatfp(x̄p(ȳ0), ū(ȳ0)) =

0 and hp(x̄p(ȳ
0)) = ȳ0, the following preliminary

assumptions are required.

Assumption 1.For a given̄y0, there exists at least one
equilibrium x̄p(ȳ

0) ∈ Xp, ū(ȳ0) ∈ U of system
(1) such that, lettingAp(ȳ

0) = ∂fp/∂xp|xp(ȳ0),ū(ȳ0),
Bp(ȳ

0) = ∂fp/∂u|xp(ȳ0),ū(ȳ0),

Cp(ȳ
0) = ∂hp/∂xp|xp(ȳ0), (i) the pair (Ap, Bp) is

stabilizable; (ii) there are no transmission zeros of
(Ap, Bp, Cp) equal to zero.

Assumption 2.For any equilibriumx̄p(ȳ
0), ū(ȳ0), if

limt→∞u(t) = ū(ȳ0) and limt→∞y(t) = ȳ0, then
limt→∞xp(t) = x̄p(ȳ

0).

Plant and integrators: According to the Internal
Model Principle, see (Davison, 1976), the track-
ing problem is solved by passing the error variable
through a set ofp integral actions described by

ż(t) = e(t), z(0) = z0, t ≥ 0 (3)

Then, the regulator to be determined must stabilize the
system formed by the cascade connection of (1), (3),
described by

ẋa(t) = fa(xa(t), u(t), y0(t)), t ≥ 0 (4)

e(t) = ha(xa(t), y0(t))

wherexa = [x′

p z′]′ ∈ Rn+p, xa(0) = xa0 = [x′

p0

z′0]
′, while fa(·, ·, ·), andha(·, ·) are derived from (1)

and (3).

Plant, integrators and past control variable (en-
larged plant): According to theMPC approach, at
any sampling instanttk a performance index penaliz-
ing the future error and control variationsδu(tk+i) :=
u(tk+i)−u(tk+i−1), i ≥ 0 is minimized with respect
to the future control moves. To formulate the opti-
mization problem, it is convenient to enlarge the state
vectorxa of (4) with the previous value of the control
variable, so obtaining the new augmented system:

ẋ(t) =

[

fa(xa(t), u(t), y0(t))
0m,1

]

, (5)

t ∈ [tk, tk+1), x(tk) =

[

xa(t−k )
u(t−k )

]

e(t) = h(x(t), y0(t)) (6)

wherex = [x′

a x′

uv]′ ∈ Rn+p+m, x(0) = x0 = [x′

a0

u(t−1)
′]′ andh(·, ·) is easily derived from (4). In this

wayu(tk−1) = Ξx(tk), Ξ = [0m,n+p Im] where0n,m

andIm are an×m zero matrix and the identity matrix
of dimensionm, respectively. For any control signal
u(·), the movement of (5) from the initial timēt and
initial statex(t̄) is denoted byϕ(t, t̄, x(t̄), u(·)).

Enlarged plant and sampled control law: Given a
generic sampled feedback control law

u(t) ≡ κ(x(tk), y0(·)) , t ∈ [tk, tk+1) , (7)

the description of the hold mechanism implicit in (7)
calls for a further state augmentation. Lettingxc :=
[x′ x′

u]′ ∈ Rn+p+2m, the closed loop system (5)-(6)-
(7) is

ẋc(t) =

[

fa(xa(t), xu(t), y0(t))
02m,1

]

, (8)

t ∈ [tk, tk+1), xc(tk) =





xa(t−k )
xu(t−k )
κ(x(t−k ), y0(·))





and its movement from the initial timēt and initial
statexc(t̄) is denoted by



ϕc(t, t̄, xc(t̄), y
0(·)) =









ϕxp
c (t, t̄, xc(t̄), y

0(·))

ϕI
c(t, t̄, xc(t̄), y

0(·))
ϕuv

c (t, t̄, xc(t̄), y
0(·))

ϕu
c (t, t̄, xc(t̄), y

0(·))









=

[

ϕx
c (t, t̄, xc(t̄), y

0(·))
ϕu

c (t, t̄, xc(t̄), y
0(·))

]

ϕxp
c ∈Rn, ϕI

c ∈ Rp, ϕuv
c ∈ Rm,

ϕx
c ∈Rn+p+m, ϕu

c ∈ Rm

With reference to the closed-loop system (8) it is
possible to define the following sets.

