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Abstract: In this paper, the exponential stability and the L2 induced gain
performance are investigated for a collection of plants whose feedback control loops
are closed via a shared network link. Due to a limited communication capacity,
the network link can only close one feedback control loop at a time, while the
other control loops are assumed to be open-loop. Therefore, it is necessary to
carefully allocate the communication resources in order to guarantee exponential
stability and achieve desired H∞ performance of the whole networked control
systems. In this paper, we derive a condition for scheduling the network so that all
the plants achieve the exponential stability and some reasonable H∞ disturbance
attenuation levels. The proof is constructive. A time-division based scheduling
policy is proposed to guarantee the exponential stability and a weighted H∞
performance. The techniques used in this paper are based on the average dwell
time approach incorporated with piecewise quadratic Lyapunov-like functions.
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1. INTRODUCTION

By Networked Control Systems (NCSs), we mean
feedback control systems where networks, typi-
cally digital band-limited serial communication
channels, are used for connecting spatially dis-
tributed system components like sensors to con-
trollers, and controllers to actuators. These chan-
nels are usually shared by a number of feedback
control loops. In the traditional feedback con-
trol systems these connections are established via
point-to-point cables. Compared with the point-
to-point cables, the introduction of digital com-
munication networks has many advantages, such
as high system testability and resource utiliza-

1 The partial support of the National Science Foundation
(NSF CCR01-13131) is gratefully acknowledged.

tion, as well as low weight, space, power and
wiring requirements and easy system diagnosis
and maintenance. These advantages make control
over networks more and more popular in a wide
variety of applications, including traffic control,
satellite clusters, mobile robotics, etc. Recently,
modeling, analysis and control of networked con-
trol systems with limited communication capabil-
ity has emerged as a topic of significant interest
to control community, see for example (Antsaklis
and Baillieul, 2004).

If a communication channel is shared by many
control loops, which is common in practice, then
one problem inherent to such NCSs is how to
efficiently allocate the communication resources
so that the stability and performance of all the
control loops are guaranteed. This is referred to as
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Fig. 1. A collection of networked control systems
shared by a communication link.

the scheduling problem of NCSs, which has been
considered in, for example, (Hristu, 2001; Hristu
and Kumar, 2002; Walsh et al., 2002; Branicky et
al., 2002). In (Hristu, 2001), a static time-division
stability preserving network scheduling policy was
derived by employing a common Lyapunov-like
function, and the static token-type scheduling pol-
icy was improved by introducing an interrupt-
based strategy in (Hristu and Kumar, 2002). In
(Walsh et al., 2002), a scheduling policy among
multiple sensors and actuators, called Try-Once-
Discard (TOD), was proposed for the exponential
stability of a MIMO networked controlled LTI
system. In (Branicky et al., 2002), the Rate Mono-
tonic (RM) scheduling algorithm was applied to
a collection of network controlled LTI systems
to obtain a stability preserving scheduling policy
for the NCSs. Note that only the stability prob-
lem was studied in the existing NCSs scheduling
literature. This paper will investigate scheduling
problems for both the stability and the L2 induced
gain performance of NCSs.

We consider the NCSs consisting of a collection
of continuous-time LTI plants whose feedback
control loops are closed via a shared network
link, as illustrated in Figure 1. The i-th plant
(i = 1, · · · , N) is given by{

ẋi(t) = Aixi(t) + Biui(t) + Eidi(t)
zi(t) = Cixi(t)

(1)

where the time t ∈ R
+ (nonnegative real num-

bers), the state xi(t) ∈ R
ni , the control input

ui(t) ∈ R
pi , the disturbance input di(t) ∈ R

ri ,
and the controlled output zi(t) ∈ R

mi . We as-
sume that each open-loop plant is unstable, but
can be exponentially stabilized by a linear static
state feedback gain Ki with the L2 induced gain
from di(t) to zi(t) being bounded by γs,i. Each
system communicates with its remote controller

that occasionally transmits control signals over
the shared network, according to the static state
feedback law ui(t) = Kixi(t). Here we omit the
time delays and errors in the communication link.

