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Abstract: A method to design decentralized PID controllers for MIMO systems
is presented in this paper. Each loop is designed separately, but the Gershgorin
bands are considered to take interactions into account. The method uses different
design parameters: The infinity norm of the complementary sensitivity function as
well as the crossover frequency are considered to represent the closed-loop system
performances. A third design parameter, defined as the minimal distance from
the critical point to the Gershgorin band is used to provide the desired stability
robustness to the MIMO closed-loop system. Copyright © 2005 IFAC
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1. INTRODUCTION

PID controllers are considerably used in industrial
processes, because their structure, consisting of
only three parameters is very simple to implement
and many different techniques are nowadays avail-
able for their tuning for SISO systems.

Many systems encountered in practice consist,
however, of several interconnected loops. Classical
MIMO techniques solve usually the controller de-
sign problem successfully. Their drawback consists
mainly in the fact that the results are state-space
high-order controllers. Moreover, systems contain-
ing non negligible time-delays cannot be handle by
such procedures.

On the other hand, considerable attention has
been given to the use of SISO procedures for
the tuning of decentralized PID controllers for
MIMO systems. Motivations comes from the fact
that many systems can be made diagonally dom-
inant (i.e. interactions between loops are not pre-
dominant) by designing appropriated decoupling
compensators. Furthermore the stability of MIMO
systems in closed-loop can be directly taken into

account by SISO approaches thanks to the Gersh-
gorin bands. W.K. Ho et al. (1997) proposed an-
alytical formulas for the design of multiloop PID
controllers by specifying the gain and phase mar-
gins for the Gershgorin bands. But this approach
is restricted to a particular model structure. In
D. Chen and D. E. Seborg (2002) the ultimate
gain and frequency are defined for MIMO systems
based on Gershgorin bands and a design method
is derived from the modified Ziegler-Nichols rules.
The approach suffers from the need of a full model
knowledge to compute the ultimate point, and it
finally uses only this information to design the
controller. Furthermore the stability of the closed-
loop system is not guaranteed.

The proposed approach, derived from the proce-
dure presented in Garcia et al. (2005) to adjust
robust PID controller for SISO systems, uses the
following design parameters: The infinity norm of
the complementary sensitivity function and the
crossover frequency, which are specified for each
loop independently. These represent the closed-
loop performances. The minimal distance from
the critical point to the Gershgorin bands is also
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Fig. 1. Classical multi-loop control system config-
uration

specified. This guarantees the desired stability ro-
bustness of the MIMO system. The problem which
consists of finding the controller parameters to
satisfy the specifications is then solved by min-
imizing iteratively a frequency criterion (Karimi
et al., 2003). This one is defined as the weighted
sum of squared errors between the achieved and
specified values of the design parameters.

The paper is organized as follows: The configura-
tion of decentralized feedback control system with
decoupling compensators is presented in Section
2. Stability analysis considerations for diagonally
dominant systems are recalled in Section 3. In
Section 4 the controller design procedure is ex-
posed and some examples are provided in Section
5. Finally some concluding remarks are offered in
Section 6.

2. SYSTEM CONFIGURATION

Notation: In this paper, the element in the row ¢
and column j of a transfer matrix L(s) is indicated

by lij (S)

The classical configuration of a multi-loop (de-
centralized) feedback control system is shown in
Fig. 1. K(s), Q(s), Gp(s) and P(s) are m x m
transfer function matrices. Gp(s) describes the
process transfer matrix, K(s) = diag{ki(s), ...,
km(s)} is a diagonal matrix of controller transfer
functions, Q(s) and P(s) stand for the transfer
matrices of the precompensator and postcompen-
sator, respectively. Compensators are used in or-
der to decouple the loops, so that the overall
control can still be obtained by independent SISO
design of diagonal loops. If G(s) = P(s)G,(s)Q(s)
is diagonal, the system will consist of a number of
independent SISO diagonal control loops, each of
them can be designed independently by classical
techniques. However, aside from conditions on the
existence, stability and causality, the decoupling
compensators tend to be of the same order of
complexity of the plant itself. Moreover, exact
decoupling (which implies the knowledge of an
exact plant model) means that the compensator is
used to cancel dynamics of G(s). These cancelled
modes will still exist in the presence of distur-
bances and could be uncontrollable. In view of
these difficulties, compensators are designed only
in order to limit interactions between loops and