Definition 1. A sampled output admissible setas-
sociated to (8) is a setΓc

s(κ, y0(·)) ∈ Rn+p+m

such that for allx ∈ Γc
s(κ, y0(·)), ϕx

c (tk+1, tk, [x′

κ(x, y0(·))′]′, y0(·)) ∈ Γc
s(κ, y0(·)), ϕ

xp
c (t, tk, [x′

κ(x, y0(·))′]′, y0(·)) ∈ Xp, t ∈ [tk, tk+1), κ(x, y0(·)) ∈
U, limt→∞ ||hp(ϕ

xp
c (t, t̄, xc(t̄), y

0(·))) − ȳ0|| = 0,
limi→∞ ||κ(ϕx

c (tk+i, tk, [x′κ(x, y0(·))′]′, ȳ0)
− κ(ϕx

c (tk+i−1, tk, [x′κ(x, y0(·))′]′, ȳ0)|| = 0. In
other words,Γc

s(κ, y0(·)) is a state invariant set, as-
sociated to the closed loop system (8), defined at the
sampling instantstk and such that (i) the state and
control constraints (2) are satisfied in all the future
continuous-time instants, (ii) the tracking problem is
asymptotically solved. The (unique) maximal sampled
output admissible setXc

s(κ, y0(·)) is defined as the
union of all sampled output admissible sets.

Definition 2. An output admissible setassociated to
(8) is a setΓc(t, κ, y0(·)) ∈ Rn+p+2m such that for
all xc ∈ Γc(t, κ, y0(·)), ϕx

c (tk, t, xc) ∈ Xc
s(κ, y0(·)),

wheretk is the closest sampling time in the future,
ϕ

xp
c (τ, t, xc, y

0(·)) ∈ Xp, τ ∈ [t, tk), ϕu
c (t, t, xc, y

0(·))
∈ U . The (unique) maximal output admissible set
Xc(t, y0(·)) is defined as the union of all output ad-
missible sets.

The tracking problem can now be formally stated as
the problem of finding a feasible sampled control law
(7) with the largest output admissible setXc and
which optimizes a given performance index.

Assume now to know a feasible control law (7) satis-
fying the following assumption.

Assumption 3.The feasible control law (7) is aC1

function with Lipschitz constantLκ.

Let
(

xc(ȳ
0, κ), ȳ0

)

with xc(ȳ
0, κ) := [xp(ȳ

0, κ)′

z̄(ȳ0, κ)′ ū(ȳ0, κ)′ ū(ȳ0, κ)′]′ be an equilibrium as-
sociated to the closed-loop system (8) such thatē =
ha(x̄a(ȳ0, κ), ȳ0) = 0, with x̄a(ȳ0, κ) := [xp(ȳ

0, κ)′

z̄(ȳ0, κ)′]′. If Assumption 1 is satisfied, in view of the
Implicit Function Theorem,

(

xc(ȳ
0, κ), ȳ0

)

is an iso-
lated equilibrium for system (8) (for sake of simplicity

the dependence of the equilibrium point onκ will be
omitted whenever possible).

For this control law, an associated sampled output
admissible set can be computed as follows. Define the
linearization of system (5) around the equilibrium as

δẋ(t) =

[

Aa(ȳ0)δxa(t) + Ba(ȳ0)δu(t)
0m,n+p+m

]

, (9)

δx(tk) =

[

δxa(t−k )
δu(t−k )

