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Abstract: This paper presents the successful application of interval arithmetics to a
simplified activated sludge model that describes the reduction of biodegradable substrate
in biological wastewater treatment. Reliable analysis of the steady-state behaviour as
well as plant control have to account for the dominant uncertain system parameter
given by the maximum specific growth rate of biomass. The proposed control strategy
consists of nonlinear control of oxygen concentration using desired trajectories derived
from interval evaluations of the uncertain steady-state substrate concentration. By this,
plant operating costs can be significantly reduced resulting in superior plant efficiency.
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1. INTRODUCTION

Analysis and control of nonlinear systems with uncer-
tain system parameters represent problems of inten-
sive current research interest. Usually, guaranteed, i.e.
conservative, bounds for all state variables of a nonlin-
ear state space model are to be determined. Moreover,
these conservative enclosures should be as tight as
possible to the actual bounds of the state variables
in order to minimize overestimation. Unfortunately,
these bounds cannot be explicitly calculated in most
cases. In this paper, the range of these uncertain pa-
rameters is only specified by their lower and upper
bounds. Additional knowledge about the distribution
of the parameters within the specified range is neither
available nor required.

Traditionally, the analysis of nonlinear systems with
uncertain parameters is performed either by Monte-
Carlo simulations or by the application of other
stochastic simulation techniques. In both cases, the
main drawback is given by the fact that distributions
of the uncertain parameters have to be provided. If
only lower and upper bounds of the range of the un-
certain parameters are known, a rectangular distribu-
tion of random numbers can be utilized as approxi-
mation for each of the system parameters. Alterna-
tively, grids are often applied to determine various
sets due to uncertain system parameters. Neverthe-
less, the efficiency of Monte-Carlo or other grid-based
simulation techniques decreases rapidly for higher-
dimensional systems while the computational effort
often increases exponentially. Furthermore, most sim-



Table 1. Nominal values of the system parameters.

parameter description nominal value

VA volume of the aeration tank 8000 m3

VSet volume of the settler 4545 m3

QW influent wastewater flow rate 0.153 m3/s

QRS flow rate of return sludge 0.0916 m3/s

QEX flow rate of excess sludge 0.005 m3/s

SW influent biodegradable substrate concentration 0.616 kg/m3

SOW influent oxygen concentration in the wastewater 0.5 · 10−3 kg/m3

SO,sat saturation concentration of dissolved oxygen 5.3 · 10−3 kg/m3

Y yield coefficient of heterotrophic biomass 0.67

µ̂nom max. specific growth rate of heterotrophic biomass 1/14400 1/s

b specific decay rate of heterotrophic biomass 7.176 · 10−6 1/s

KS half saturation coefficient for heterotrophic biomass 0.02 kg/m3

KOS oxygen half saturation coefficient 2 · 10−4 kg/m3

uO2 influent oxygen flow rate (constant) 1.487 m3/s

ρO2 normal density of molecular oxygen 1.428 kg/m3
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Xset
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Fig. 1. Block diagram of the simplified wastewater treatment plant.

ulation algorithms applying these techniques cannot
guarantee conservative enclosures of the state vari-
ables, i.e. in most cases it cannot be determined
whether it is possible that state variables reach values
outside the range determined by these algorithms.

On the contrary, the interval arithmetic approach
allows for calculating guaranteed upper and lower
bounds for all state variables of a nonlinear system. As
compared to natural interval arithmetics, overestima-
tion effects typically encountered in interval evalua-
tions can be reduced by optimized interval arithmetics.
The improvements stem from higher order methods
for interval evaluation as well as efficient splitting and
merging strategies of state and parameter intervals.

Calculation of guaranteed enclosures becomes indis-
pensable if safety-critical or environmentally haz-
ardous systems are to be analyzed. Here, an approach
solely based on a set of nominal values of all system
parameters may be deceptive. System design should
provide the engineer with reliable results whether it is
possible to guarantee specified limitations, especially
to exclude hazardous operating conditions. In this ar-
ticle, interval arithmetics is applied to a subproblem of
the activated sludge process in biological wastewater
treatment (Köhne, 1998). In contrast to the widely
used Activated Sludge Model ASM1 of the Interna-
tional Association on Water Quality (IAWQ), this sub-
process only regards the reduction of organic matter
(substrate). Nitrogen fractions of the wastewater and
their removal are not adressed here. However, an ex-
tension of the analysis to the complete ASM1 model
is straightforward and subject to future research.