to obtain diagonal dominancy. This represents
an interesting property under which interactions
are reduced sufficiently and allows to design the
controller by considering each loop independently.
Diagonal dominancy can usually be achieved by
matrices @ and P consisting of constant elements
(Van de Vegte, 1994). Numerous techniques are
nowadays available for their design.

3. STABILITY ANALYSIS OF DIAGONALLY
DOMINANT SYSTEMS

Nyquist array analysis, which has been investi-
gated by Rosenbrock (1970), provides useful the-
oretical basis for stability analysis and controller
design for diagonally dominant systems. This con-
siderations are based on the stability theorem for
MIMO systems in the frequency domain, which is
repeated hereafter for convenience.

Consider the closed-loop system of Fig. 1, define
L(s) as the loop transfer matrix, and D(s) as the
return difference transfer matrix:

L(s)=G(s)K(s) (1)
D(s) =T+ G(s)K(s) (2)

It can be shown (Van de Vegte, 1994) that, in the
similar way as for SISO systems, the numerator of
the determinant of D(s) is the closed-loop char-
acteristic polynomial while its denominator con-
stitutes the open-loop characteristic polynomial.
Assume that pg is the number of roots of the open-
loop characteristic polynomial inside the Nyquist
contour C. The latter consists of the imaginary
axis and a right semicircle of radius R — oo and,
in effect, encloses the entire right half-plane. The
basic stability theorem follows from the principle
of the argument:

Theorem 1. If a plot of det(D(s)) as s travels once
clockwise around the Nyquist contour C' encircles
the origin Ny times clockwise, the system is stable
if and only if Ny = —pg.

This stability theorem is however difficult to ap-
ply for the design of multivariable systems. On
the other hand, in the special case of diagonally
dominant matrices, the stability condition can be
expressed in a much more convenient way for
controller tuning using Nyquist array technique.

Definition 1. An m x m transfer matrix Z(s)
is column diagonally dominant on the Nyquist
contour C' if Vse Cand Vi =1,...,m:

m

|z ()| > ri(s) = Y ()] (3)

j=1.j#i
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Fig. 2. Nyquist plot of a diagonal element of Z(s)
with the Gershgorin bands

A graphical interpretation of this condition is
based on the Gershgorin bands: Z(s) is column
diagonally dominant if the Nyquist plots of the
diagonal elements z;;(s), with the band generated
by the circles of radii r;(s) and centered of z;;(s) at
the corresponding frequencies exclude the origin.
Fig. 2 illustrates this interpretation.

Stability analysis for diagonally dominant system
depends directly of the following theorem:

Theorem 2. For a diagonally dominant matrix
Z(s), the origin encirclements N, of det(Z(s))
as s travels once clockwise around the Nyquist
contour equal the sum of the encirclements N,; of
the diagonal elements z;;

N, = -leNZi (4)

The Nyquist stability theorem (Rosenbrock, 1970),
that follows directly from the preceding theorem
can now be expressed for the considered closed-
loop system of Fig. 1:

Theorem 3. If the Gershgorin bands centered on
the d;;(s) (diagonal elements of the return dif-
ference transfer matrix) exclude the origin (i.e.
D(s) is column diagonally dominant), the system
is stable if and only if:

