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Abstract: This paper presents a Model Predictive Contrd@Yalgorithm for nonlinear
systems. It allows the tracking of reference signals caorisadter a certain time by
imposing integral action on the error variables, rathentba the control moves as
in standardM PC' methods. The plant under control, the state and controlt@ints

and the performance index to be minimized are describedntiramus time, while the
manipulated variables are allowed to change at fixed an@umiy distributed sampling
times. A simulation example is reported and discussed i:mildé]opyrigh@ZOOS IFAC

Keywords: Nonlinear Model Predictive Control, Trackingakility

1. INTRODUCTION systems, where the number of manipulated variables
is greater than the one of controlled variables.

This paper presents alW PC' method for nonlinear,
multivariable systems. It has been specifically de-
signed for the tracking of reference signals constant
after a certain time. In standard (linear and nonlinear)
M PC, asymptotic zero error regulation for constant
reference signals is usually obtained by forcing inte-
gral action on the manipulated variables. This solution
has the significant drawback that a state observer is
required even when the state itself is measurable, oth
erwise any plant-model mismatch could lead to closed
loop instability, see (Magni, 2002). On the contrary,
in the control scheme proposed in this paper, integral
action is directly imposed on the error variables. In
so doing, when the plant state is available the use ofA simulation example is reported and discussed in
an observer is not required to compensate for uncer-depth to illustrate the characteristics of the method.
tainties. Moreover, it is easy to deal with nonsquare The proofs are not reported for space limitations.

The proposed algorithm is derived by extending the re-
sults reported in (Magni and Scattolini, 2004), where a
pure regulation problem was considered. Specifically,
the plant under control, the state and control con-
straints and the performance index to be minimized
are described in continuous time, while the manip-
ulated variables are allowed to change at fixed and
uniformly distributed sampling times. In so doing,
‘one has to deal with the optimization with respect to
seguences, as in discrete time nonlingaPC, while
taking into account the continuous time evolution of
the system.

1 The authors acknowledge the partial financial support by
MU RST Project "New techniques for the identification and adap-
tive control of industrial systems”



2. PROBLEM STATEMENT AND PRELIMINARY Plant and integrators. According to the Internal
RESULTS Model Principle, see (Davison, 1976), the track-

ing problem is solved by passing the error variable

In the paper, for any vectar € R", ||z|| denotes  through a set o integral actions described by

the Euclidean norm k", Hx||2n := a'Ilz, where

II > 0 is an arbitrary Hermitian matrix, denotes the 2(t) =e(t), 2(0) =z, t=0 (3)

weighted norm. For any Hermitian matui A« (A)

and A\, (A) denote the largest and the smallest real Then, the regulator to be determined must stabilize the

part of the eigenvalues of the matrik respectively  system formed by the cascade connection of (1), (3),

and||A|| stands for the induced 2-norm df. B(z) described by

denotes the closed ball of radius and centerz

defined with the weighted norrl, i.e. B'(z) = da(t) = fa(za(®),u(t),s°()), t>0 (4)

{xeR": ||z —z||y <r},II > 0. To properly for- ’ 0 ’ T

mulate theM PC problem, the plant and a number of e(t) = ha(za(t), y(?))

state augmentations must be defined. wherez, = [z, 2] € R, 2,(0) = 2a0 = |2y
f], P ’ a . a p

Plant: The plantP is described by the nonlinear 2o, While fo(-,-,-), andhq(-, ) are derived from (1)

continuous-time dynamic system and (3).

Plant, integrators and past control variable (en-
ip(t) = fp(zp(t),u(t)), t >0, 2,(0) =z,0 (1)  larged plant): According to theM PC approach, at
y(t) = hy(ap(1)) any sampling instart, a performapcg index penaliz-
_ _ _ ing the future error and control variatiots(t;;) :=
wherex,, € R" is the statey € R™ is the inputy € w(tpyi) —u(trrio1), i > 0is minimized with respect