]

whereδx = x− x(ȳ0), δu = u− ū(ȳ0), δxa = xa −
x̄a(ȳ0), x(ȳ0) = [xp(ȳ

0, κ)′ z̄(ȳ0, κ)′ ū(ȳ0, κ)′]′and

Aa(ȳ0) = ∂fa/∂xa|x̄a(ȳ0),ū(ȳ0),ȳ0 ,

Ba(ȳ0) = ∂fa/∂u|x̄a(ȳ0),ū(ȳ0),ȳ0

Then introduce the discretization of (9) given by

δx(tk+1) = AD(ȳ0)δx(tk) + BD(ȳ0)δu(tk) (10)

with

AD(ȳ0) : =

[

eAa(ȳ0)Ts 0n+p,m

0m,n+p 0m,m

]

,

BD(ȳ0) : =









Ts
∫

0

eAa(ȳ0)ηBa(ȳ0)dη

Im









Finally let

K(ȳ0) =
∂κ(x, y0)

∂x

∣

∣

∣

∣

x̄(ȳ0),ȳ0

In view of the feasibility of (7), it is then easy to show
that the closed-loop matrixAcl

D(ȳ0) := AD(ȳ0) +
BD(ȳ0)K(ȳ0) of the linearized discrete-time system
(10) is Hurwitz and the following result holds.

Lemma 4.Letκ(x, y0) be a feasible control law. Con-
sider an equilibrium (̄xp(ȳ

0), ū(ȳ0)) of system (1) sat-
isfying Assumptions 1 and 3, a positive definite matrix
Q̃ and two real positive scalarsγ and γ2 such that
γ < λmin(Q̃). Define byΠ the unique symmetric
positive definite solution of the following Lyapunov
equation:

Acl
D(ȳ0)′ΠAcl

D(ȳ0) − Π + Q̄ = 0 (11)

where

Q̄ =

Ts
∫

0

AZOH
c (η)′Q̃AZOH

c (η)dη + γ2In+p+m

and

AZOH
c (t) :=







[

π1 π2

0m,n+p 0m,m

]

t ∈ [0, Ts)

Acl
D(ȳ0) t = Ts



with π1 = eAa(ȳ0)t +
(

∫ t

0 eAa(t−τ)dτ
)

BaK1, π2 =
(

∫ t

0 eAa(t−τ)dτ
)

BaK2 and K := [K1K2], K1 ∈

Rm,n+p.

Then, there exists two constantsTs ∈ (0,∞) andσ ∈
(0,∞) specifying a neighborhoodΩσ(x̄(ȳ0), κ, Ts) of
x̄(ȳ0) of the form

Ωσ(x̄(ȳ0), κ, Ts) (12)

=
{

x ∈ <n+p+m |
∥

∥x − x̄(ȳ0)
∥

∥

2

Π
≤ σ

}

such that∀x ∈ Ωσ(x̄(ȳ0), κ, Ts):

(a)ϕxp
c (t, tk, [x′ κ(x, ȳ0)′]′, ȳ0) ∈ Xp, t ∈ [tk, tk+1),

κ(x, ȳ0) ∈ U ;

(b)

∥

∥ϕx
c (tk+1, tk, [x′κ(x, ȳ0)′]′, ȳ0) − x̄(ȳ0)

∥

∥

2

Π

−
∥

∥x − x̄(ȳ0)
∥

∥

2

Π

≤−γ

tk+1
∫

tk

∥

∥ϕx
c (η, tk, [x′κ(x, ȳ0)′]′, ȳ0) − x̄(ȳ0)

∥

∥

2
dη

−γ2

∥

∥x − x̄(ȳ0)
∥

∥

2
(13)

2.1 The sampled MPC control law

Let u = κ(x, y0) be a feasible auxiliary control
law, assumed to be known together with its sampled
output admissible set and Lyapunov function given by
Lemma 4. Moreover, given a control sequence

ū1,Nc
(tk) := [u1(tk), u2(tk), ..., uNc

(tk)]

with Nc ≥ 1, define theFinite Horizon piece-wise
constant control signal

uFH
tk

(t) :=















uj(tk)
t ∈ [tk+j−1, tk+j), j = 1, ..., Nc

ϕ̄u
c (t)

t ∈ [tk+Nc
, tk+Np

)

(14)

whereϕ̄u
c (t) := ϕu

c (t, tk+Nc
, [x̄Nc

κ(x̄Nc
, y0(·))]

, y0(·)) with x̄Nc
= ϕ(tk+Nc

, tk, x(tk), uFH
tk

(·), y0(·))
andNp ≥ Nc and denote bȳuFH

tk
(tfin, tin) the signal

uFH
tk

(t) in the intervalt ∈ [tin, tfin) .