Z(clockwise encirclements of d;;(s)

about the origin) = —pg

Since [ is a diagonal matrix, the Gershgorin circle
radii of D(s) = I + G(s)K(s) are the same
as those of L(s) = G(s)K(s). It follows, that
the preceding theorem can be formulated in a
form that resembles the classical Nyquist criterion
for SISO system: If the Gershgorin bands
centered on the l;(s) exclude the critical
point —1 (i.e. D(s) is diagonally dominant),
the system is stable if and only if :

Z(clockwise encirclements of [;(s)
i
about the critical point —1) = —pg

The radii of the circle that generate the bands
are:

m

Z |lji(8)|, Vi=1,...,m (5)

j=1,j#i

ri(s) =

Remark 1: This Nyquist array analysis repre-
sents only sufficient, but not necessary stability
conditions. If the bands overlap the critical point
(i.e. D(s) is not diagonally dominant), conclusions
about the stability or instability of the closed-loop
system cannot be made.

Remark 2: Note that the time-delays of the func-
tions g;;(s) (¢ # j) are not involved in the stability
analysis: If the preceding theorem is satisfied for
a given system, changing the time delays values
in any transfer functions g;;(s) (i # j), will not
affect the closed loop stability.

Since most industrial processes are open-loop sta-
ble, the controller design procedure will be re-
stricted to those systems. Assuming open-loop
stability, the Gershgorin bands must not encircle
nor include the the critical point —1 to ensure
closed-loop stability.

4. CONTROLLER DESIGN PROCEDURE

Consider the closed-loop system of Fig. 1 and
assume that the transfer matrix G(s) is diagonally
dominant. Thus the interactions between loops
are sufficiently reduced so that the controller can
still be obtained by independent SISO design of
the diagonal loops (Van de Vegte, 1994). That
is what the proposed controller design method
does. But for stability considerations, it also takes
into account the interactions with the Gershgorin
bands, because these bands provide about the
same type of stability information for MIMO sys-
tems as the Nyquist diagram does for SISO sys-
tems. The procedure is derived from the method
proposed in Garcia et al. (2005), where appro-
priate design parameters are chosen for PID con-
troller design and bands are also considered in the
complex plane for the stability robustness against
the model uncertainties. Moreover the method
does not require any parametric plant models.
Only the knowledge of a non-parametric transfer
matrix G(jw) in a frequency range is necessary for
the design.

4.1 Design Parameters

The design parameters used by the method are
the following :
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Fig. 3. Nyquist plot of a diagonal element of
K (s)G(s) with circles that generate the Ger-
shgorin bands

e Modulus margin M,,: For the ¢-th loop which
is characterized by the loop transfer function
lii(jw) = k;(jw)gii (jw), the modulus margin
M., is defined as the minimal distance from
the critical point —1 to the Gershgorin band
of the loop: Since the band is generated by
circles, an analytical expression of the band
can be given by:

ki (jw)gii (jw) + ks (Gw)ri(jw)|e??, (6)

with 6 € [0,27) and w € [0,00). M,,, can
thus be formulated as:

M,,, = inf (irgf 11+ ki(jw)gii (jw)

Hlki(jw)ri(jw) €[) - (7)

It can easily be seen on Fig. 3 that for

a given frequency wi, the minimal distance

from the critical point to the corresponding

circle is equal to the distance from the critical

point to k;(jw1)gii(jw1) minus the radius
|ki(jw1)ri (jwr)| of the circle. Hence:

My, = inf (1 + ki(jw)gii (jw)]

= [ki(jw)ri(jw)l)  (8)
This term can easily be computed numer-
ically. Satisfying a specified modulus mar-
gin for each loop ensures the desired robust
stability of the MIMO closed-loop system.
Moreover it gives an upper bound for the
magnitude of the sensitivity functions of each
loop.

o Complementary modulus margin M,: Let the
complementary sensitivity function of the i-
th loop be T;(s) = 15:21_(1_5()5), which represents
the transfer function from setpoint to pro-
cess output of the SISO system. The second
design parameter, called the complementary
modulus margin, is defined as being the in-
verse of the infinity-norm of T;(s):