RP is the output. In (1) it is assumed that: 4)) > p;  to the future control moves. To formulate the opti-
(ii) fo(-,-)isaC" function of its arguments; ik, () mization problem, it is convenient to enlarge the state
is a Lipschitz function with Lipschitz constahy,; (iv)  vectorz, of (4) with the previous value of the control
given a suitable sampling peridd, and lettingt, = yariable, so obtaining the new augmented system:

kTs, k nonnegative integer, be the sampling instants,
the control variable. is restricted to be constant in
[tk, tk+1); (V) the following constants must be fulfilled z(t) =

zp(t) € Xp, u(t)eU, t>0 2

fa(xa(t),U(t)vyO(t))} , (5)

Om,l

et o) = [ 125

where X, andU are closed and compact subsets of

_ 0
R™ and R™ respectively. The movement of (1) from e(t) = h(z(t),y°(1)) 6)
the initial time ¢ and initial state:cp(ﬂ for acontrol  \yherer — [ @] € RPm, 2(0) = 29 = [2,
signalu(-) is denoted byp, (£, 7, 2, (f), u u(t_1)'] andh(-,) is easily derived from (4)In this

The tracking problem here considered consists in find-Way u(tx—1) = E2(tk), E = [Opntp Inm] Where0,, ,

ing a "Samp|ed" feedback control law guaranteeing and[m are an x m zero matrix and the |dent|ty matrix

lim;oe(t) = 0 with e(t) = y°(t) — y(t), for of dimensionm, respectively. For any control signal

reference signalg® such that u(+), the movement of (5) from the initial timeand
initial statex (%) is denoted byp(¢, ¢, (1), u

0 —0
y(t)=19y", Vt>tirn,
( " Enlarged plant and sampled control law: Given a

whereN,. is a honnegative integer. generic sampled feedback control law

Letting Z,,(°) anda(3°) such thatf, (z, (7°), a(7°)) = u(t) = K(x(te),y° (), t € [thytrr), @)

0 and h,(z,(y°)) = 3°, the following preliminary

assumptions are required. the description of the hold mechanism implicit in (7)

calls for a further state augmentation. Letting :=
Assumption 1 For a giveny®, there exists at least one [z' z!]" € R"P*2™ the closed loop system (5)-(6)-
equilibrium z,(7°) € X,,, u(jy’) € U of system  (7)is

(1) such that, Iettingﬁlp(’ = afp/ampbp(go)yﬂ(g(;),

Bp( ) afp/aU|1p ),u(y°)» o () = fa (ma(t); T (t), y0 (t)) g
Cp(§°) = Ohy/0xylz, 50y, (i) the pair @,, B,) is Felt) = O2mm,1 ’ ®)
stabilizable; (ii) there are no transmission zeros of 2a(t7)

(Ap, By, Cp) equal to zero. £ € [t tis1)s Teltn) = | 2l —)

t
. o r(a(ty), 9" ()
Assumption 2 For any equilibriumz, (7°), @(g°), if
limy—oou(t) = (@) andlim; _y(t) = ¥°, then and its movement from the initial time and initial
limi— ooy (t) = Tp(y°). statex,.() is denoted by



[ oo (t,F, 2e(8),y° () the dependence of the equilibrium point emwill be
et Eozo(D). 40()) = ol (t, 1, ze(8),4°()) omitted whenever possible).
ammeny @gv(tlﬁa%@a%o(')) For this control law, an associated sampled output
L et b, ae(t),y7()) admissible set can be computed as follows. Define the
IRPAAEEORNO) linearization of system (5) around the equilibrium as
~ ettt ae(D),4°() . .
() = {Aa@ J0ra(t) + Ba@")0u(t)] gy
0m,n+p+m
“r € R", ol € RP, "’ € R™, Sxq(t;
gz € R ol € R u(ty)

wheredr = x — Z(5°), du = u — w(y°), 62y = T4 —
With reference to the closed-loop system (8) it is z.(7"), Z(5") = [Z,(3°, r) 2(¥°, k)" u(y°, )')'and
possible to define the following sets.