The paper is structured as follows. First, the modelling
of the simplified wastewater treatment plant is pre-
sented in detail. Second, a brief overview of natural
and optimized interval methods for the analysis of
nonlinear systems with uncertain parameters is given.
Third, optimized interval arithmetics is applied to the
steady-state analysis of the considered system with
an uncertainty of the specific growth rate. Fourth, a
flatness-based control of the oxygen concentration is
described. Using the steady-state characteristic of the
substrate concentration as well as the admissible sub-
strate concentration at the plant output, desired tra-
jectories for the oxygen concentration can be derived.
The applicability and effectiveness of the interval ap-
proach is emphasized by a comparison of symbolic
calculation and interval evaluation.

2. WASTEWATER PLANT MODELLING

As depicted in Fig. 1, the considered wastewater treat-
ment plant consists of two tanks: an aeration tank (vol-
ume VA) with activated sludge, where the biological
reduction of organic matter takes place, and the settler
tank (volume VSet), where the cleaned water and the
sludge are separated. The aeration tank is equipped
with an oxygen supply uO2, which represents the
physical control input for the subsidiary control of
the oxygen concentration in this tank. The system
can be described by introducing four state variables.
Three of them are related to the activated sludge tank:
the concentration of biodegradable substrate S, the
concentration of substrate consuming bacteria X and
the oxygen concentration SO in the sludge tank. The



fourth state variable is given by the bacteria concen-
tration XSet in the settler.

The influent volume flow of the activated sludge tank
is composed of two parts. The first part is given by a
wastewater volume flow QW with substrate concen-
tration SW , oxygen concentration SOW that does not
contain any substrate consuming bacteria, i.e. X = 0.
The second part stems from the returned volume flow
QRS with substrate concentration S, oxygen concen-
tration SO, and bacteria concentration XSet. The vol-
ume flow QW +QRS at the exit of the sludge tank is of
substrate concentration S, oxygen concentration SO,
and bacteria concentration X . The settler is modelled
as an ideal separator. The volume flow QW −QEX of
separated cleaned water with substrate concentration
S and oxygen concentration SO represents the plant
output. Here, the given substrate concentration has to
be smaller than a specified limit value Slim according
to legal regulations. The volume flow QEX denotes
the excess sludge of bacteria concentration XSet that
is continuously removed from the process.

Based on these volume flows, mass balance equations
for each of the components result in a system of four
non-linear first-order ordinary differential equations

Ṡ =
QW

VA

(SW − S) − µ (S, SO)
1

Y
X,

Ẋ = −
QW

VA

X +
QRS

VA

(XSet − X)

+ (µ (S, SO) − b) X,

ṠO =
QW

VA

(SOW − SO) − µ (S, SO)
1 − Y

Y
X

+
ρO2

VA

(

1 −
SO

SO,sat

)

uO2,

ẊSet =
(QW + QRS) X − (QEX + QRS) XSet

VSet

,

(1)

with the nonlinear specific growth rate

µ (S, SO) = µ̂
S

S + KS

SO

SO + KOS

. (2)

As all concentrations must be positive from physical
considerations, the inequalities

S ≥ 0, X ≥ 0, 0 ≤ SO ≤ SO,sat, XSet ≥ 0 (3)

for the state variables have to be satisfied. Moreover,
the concentration SO of dissolved oxygen is limited
by the saturation concentration SO,sat. The nominal
values of all system parameters are stated in Tab. 1.

3. INTERVAL ARITHMETIC SYSTEM
ANALYSIS

In this section, the major properties of interval arith-
metic evaluation of nonlinear functions are summa-
rized (Rump, 1996). For further details about the the-
ory of interval arithmetics see e.g. (Moore, 1979).

3.1 Interval Evaluation of Nonlinear Functions

The intuitive extension of algebraic functions to inter-
val arithmetics is referred to as natural interval eval-
uation. All basic algebraic operations like addition,
subtraction, multiplication and division are replaced
by their interval equivalents. The resulting lower and
upper bounderies are expressions of the bounds of the
corresponding operands.