M, = [|Ti(s)l15 9)

Its value is directly related to the maximum
peak overshoot to a setpoint change of the
closed-loop system and thus constitutes an
important performance indicator. Moreover
this specification can be directly interpreted
in the complex plane, since the loci for con-
stant complementary modulus margin are
circles (Garcia et al., 2005).

e Crossover frequency w.: The proposed me-
thod also allows the crossover frequency to
be considered as a design parameter. For the
i-th loop, we, is defined as the frequency at
which the loop amplitude is one (|; (jwe,)
1). A specified value for the crossover fre-
quency is however not a priori known and
depends especially on the plant dynamics.
If either the closed-loop bandwidth or the
desired rise time to setpoint changes are ap-
proximatively known a specification can how-
ever be formulated.

4.2 Frequency Criterion

The problem which consists of finding the con-
troller parameters in order to satisfy the spec-
ifications on the design parameters can now be
formulated as an optimization: For each loop in-
dependently, find the controller parameters that
minimizes a frequency criterion. The frequency
criterion for the i-th loop J; is defined as the
weighted sum of squared errors between the spec-
ified and computed values of the design parame-
ters:

T = 5 (Mo, (0) = M3, )2+ do,
(Mo, (p) = M)+ Aa,(we, () — w)?) (10)

where p; is the vector of the controller parameters,
A1, A9, and A3, are weighting factors, M,,, and
M;, . are respectively the achieved and specified
values of the modulus margin. M., and M are
the achieved and desired complementary modulus
margin and w,, and w;, the achieved and desired
crossover frequency. The weightings factors are
usually chosen as:

Ay = UM, da, = UMZ2, s, = 1/w? (1)

in order to normalize the terms in the criterion.
It is assumed that the values of M,,,, M., and
we,; can be computed numerically using the plant
model and the current controller transfer function.
The controller parameters of each loop, minimiz-
ing the corresponding criterion can be obtained
using the iterative Gauss-Newton algorithm. De-
tails of the minimization procedure can be found
in Garcia et al. (2005). The minimization is done
numerically and does not requires a parametric
model of the transfer matrix G(s).



5. SIMULATION EXAMPLES

Two simulation examples are now considered
to demonstrate the closed-loop performances of
decentralized PID designed with the proposed
method.

5.1 FExample 1

Consider a MIMO process described by the fol-
lowing process transfer matrix Gp:

8e0-95¢ 0.5¢~°
4s243s+2  (s+1)(2s+1)
G (s) = 1 —0.25+1 (12)
(s+1)(s+2) (s+1)2

Because this process model has the property of
column diagonal dominance, no decoupling com-
pensators are required. It should be noted that
the transfer functions on the diagonal of Gpi(s)
correspond to an oscillatory as well as a non-
minimum phase system. this kind of systems of-
ten represents a problem when classical methods
based on first-order plus dead time are used to
tune the controller, because this model is not
representative of the plant behavior.

From initial controllers obtained with the Kappa-
Tau tuning rules (K. J. Astrom and T. Hagglund,
1995) (by considering only the transfer functions
on the diagonal of G, (s)), it is now desired to
adjust its parameters with the proposed method
by taking into account the Gershgorin bands to
ensure the stability of the MIMO system. The
same specifications on design parameters are cho-
sen for each loop: My , = 0.4 is chosen for
the minimal distances to the critical point and
1.05 for the maximal value of the complementary
functions. This value corresponds to M = 0.952.
No specification is however given on the crossover
frequencies (A3, , = 0).

The following controller structure is used:

1 Ty,
ki(s) = Kp, [ 14 — + —2— (13)
( Lis 4+1>

since it is usual to include a filter in the derivative
term. Controllers having only 2 parameters can
be sufficient to minimize the criteria. Thus, the
number of controller parameters are set to two by
choosing the constant ratio 7;, = 47y, between
integral and derivative times. It is pointed out
in K. J. Astrom and T. Hagglund (1995) that
this ratio is appropriated for many industrial
processes.