=0
Definition 1. A sampled output admissible ses- Aa(%o) Ofa/Oals.(3)a( 3
sociated to (8) is a seF¢(k,y°(-)) € Rrtptm Ba(§") = 0fa/Oulz,(z0),a(z0).5°
such that for allz € T¢(x,3°()), ¥Z(tk+1.tr: [2'  Then introduce the discretization of (9) given by
(2,0 () T,9°0)) € TR, y°()), e (bt [2f " "
k(2,92 (), 9°()) € Xp, t € [t, tis1), 6(z,y° (1)) € 6x(tkt1) = Ap(y°)dz(tk) + Bp(y~)du(ty) (10)
U, limy oo [[hp (0" (8, €, 2c(8), °(-))) — 7°Il = 0,
lim; oo (16068 (Bt e, [26(2,5° ()T, 5°) with
= KL (trriz1, b, [26(2,5° ()T, 5°)]| = 0. In
other words,I'¢(x, y°(-)) is a state invariant set, as- A (20 - — (AT 0, (0
sociated to the closed loop system (8), defined at the p(7): = | Omntp  Omm |
sampling instantg; and such that (i) the state and roT.
control constraints (2) are satisfied in all the future
continuous-time instants, (i) the tracking problem is Bp(@°):= /
asymptotically solved. The (unique) maximal sampled ?
output admissible seX¢(x,y°(-)) is defined as the Lo
union of all sampled output admissible sets. Finally let

Definition 2. An output admissible setssociated to K@) = M
(8) is a setl“(t, x,y°(-)) € R"™P+2™ such that for Oz

all Zc € I‘C(ﬁ, Hvyo('))v (pg“'(tk,t,l’c) € X;(Hvyo('))v

wheret,, is the closest sampling time in the future, Inview of the feasibility of (7), it is then easy to show
o (1,1, 36,y°()) € X, 7 € [ty 1), (¢, T, 2,5°(-))  that the closed-loop matrid%(3°) = Ap(y°) +

€ U. The (unique) maximal output admissible set Bp(3°)K (") of the linearized discrete-time system
Xe(t,y°(+)) is defined as the union of all output ad- (10) is Hurwitz and the following result holds.
missible sets. |

z(g°),3°

Lemma 4.Let x(x,y") be a feasible control law. Con-
_ sider an equilibriumz, (3°), u(7°)) of system (1) sat-
The tracking problem can now be formally stated as jgfing Assumptions 1 and 3, a positive definite matrix
the problem of finding a feasible sampled control law O and two real positive scalars and~, such that

(7)_with t.he. Iarges'F output admissib!e sat and N < )\min(Q)- Define by Tl the unique symmetric
which optimizes a given performance index.

positive definite solution of the following Lyapunov
Assume now to know a feasible control law (7) satis- equation:

ing the following assumption. cl/~ cl/~ ~
g g assump AREYTAB(G) ~TT+Q=0 (1)

Assumption 3.The feasible control law (7) is &'

function with Lipschitz constant,.. | where
T,

9 ZOH 1A AZOH
Let (EC(QO,H),ZJO) with Z. (70, k) = [fp@o, k) Q= /Ac (n)' QAZ (mdn +v2lntptm
zZ(7°, k)" w(y®, k)" u(y°, x)') be an equilibrium as- 0
sociated to the closed-loop system (8) such that
ha(Za (50, k), 5°) = 0, with Z,(7°, k) := [T,(3°, k)’
z(7°, k)" If Assumption 1 is satisfied, in view of the
Implicit Function Theorem(z.(3°, k), §°) is an iso- AZOH (1) .= {

and

T )
[pr Om,m] tel0.T)

lated equilibrium for system (8) (for sake of simplicity A (%) t="Ts



with 7, = eAe(@)t 4 (f()t eAa(t—T)dT) B,K,, my = control law m(x,gj_o), the matrixII and the region
. Qo (2(5°), K, Ts) given in Lemma 4 withy >Cpax 1=

(fo eAa“*”dT) B K> and K = [K1Ko], K1 € (Auax(Q)Li + Amax (2'RE)), 72 > Todmax(R) Ly,

RMntp at every sampling time instatif, minimize, with re-

_ spect tou, v, (tx),
Then, there exists two constarfts € (0, c0) ando € ‘
T

(0, 00) specifying a neighborhodd, (z(°), x, T) of

(") of the form Ten (e, @1,N, (t), Nes Np, 9°(4)) (15)
tk4 Ny
_/0 _ 2 — 2
U (#(5°), 5, T) @ = [ {le@)d+ lur) - Z2(r)l; } dr
= {z e | lo - 2|} < o} .