Instead of applying natural interval evaluation directly
to the function f , higher-order methods based on
interval Taylor series of the nonlinear function f are
often preferred (Rauh et al., 2004a). In this paper,
discussion is restricted to the midpoint-rule

f (x) ⊆ fM (x) = f (xm)+
∂f

∂x
(x) (x − xm) , (4)

which is a zero-order Taylor series expansion of the
function f at the midpoint xm = 1

2 (x + x) with an
interval evaluation of the first-order remainder term.

Such higher-order methods often yield tighter approx-
imations of the solution intervals than simple natural
interval evaluation. However, this cannot always be
guaranteed. Therefore, the algorithm proposed in this
paper takes advantage of an intersection of the results
of both natural interval evaluation and midpoint-rule.

3.2 Reduction of Overestimation

Two principle kinds of overestimation can be distin-
guished. First, the maximum and minimum values
of the state intervals cannot always be determined
exactly if just natural interval evaluation or higher-
order methods are applied. Second, using only one
axis-parallel interval box it is impossible to represent
complexly shaped regions of the state variables in the
state space even if the exact infimum and supremum
of the sets can be determined. If this shape is to be
approximated with higher accuracy, efficient splitting
and merging techniques have to be introduced. At this,
is becomes important that in interval arithmetics the
property of subdistributivity

x (y + z) ⊆ xy + xz (5)

is valid with z ∈ [z ; z]. Another very important prop-
erty of interval arithmetics is inclusion monotonicity

xi ⊆ yi (i = 1, . . . , n)

=⇒ f (x1, . . . , xn) ⊆ f (y1, . . . , yn) ,
(6)

where f is the interval extension of an analytical
function. Splitting an interval x into l subintervals xi,
i = 1, . . . , l,

l⋃

i=1

xi = x, xi ∩ xj = {} (i 6= j) (7)

inclusion monotonicity directly yields
l⋃

i=1

f (xi) ⊆ f (x) . (8)



3.3 Optimized Interval Evaluation

Since the exact infimum and supremum of the range of
nonlinear functions cannot always be determined, op-
timized interval evaluation is employed to determine
a single tight interval box enclosing possible function
values.

If a single interval box is to be determined mono-
tonicity properties of nonlinear functions should be
exploited in order to reduce overestimation. Herefore,
the sign of the entries of the interval Jacobian have to
be checked. In case of monotonicity the input intervals
of the function are replaced by infima or suprema
of the corresponding intervals. For further reduction
of overestimation and an improved approximation of
complexly shaped regions of state variables in the state
space splitting into subintervals has proven an effec-
tive means. At this, two effects can be exploited. First,
the approximation of not-axis-parallel bounderies be-
comes possible. Second, overestimation involved with
the evaluation of a subinterval is smaller as compared
to the original interval. Due to inclusion monotonicity
the hull of the subintervals provides a better approxi-
mation of the range as compared to the evaluation of a
function using only one interval (Rauh et al., 2004b).

If the monotonicity test is not successful, the input
intervals can be split into several subintervals. The
evaluation of all these subintervals will lead to tighter
approximations of the exact set of state variables. If
only the upper and lower bounds of the state variables
are desired, the union of all considered subintervals is
given by the smallest lower and largest upper bound
w.r.t. these subintervals.

4. STEADY-STATE ANALYSIS

For the steady-state analysis the fact is exploited that
all states S, SO, X , XSet, all system parameters Y ,
b, µ̂, KS, KOS ,VA, VSet as well as volume flow rates
QA, QRS , QEX are positive. The nonlinear system of
equations ẋ(t) = 0 = f(x) is to be solved in order
to obtain the steady-state state variables of the open-
loop system. This analysis starts by eliminating XSet

according to

XSet =
QW + QRS

QEX + QRS

· X (9)

in the remaining state equations. Consequently, the
steady-state concentrations of X and XSet are propor-
tional to each other. The steady-state equation for the
bacteria concentration becomes

Ẋ = 0 = −(
QW

VA

+
QRS

VA

− µ + b

−
QRS

VA

·
QW + QRS

QEX + QRS

) · X .