Nyquist plots of the two designed open-loop trans-
fer function with the Gershgorin bands and pro-
hibited disks defined by the specifications are
shown in Fig. 4. It can be seen that the designed
systems fulfill the design specifications. Closed-

k1(8)gp11, k2(5)gp1sa
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Fig. 4. Nyquist plots of the designed loops with
Gershgorin bands
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Fig. 5. Step response of the first output (dashed
line: Chen, solid line: Proposed)

Controller ~ Method Ky T; T4
ki (s) Chen 1.08 1.57 0.39
Proposed 2.92 3.55 0.89
Chen 224 1.65 041
ka(s)

Proposed 2.62 2.06 0.51
Table 1. Controller parameters (ex. 1)

loop responses of the MIMO system with the
proposed controllers are simulated and compared
with those resulting from the method proposed
in D. Chen and D. E. Seborg (2002). The simu-
lation consists of unit set-point changes for the
first output at ¢t = 0 and for the second one
at t = 15 s. Fig. 5 shows the responses of the
first plant output y;, while Fig. 6 represents the
responses of the second one. It can be seen that the
proposed controllers perform well. In particular
settling-time and overshoot of the step responses
are considerably reduced. Concerning the inter-
actions between loops, the proposed controllers
provide a better performances for the time of
rejection. Overshoots due to the interactions are
reduced in the first output but amplified in the
second one. Details of the controllers settings are
presented in Table 1.

5.2 Fxample 2

The following third by third process model is now
considered:



Fig. 6. Step response of the second output (dashed
line: Chen, solid line: Proposed)

Controller

ki(s)

Method K, T; Ty
Chen 5.25 1.08 0.271
Proposed 9.33 1.97 0.493

Table 2. Controller parameters (ex. 2)

0 5 10 15 20
Time [s]

Fig. 7. Step response of the first output (dashed
line: Chen, solid line: Proposed)

e 01s 0.3 0.3
(s+1)2 (s+1)(2s+1) (s+1)(2s+1)
_ 0.3 e 01s 0.3
sz (5) - (s+1)(2s+1) (s+1)2 (s+1)(2s+1)
0.3 0.3 e 0-1s

(s+1)(2s+1) (s+1)(2s+1) (s+1)2

This transfer matrix is diagonally dominant and
thus no decoupling compensators are required.
Due to the symmetric structure of the system, the
same controller will be used for each loop. The
same values of design specifications are used as
previously. Again, an initial controller is designed
using the Kappa-Tau tuning rule and then the
proposed method is used to adjust its parameters
in order to satisfy the design specifications.

The resulting controller (Table 2) is compared
with that obtained by the method of D. Chen and
D. E. Seborg (2002): Fig. 7 shows the behavior
of the first system output y;(t) for a unit set-
point change of the first output at ¢ = 0 and
a unit setpoint change of the second output at
t = 10 s. Since the process is symmetric, other sys-
tem outputs will be identical. Again the proposed
controller perform well, since it reduces drastically

step response overshoot as well as settling time.
The disturbance rejection overshoot is, on the
other hand slightly increased. Finally it should
be remarked that both methods require the same
information about the plant model (i.e a non-
parametric model of the system).

6. CONCLUSION

A controller design method has been proposed
for decentralized PID control systems. The ap-
proach is restricted to diagonally dominant MIMO
systems or systems that can be made diagonally
dominant by using decoupling compensators. But
since no other assumptions have been made, it is
not restricted to any particular models nor con-
troller structures. The design procedure considers
each loop separately for the closed-loop perfor-
mances but also takes the Gershgorin bands into
account to ensure a stability robustness of the
closed-loop MIMO system. Simulation examples
illustrate the effectiveness of the method for con-
troller design of moderately interacting systems.
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