AV ((trrny o (), g (g, E), T°))
such thatz € Q,(Z(7%), k, Ts):

(a) Sﬁip (ta tka [ZE/ Ii(IL', go)/]/vgo) S Xp; te [tk,tk+1), )
K(a,5°) € U; Vi(@) = [lo = 2(5°) ||

(b)

where the terminal penalfy; is selected as

The minimization of (15) must be performed under the

_ _ L ov2 following constraints:
2 (bt ts [ 62, 7)1, 5°) — 250 |5, J

o ov 2 (i) the state dynamics (5)-(6) with(t;) = ¢, ;
~ |l — (7 )HH (ii) the constraints (2), € [ty, tr+n,) With u given
bt by (14);

<—~ / ||<P§(77, te, [2' (2, 7). 7°) — j(gO)HQ dn (iii) the terminal state constraint
b w(tern,) € Qo (2(5°), 7, Ts)

2
-2 ||z — Z2(5°) (13)
el .
The state-feedback/ PC control law
2.1 The sampled MPC control law
u(t) = k™ (@(tr),4°()) 5 t € [th,terr) (16)
Let u = r(x,9°) be a feasible auxiliary control

law, assumed to be known together with its sampled s then derived by solving"HOCP at every sam-
output admissible set a_nd Lyapunov function given by pling time instant;, and applying the constant con-
Lemma 4. Moreover, given a control sequence trol signalu(t) = u$(z(tx)), t € [tr,trr1) Where
_ ?(x(tx)) is the first column of the optimal sequence
uLNC(tk) = [Ul(fk),UQ(tk), ...,UNC(tk)] /L,Lé(x( k)) P q
uf n (@(tr)-

with N, > 1, define theFinite Horizon piece-wise  Let
constant control signal

_Qoglg(tvtivxc(avyg('))

u;(ty) e (t,E 2 (D), () = (psz(? ? xc(?, yo(.))

i—1 ; | = c uv y Uy e ? ))

of(05= Gy TN g G e 00
t € [te+n., then,) [l E 2 (D), 4°()

B @fH(t,f,xc(f),yO(-))

wheregi (t) := i (t, tern,, [Ty, K(@N,,y°())]
W) WithZ, = @(tn, b 2(te), uf 7 (),00)  wn,’ € BY @i € B, o € R™ @ €
andN, > N. and denote byi/ # (t i, t:n) the signal ~ R*7H™ oEH ¢ R™ be the movement of (8) with
uf 7 (t) inthe intervalt € [tin, tyin) - k(-,-) = k®H (. .) and define the following sets.

For system (5), (6) thel/ PC technique is applied
to enlarge the output admissible set of-,-) and
to improve the control performance by solving the
following

Definition 3. Let X(N., N,,3°) € R*™*? be the
set of statese;, of system (5), (6) at the sampling
timest, such that there exists a feasible control se-
quencei; . (t;) for FHOCP.

Finite Horizon Optimal Control Problem (FHOCP)

Given the sampling timel,, the control horizon  Definition 4. Let Xo(t,Nc,Np,yO) € R*rt2m pe
N., the prediction horizonN,, N, < N,, two the set of statesz. such that for allz.(t) €
positive definite matrices) and R, the reference  X°(¢, N., Ny, 4°), o2 (ty, t, 20, y°) € XO(Ne, Ny, y°),
signal durationN, < N,, a feasible auxiliary X7 (7,t,2.,9°() € Xp, 7 € [t,11), i (¢, 1, 2,



yY(:)) € U wheret, is the closest sampling time in
the future. [ ]

The main stability results of the propos&fiPC algo-
rithm can now be stated.