(10)

One solution is related to the case of minor technical
interest, where all bacteria were flushed out of the
sludge tank, i.e. X = 0. Hence, the second solution

given by the expression in brackets is regarded fur-
ther. A rearrangement leads directly to the following
expression

µ =
QW

VA

+
QRS

VA

− b −
QRS

VA

·
QW + QRS

QEX + QRS

.

(11)

Analogously, the steady-state equation for the sub-
strate concentration follows from Ṡ = 0 and can be
brought into the form

µ ·
1

Y
· X =

(SW − S) · QW

VA

. (12)

Inserting this expression in ṠO = 0 results in a linear
relationship between the steady-state values of S and
SO

SO =
1

QW

VA
+ ρO2uO2

VASO,sat
︸ ︷︷ ︸

α

·

(
QW

VA

· SOW

+
ρO2uO2

VA

− (1 − Y ) ·
(SW − S) · QW

VA

)

= α · (1 − Y ) ·
QW

VA

· S

+ α ·

(
QW

VA

· SOW +
ρO2uO2

VA

−(1 − Y ) ·
QW

VA

· SW

)

= β1 · S + β2 .

(13)

Both constants β1 ≥ 0 and β2 ≥ 0 are positive for the
nominal values of the system parameters. Elimination
of SO in µ(S, SO) yields a quadratic equation for S

S2 +




β2

β1
+

β1KS + KOS

β1

(

1 − µ̂
µ

)





︸ ︷︷ ︸

γ1

S

+
(β2 + KOS)KS

β1

(

1 − µ̂
µ

)

︸ ︷︷ ︸

γ2

= 0 ,

which can be solved symbolically. Considering
γ2 < 0, the single positive solution is given by

S = −
γ1

2
+

√
(γ1

2

)2

− γ2 . (14)

Finally, the steady-state expressions for the system
states become

S∗ =−
γ1

2
+

√
(γ1

2

)2

− γ2 , (15)

S∗

O = β1 · S
∗ + β2 ,

X∗ = Y
1

µ

(SW − S∗) QW

VA

,

X∗

Set =
QW + QRS

QEX + QRS

·

(

Y
1

µ

(SW − S∗) QW

VA

)

.

By inserting the nominal values of Tab. 1 in these
expressions, the steady-state values result in S∗ =



Fig. 2. Steady-state state variables as function of the
uncertain growth rate µ̂ = [0.9µ̂nom; 1.1µ̂nom].

0.3016 · 10−2 kgm−3, X∗ = 0.8949 kgm−3, X∗

Set =
2.2633 kgm−3, S∗

O = 0.5221 · 10−2 kgm−3. In
the following, an uncertainty of the maximum growth
rate of ±10% shall be taken into account. Fig. 2
depicts the interval approximation of the region in
the three-dimensional state space calculated without
direct evaluation of (15). This region represents a
guaranteed and conservative inclusion of all steady-
state state variables. In general, the solution of ẋ(t) =
0 = f(x) is determined by Interval-Newton-Methods.

5. NONLINEAR CONTROL DESIGN

5.1 Proof of Differential Flatness

In order to account for the nonlinearities in the dif-
ferential equation of the oxygen concentration SO , a
nonlinear control approach based on differential flat-
ness is proposed. Differential flatness is a prerequi-
site for flatness-based control of non-linear systems,
which are usually given in state space representation,
i.e. ẋ = f (x,u). A system is denoted as differentially
flat (Fliess et al., 1995) if appropriate flat outputs
y = y

(
x,u, u̇, . . .,u(`)

)
exist that

(i) allow for expressing all system states x and all
system inputs u as a function of these flat out-
puts y as well as their time derivatives, i.e. x =
x

(
y, ẏ, . . .,y(β)

)
and u = u

(
y, ẏ, . . .,y(β+1)

)
,

(ii) are differentially independent, i.e. they are not
connected by differential equations.

If the first condition is fulfilled, the second condition
is equivalent to dim(u) = dim(y). Here, the differen-
tial flatness of the first order differential equation for
the oxygen concentration is obvious using the measur-
able state variable oxygen concentration as single flat
output y = SO and the air supply rate uO2 as physical
control input.