For system (5), (6) theMPC technique is applied
to enlarge the output admissible set ofκ(·, ·) and
to improve the control performance by solving the
following

Finite Horizon Optimal Control Problem (FHOCP).
Given the sampling timeTs, the control horizon
Nc, the prediction horizonNp, Nc ≤ Np, two
positive definite matricesQ and R, the reference
signal durationNr ≤ Np, a feasible auxiliary

control law κ(x, ȳ0), the matrix Π and the region
Ωσ(x̄(ȳ0), κ, Ts) given in Lemma 4 withγ >cmax :=
(λmax(Q)Lh + λmax (Ξ′RΞ)) , γ2 > Tsλmax(R)Lκ,
at every sampling time instanttk, minimize, with re-
spect toū1,Nc

(tk),

JFH(xtk
, ū1,Nc

(tk), Nc, Np, y
0(·)) (15)

=

tk+Np
∫

tk

{

‖e(τ)‖
2
Q + ‖u(τ) − Ξx(τ)‖

2
R

}

dτ

+Vf (ϕ(tk+Np
, tk, x(tk), ūFH

tk
(tk+Np

, tk), ȳ0))

where the terminal penaltyVf is selected as

Vf (x) =
∥

∥x − x̄(ȳ0)
∥

∥

2

Π

The minimization of (15) must be performed under the
following constraints:

(i) the state dynamics (5)-(6) withx(tk) = xtk
;

(ii) the constraints (2),t ∈ [tk, tk+Np
) with u given

by (14);
(iii) the terminal state constraint

x(tk+Np
) ∈ Ωσ(x̄(ȳ0), κ, Ts)

The state-feedbackMPC control law

u(t) = κRH(x(tk), y0(·)) , t ∈ [tk, tk+1) (16)

is then derived by solvingFHOCP at every sam-
pling time instanttk, and applying the constant con-
trol signalu(t) = uo

1(x(tk)), t ∈ [tk, tk+1) where
uo

1(x(tk)) is the first column of the optimal sequence
ūo

1,Nc
(x(tk)).

Let

ϕRH(t, t̄, xc(t̄), y
0(·)) =









ϕRH
xp

(t, t̄, xc(t̄), y
0(·))

ϕRH
I (t, t̄, xc(t̄), y

0(·))

ϕRH
uv (t, t̄, xc(t̄), y

0(·))
ϕRH

u (t, t̄, xc(t̄), y
0(·))









=

[

ϕRH
x (t, t̄, xc(t̄), y

0(·))
ϕRH

u (t, t̄, xc(t̄), y
0(·))

]

ϕRH
xp

∈ Rn, ϕRH
I ∈ Rp, ϕRH

uv ∈ Rm, ϕRH
x ∈

Rn+p+m, ϕRH
u ∈ Rm be the movement of (8) with

κ(·, ·) = κRH(·, ·) and define the following sets.

Definition 3. Let X0
s (Nc, Np, y

0) ∈ Rn+m+p be the
set of statesxtk

of system (5), (6) at the sampling
times tk such that there exists a feasible control se-
quencēu1,Nc

(tk) for FHOCP .

Definition 4. Let X0(t, Nc, Np, y
0) ∈ Rn+p+2m be

the set of statesxc such that for all xc(t) ∈
X0(t, Nc, Np, y

0), ϕRH
x (tk, t, xc, y

0) ∈ X0
s (Nc, Np, y

0),
ϕRH

xp
(τ, t, xc, y

0(·)) ∈ Xp, τ ∈ [t, tk), ϕRH
u (t, t, xc,



y0(·)) ∈ U wheretk is the closest sampling time in
the future.

The main stability results of the proposedMPC algo-
rithm can now be stated.