Theorem 5.Under Assumptions 1, 2 and 3,
-0 70

(I) ([j(gov ’%y HRH(‘%(@O) ’i)v Yy )/ ]/a Yy ) is an €Xpo-
nentially stable equilibrium point for the closed-
loop system formed by (5), (6) and (16) with
output admissible sex°(¢, N, N, y°);

(i) XO(Ne, Np+1,5%) 2 XO(Ne, Ny, y°), YN, Ny

(ii)) XO(Ne, Np,y®) 2 Qo (2(5°), 5, T ), VNe, Ny
(iv) there exist a finitéV, such thatX?(N,, N,,y°) 2

Assuming that the fermenter culture consists of a
single, homogeneously growing organism, a simple
and widely used model is (Henson and Seborg, 1997)

Xy =—DXp + pXy a7

. 1
§=D(S;— )~ ——nuX,  (18)

Yx,/s
P=—DP + (au+ 08) X (19)
where

pm (1 — £-)8
p= e (20)

K,+S5+ el

X5(2(5°), K, Ts), VN
_ is the specific growth rateYx, /s is the cell-mass
Remark 1.An usual way to solve the tracking prob- yield, anda and3 are yield parameters for the prod-
lem is to compute the reference trajectories of the stateyct. In (20) the maximum specific growth rate,, the
and control variables corresponding to the referenceproduct saturation constafi,,, the substrate satura-
signal and to resort to a proper coordinate transfor-tjion constantk’,,, and the substrate inhibition con-
mation. However, this procedure does not guaranteestantk,; must be chosen to fit experimental data. The

that asymptotic zero error regulation is preserved for nominal operating conditions and model parameters
modelling errors or plant parameters variations. On areYy,;s = 0.4 g/g, 3 = 0.2 h~", P, = 50 g/L,

the contrary, the proposed method is such that ther, — 22 ¢/, D = 0.202 ™1, § 5.0 g/L,
error asymptotically vanishes even in the presence ofy, — 2.2¢/9, p,, = 0.48 h™ !, K, 1.2 g/L,

a plant-model mismatch provided that stability is pre- 5, — 204/L, X, = 6.0 g/L, P = 19.14 g/L.

served, although the computation of the allowed un- o ]

certainty is usually difficult. This property is due tothe '€ control objective is to move the biomass con-
integrators directly applied on the error signal. In fact, CéntrationX;, along a pre-defined trajectory within

if the feasibility of theF HOCP and the asymptotic & l2rge range. The responses to step changes of the

stability are preserved, then the input to the integratorsdilution rate are not symmetrical. The model ex-
must go asymptotically to zero. u hibits more severe nonlinear behavior for changes

in the feed substrate concentration. In particular the

gain from Sy to X, can ever change sign. Differ-
In the FHOCP optimization problem continuous ent single-input/single-output (SISO) control strate-
time state constraints are considered. It can appeagies have been proposed in order to control this class
that this approach is only conceptual, because anyof systems (Henson and Seborg, 1997). However, the
numerical implementation needs a time discretization open |00p behavior shows that with a Sing|e input
and the constraints satisfaction can be checked On'ycontr0| strategy is not possib]e to move the biomass
in the integration time instants. However this is not concentrationX to a value greater thah4 /L. This
a significant limitation; in fact, following Theorem 3 motivates the interest for a multi-input/single-output
in (Magni and Scattolini, 2004) one can choose the control law. In the following theM PC algorithm
maximum integration step and a more conserva- proposed in this paper will be used to control the
tive discrete-time state constraint so as to guaranteglant along a pre-prescribed reference bringing the
continuous-time state constraint satisfaction. biomass concentratiaki, from the initial equilibrium
value to the final steady state value®$ g/L. The
following input and state constraints are considered:
0.05h~* < D < 0.3h7', 16g/L < S; < 25g/L
39/L < Xy < 10g/L, 1g/L < S < 10g/L,
10g/L < P < 35¢/L. The nonlinear continuous-time

In this section, theM PC' control law is applied to ~ Staté Space model (1) of system (17)-(20) iiogtained
a continuous fermenter. The volume of the fermenter g{gegﬁ'{‘gglih/e normalized state vector :D[_j%v

is assumed constant, its contents well-mixed, and the ™5 > ~To.11 | » the manipulated input = [Z5555=,
feed sterile. The manipulated inputs are the dilution 372—520]’ and the outpuy = 22=5_ The initial equilib-
rate D and the feed substrate concentratién The rium point is defined byt = 0, = 0 andy = 0,
state variables are the effluent cell-mass or biomasswhile the linear auxiliary stabilizing control law is
concentrationX,, the substrate concentratighand given by

the product concentratioB. In the sequelX;, S and

P are assumed to be measurable.