5.2 Flatness-based Control Design

The flatness-based control design relies on the state
equation for the oxygen concentration that can be
rearranged in the following form

ṠO =

[

−
QW SO

VA

− µ̂
S

S + KS

1

SO + KOS

1 − Y

Y
X

]

︸ ︷︷ ︸

−kp(S,SO,X)

· SO +
ρO2

VA

(

1 −
SO

SO,sat

)

︸ ︷︷ ︸

ku(SO)

uO2 +
QW SOW

VA
︸ ︷︷ ︸

z

.

(16)

Consequently, the inverse dynamics is obtained by
solving for the physical control input

uO2 =
1

ku(SO)

[

ṠO + kp(S, SO , X)SO − z
]

.

(17)

At this, the required values for S and X can be ob-
tained by either a reduced-order observer or a model-
based interval algorithm. Defining υ = ṠO as new
control input, the error dynamics can be asymptoti-
cally stabilized using the control law

υ = ṠOd + α1(SOd − SO) + α0

∫ t

0

(SOd − SO)dτ,

(18)

which results in a second order error dynamics. Here,
the coefficients α1 and α2 are determined by pole
placement. As a result of the integral control part,
steady-state accuracy w.r.t. the desired oxygen con-
centration SOd is ensured. Transitions between two
operating points can be described by a smooth desired
trajectory, which must be at least C1-continuous. This
allows for employing the desired trajectory SOd and
its first time derivative ṠOd as feedforward control part
in the proposed control law.

Taking both subsidiary oxygen control and the uncer-
tain maximum growth rate into account, the steady-
state values for the substrate concentration S =
S(SO, µ̂) as well as the bacteria concentration X =
X(SO, µ̂) can be determined as depicted in Fig. 3 and
Fig. 4.

Given these steady-state characteristics and a spec-
ified admissible substrate concentration at the plant
output, the desired value SOd in an operating point
follows in two steps. First, the steady-state substrate
concentration S = S(SO , µ̂) is solved for the oxygen
concentration SO = SO(S, µ̂). Second, the insertion
of the maximum admissible substrate concentration
S = Slim yields the desired value of the oxygen con-
centration, which is chosen as supremum of SOd =
sup[SO(Slim, µ̂)]. The calculation of the desired oxy-
gen concentration is illustrated in Fig. 5 for an uncer-
tain growth rate µ̂ = [0.9µ̂nom; 1.1µ̂nom] according
to an admissible user-specified substrate concentration
Slim = 0.0035 kgm−3 at the plant output. As ex-
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Fig. 3. Substrate concentration as function of oxygen
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Fig. 5. Comparison of symbolic and interval cal-
culation of the desired oxygen concentration
in view of the uncertain growth rate µ̂ =
[0.9µ̂nom; 1.1µ̂nom] for an substrate concentra-
tion limit of Slim = 0.0035kgm−3.

pected the desired oxygen concentration is determined
by the minimum growth rate.

By this, the subsidiary control of the oxygen concen-
tration guarantees a steady-state substrate concentra-
tion in the plant output that is smaller than the spec-

ified limit value Slim regarding the uncertain specific
maximum growth rate µ̂.

Similarly, the second order error dynamics can be
proven to be asymptotically stable for the uncertain
maximum growth rate µ̂ using interval arithmetics
at evaluating the coefficients of the characteristic
polynomial, which must be positive according to the
Hurwitz-criterion.

6. CONCLUSIONS

In this paper, interval arithmetics is applied to a sim-
plified activated sludge model in biological waste-
water treatment focussing on the reduction of bio-
degradable substrate. The corresponding nonlinear
fourth-order state space model is subject to an uncer-
tain maximum growth rate of heterotrophic bacteria.
Thus, reliable analysis of the steady-state behaviour
as well as plant control have to account for this dom-
inant uncertainty. The proposed control strategy in-
volves a subsidiary flatness-based control of oxygen
concentration, where the desired trajectory is derived
from interval evaluation of the uncertain steady-state
substrate concentration. By this, guaranteed bounds
for the oxygen required for an admissible substrate
concentration in the plant output according to legal
regulations can be calculated for the uncertain system.
As a result, the plant operating costs can be signif-
icantly reduced by properly adjusted oxygen supply,
leading to an increase in plant efficiency. Moreover,
this strategy can be directly extended to the widely
used Activated Sludge Model ASM1 of the IAWQ
under consideration of uncertain system parameters.
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