Theorem 5.Under Assumptions 1, 2 and 3,

(i) ([x̄(ȳ0, κ)′ κRH(x̄(ȳ0, κ), ȳ0)′ ]′, ȳ0) is an expo-
nentially stable equilibrium point for the closed-
loop system formed by (5), (6) and (16) with
output admissible setX0(t, Nc, Np, y

0);
(ii) X0

s (Nc, Np+1, y0) ⊇ X0
s (Nc, Np, y

0), ∀Nc, Np;
(iii) X0

s (Nc, Np, y
0) ⊇ Ωσ(x̄(ȳ0), κ, Ts), ∀Nc, Np;

(iv) there exist a finitēNp such thatX0
k(Nc, N̄p, y

0) ⊇
Xc

s(x̄(ȳ0), κ, Ts), ∀Nc.

Remark 1.An usual way to solve the tracking prob-
lem is to compute the reference trajectories of the state
and control variables corresponding to the reference
signal and to resort to a proper coordinate transfor-
mation. However, this procedure does not guarantee
that asymptotic zero error regulation is preserved for
modelling errors or plant parameters variations. On
the contrary, the proposed method is such that the
error asymptotically vanishes even in the presence of
a plant-model mismatch provided that stability is pre-
served, although the computation of the allowed un-
certainty is usually difficult. This property is due to the
integrators directly applied on the error signal. In fact,
if the feasibility of theFHOCP and the asymptotic
stability are preserved, then the input to the integrators
must go asymptotically to zero.

In the FHOCP optimization problem continuous
time state constraints are considered. It can appear
that this approach is only conceptual, because any
numerical implementation needs a time discretization
and the constraints satisfaction can be checked only
in the integration time instants. However this is not
a significant limitation; in fact, following Theorem 3
in (Magni and Scattolini, 2004) one can choose the
maximum integration stepδ and a more conserva-
tive discrete-time state constraint so as to guarantee
continuous-time state constraint satisfaction.

3. SIMULATION EXAMPLE

In this section, theMPC control law is applied to
a continuous fermenter. The volume of the fermenter
is assumed constant, its contents well-mixed, and the
feed sterile. The manipulated inputs are the dilution
rateD and the feed substrate concentrationSf . The
state variables are the effluent cell-mass or biomass
concentrationXb, the substrate concentrationS and
the product concentrationP . In the sequel,Xb, S and
P are assumed to be measurable.

Assuming that the fermenter culture consists of a
single, homogeneously growing organism, a simple
and widely used model is (Henson and Seborg, 1997)

Ẋb =−DXb + µXb (17)

Ṡ = D(Sf − S) −
1

YXb/S
µXb (18)

Ṗ =−DP + (αµ + β)Xb (19)

where

µ =
µm(1 − P

Pm
)S

Km + S + S2

Ki

(20)

is the specific growth rate,YXb/S is the cell-mass
yield, andα andβ are yield parameters for the prod-
uct. In (20) the maximum specific growth rateµm, the
product saturation constantPm, the substrate satura-
tion constantKm, and the substrate inhibition con-
stantKi must be chosen to fit experimental data. The
nominal operating conditions and model parameters
areYXb/S = 0.4 g/g, β = 0.2 h−1, Pm = 50 g/L,
Ki = 22 g/L, D = 0.202 h−1, S = 5.0 g/L,
α = 2.2g/g, µm = 0.48 h−1, Km = 1.2 g/L,
Sf = 20g/L, Xb = 6.0 g/L, P = 19.14 g/L.