3. SIMULATION EXAMPLE

u(t) = Kyx(ty) + Ko AYO(ty) (21)



Where Km and KyO are Obtained W|th anZWPO (a) Biomass concentration (g/L)
control law synthesized on the linearization of (5)- °f ‘ ‘ ]

(6) around(z, u, ¥°) = (0,0,0) discretized with [ 7 N/ \/ ]
a sampling periodl; = 1h. Finally, AY%(t;) = . = - — —
[yo(ﬁk)7 yo(tk+1)a e ayo(tk+NL )]/ a.nd Né‘ = 30 (b) Substrate concentration (g/L)

is the prediction and control horizon of the linear
MPC. The cost function minimized to synthesize
the linear M PC has the same stage cost of (15)
with an additional terminal equality constraint and
a penalty on the state variable with matigx, to r

guarantee the stability of the linearized closed-loop 2L

system. LettingQ = 1, R = diag(1,1), Q. = 0 50 100 150 200
diag(1,1,1,3,1,1) % 1073, v = 2, v, = 0.99, Q = ‘ (@ Diuion rate 7y

2.02 * I 4pt+m andy® = 0.25 (which corresponds to :
X, = 7.5 g/L) aregionQ, (z(y"), k, Ts) satisfying
Lemma 4 is computed with th&8 solution of (11)
ando = 0.027. In order to guarantee continuous
time state-constraints satisfaction, following Theorem
3 in (Magni and Scattolini, 2004), the constraints i

0 50 100 150 200

|2 — %, < g with 7, = [0.0833,0.1000, 0.1755], Timel)

v = diag(2.9388,1.2346,2.3446), = 0.9 are intro- ) o
duced so that, with a constant integration step= Fig. 1. Responses of closed-loop system with linear
0.05h, 2p(t) € {ap : |7y — Tpll, <1} C Xp,t > 0. MPC (dashed line) and nonlinear MPC (solid
The sampledM PC' control law described in Sec- line)

tion 2.1 has been synthesized lettiQg= 1, R = (2) Biomass concentration (g1l

diag(1,1), N, = 6 andN,, = 200 . 65 ‘ ‘ ‘ 7

6

The results obtained by comparing the auxiliary linear ssp N
M PC and the nonlineai/ PC' algorithm here pro- o o3 a0 %080 70 80 90 100

(b) Substrate concentration (g/L)
T

posed are reported in Fig. 1. Fig. 1.a shows that bothsr ‘ ‘ "

the methods allow to reach the required steady-state,|
valueX;, = 7.5 g/L. However, the nonlinead! PC

law achieves a significant performance improvement. ©  *  * O o oy
In fact the infinite horizon cost obtained with the linear [ ‘ ‘ ‘ 7
M PC law is 0.2447 while with the nonlinear one is %’ﬁ%(
0.1390. Note also that as stated in Theorem 5, the state’;
and control variables with nonlinedr PC' converge

to the same steady-state values of the auxiliary linear®””
control law. 018

0 10 20 30 40 50 60 70 80 90 100

A second simulation experiment has been performed
in order to emphasize the robustness property of thez
control scheme with respect to model uncertainty. To j:
this end, the parameter,, has been changed from —
the nominal value0.48h~! to the perturbed value Time()

0.45n~1 at time 10h, while the set point is constant

at 6g/L. The results obtained with the control algo-

rithm based on the solution of the regulation problem
through a standard change of coordinates (see Remark

1) and with the tracking control algorithm based on

the solution of the&’ HOC'P are reported in Fig. 2. It Henson, M. A. and D. E. Seborg (1997). Feedback lin-

is apparent that the introduction of the integral action earizing control. In:Nonlinear Process Control

guarantees robust asymptotic zero error regulation. (M. A. Henson and D. E. Seborg, Eds.). pp. 149-
231. Prentice Hall.
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Fig. 2. Closed-loop system responses with nonlin-
ear MPC based on a pure regulatidgaaithm
(dashed line) and on the tracking algorithm (solid
liner) when a change of,,, occurs