The control objective is to move the biomass con-
centrationXb along a pre-defined trajectory within
a large range. The responses to step changes of the
dilution rate are not symmetrical. The model ex-
hibits more severe nonlinear behavior for changes
in the feed substrate concentration. In particular the
gain from Sf to Xb can ever change sign. Differ-
ent single-input/single-output (SISO) control strate-
gies have been proposed in order to control this class
of systems (Henson and Seborg, 1997). However, the
open loop behavior shows that with a single input
control strategy is not possible to move the biomass
concentrationX to a value greater than7.4 g/L. This
motivates the interest for a multi-input/single-output
control law. In the following theMPC algorithm
proposed in this paper will be used to control the
plant along a pre-prescribed reference bringing the
biomass concentrationXb from the initial equilibrium
value to the final steady state value of7.5 g/L. The
following input and state constraints are considered:
0.05h−1 ≤ D ≤ 0.3h−1, 16g/L ≤ Sf ≤ 25g/L
, 3g/L ≤ Xb ≤ 10g/L, 1g/L ≤ S ≤ 10g/L,
10g/L ≤ P ≤ 35g/L. The nonlinear continuous-time
state space model (1) of system (17)-(20) is obtained
by defining the normalized state vectorxp = [Xb−6

6 ,
S−5

5 , P−19.14
19.14 ]′, the manipulated inputu = [D−0.202

0.202 ,
Sf−20

20 ]′ and the outputy = Xb−6
6 . The initial equilib-

rium point is defined bȳx = 0, ū = 0 and ȳ = 0,
while the linear auxiliary stabilizing control law is
given by

u(t) = Kxx(tk) + Ky0∆Y 0(tk) (21)



where Kx and Ky0 are obtained with anMPC
control law synthesized on the linearization of (5)-
(6) around(x, u, y0) = (0, 0, 0) discretized with
a sampling periodTs = 1h. Finally, ∆Y 0(tk) :=
[y0(tk), y0(tk+1), . . . , y

0(tk+NL
p
)]′ and NL

p = 30
is the prediction and control horizon of the linear
MPC. The cost function minimized to synthesize
the linear MPC has the same stage cost of (15)
with an additional terminal equality constraint and
a penalty on the state variable with matrixQx to
guarantee the stability of the linearized closed-loop
system. LettingQ = 1, R = diag(1, 1), Qx =
diag(1, 1, 1, 3, 1, 1) ∗ 10−3, γ = 2, γ2 = 0.99, Q̃ =
2.02 ∗ In+p+m andȳ0 = 0.25 (which corresponds to
Xb = 7.5 g/L) a regionΩσ(x̄(ȳ0), κ, Ts) satisfying
Lemma 4 is computed with theΠ solution of (11)
and σ = 0.027. In order to guarantee continuous
time state-constraints satisfaction, following Theorem
3 in (Magni and Scattolini, 2004), the constraints
‖xp − x̄p‖ν ≤ ḡ with x̄p = [0.0833, 0.1000, 0.1755],
ν = diag(2.9388,1.2346,2.3446),ḡ = 0.9 are intro-
duced so that, with a constant integration stepδ =
0.05h, xp(t) ∈

{

xp : ‖xp − x̄p‖ν ≤ 1
}

⊆ Xp, t > 0.
The sampledMPC control law described in Sec-
tion 2.1 has been synthesized lettingQ = 1 , R =
diag(1, 1), Nc = 6 andNp = 200 .

The results obtained by comparing the auxiliary linear
MPC and the nonlinearMPC algorithm here pro-
posed are reported in Fig. 1. Fig. 1.a shows that both
the methods allow to reach the required steady-state
valueXb = 7.5 g/L. However, the nonlinearMPC
law achieves a significant performance improvement.
In fact the infinite horizon cost obtained with the linear
MPC law is 0.2447 while with the nonlinear one is
0.1390. Note also that as stated in Theorem 5, the state
and control variables with nonlinearMPC converge
to the same steady-state values of the auxiliary linear
control law.

A second simulation experiment has been performed
in order to emphasize the robustness property of the
control scheme with respect to model uncertainty. To
this end, the parameterµm has been changed from
the nominal value0.48h−1 to the perturbed value
0.45h−1 at time10h, while the set point is constant
at 6g/L. The results obtained with the control algo-
rithm based on the solution of the regulation problem
through a standard change of coordinates (see Remark
1) and with the tracking control algorithm based on
the solution of theFHOCP are reported in Fig. 2. It
is apparent that the introduction of the integral action
guarantees robust asymptotic zero error regulation.
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