With finite bit-rate constraints, quantization ef-
fects need to be considered in the NCSs. The
quantization problem has been studied exten-
sively in the literature, see for example (Brockett
and Liberzon, 2000; Nair and Evans, 2000; Elia
and Mitter, 2001; Hespanha et al., 2002). It has
been known that an exponential data represen-
tation scheme is most efficient for certain cases
(Brockett and Liberzon, 2000; Elia and Mitter,
2001). In this paper, we will consider the float-
ing point representation, which is an exponential
data representation scheme and has been widely
used in practice. It is known that floating point
quantization can be viewed as a nonlinear opera-
tion described by a time variant sector gain, i.e.,
Q(x) = κx, κ ∈ [1− ε, 1], with ε depending on the
mantissa length. Now the closed-loop plant can
be modeled as the following parametric uncertain
system{

ẋi(t) = (Ai + κBiKi)xi(t) + Eidi(t)
zi(t) = Cixi(t)

(2)

where κ ∈ [1 − ε, 1] is a time varying parameter
reflecting quantization errors. On the other hand,
it was shown in (Fu and Xie, 2004) that many
quantized feedback design problems might be con-
verted to the robust control problems with sector
bound uncertainties.

Due to a limited communication capacity, not all
the control loops in the NCSs can be addressed
at the same time. It is assumed that the network
link can only feedback one control loop at a time,
while the other control loops are assumed to be
open-loop. In order to preserve the stability and
robust performance, a plant should be attended
with an adequate frequency and length in time.
Otherwise, some plants may exhibit undesirable
behaviors without properly allocating the commu-
nication resources. Therefore, it is necessary to
carefully schedule the NCSs in order to guaran-
tee the stability and robust performance of each
plant. In particular, the exponential stability and
the H∞ disturbance attenuation performance are
considered here.

The rest of the paper is organized as follows. First,
a condition for preserving the exponential stabil-
ity and a reasonable H∞ disturbance attenuation
performance for a single control loop is derived in
Section 2, which gives bounds on how frequent and
how long a control loop should be taken care of by
the controller. Then, a sufficient condition for the
existence of a feasible scheduling policy is derived
in Section 3, and a network scheduling policy is
proposed to guarantee that each NCS sharing a
common network link preserves the exponential



stability and achieves a weighted H∞ disturbance
attenuation level. The techniques used in this pa-
per are based on the average dwell time approach
(Hespanha and Morse, 1999) incorporated with
piecewise quadratic Lyapunov-like functions.

2. SINGLE CONTROL LOOP ANALYSIS
We suppose that the control system is open-loop
for some time because the shared network link is
occupied by another network user. The following
definition on the attention rate of the controller
plays a crucial role in the sequel.
Definition 1. For any t > 0, we denote by αi(t)
the total time interval that the i-th plant is closed-
loop (attended by the controller) during [0, t), and
call the ratio αi(t)

t the attention rate of the i-th
plant.

In this section, we will focus on a single plant and
derive the condition on the attention rate under
which the stability and robust performance of this
plant are preserved.

When the i-th plant is fully attended, it is
assumed that the i-th closed-loop dynamics is
quadratically stable and the L2 induced gain from
di(t) to zi(t) is bounded by γs,i. Therefore, there
exists a positive definite matrix Ps,i > 0 such that

(Ai + κBiK)T Ps,i + Ps,i(Ai + κBiK)

+γ−2
s,i Ps,iEiE

T
i Ps,i + CT

i Ci < 0 (3)

for all κ ∈ [1 − ε, 1]. Here the subscript “s”
stands for stable closed-loop dynamics. Then,
there always exists a positive scalar λs,i > 0, such
that

(Ai + κBiK)T Ps,i + Ps,i(Ai + κBiK)

+γ−2
s,i Ps,iEiE

T
i Ps,i + CT

i Ci + λs,iPs,i < 0 (4)

holds for all κ ∈ [1−ε, 1]. Note that this condition
is equivalent to the following two inequalities


[Ai + (1 − ε)BiKi]T Ps,i + Ps,i[Ai + (1 − ε)BiKi]
+γ−2

s,i Ps,iEiE
T
i Ps,i + CT

i Ci + λs,iPs,i < 0
(Ai + BiKi)T Ps,i + Ps,i(Ai + BiKi)

+γ−2
s,i Ps,iEiE

T
i Ps,i + CT

i Ci + λs,iPs,i < 0

which can be converted into LMIs with respect to
Ps,i by Schur complement (Boyd et al., 1994) and
thus can be solved efficiently using the existing
software.

On the other hand, for unstable open-loop system
ẋ(t) = Aix(t)+Eid(t), it can be shown that there
exists a positive scalar λu,i, such that Ai − λu,i

2 I
is stable. Hence, there exists a positive definite
matrix Pu,i such that

AT
i Pu,i + Pu,iAi + γ−2

u,iPs,iEiE
T
i Ps,i + CT

i Ci

−λu,iPs,i < 0(5)

holds for some scalar γu,i > 0. Similarly, the
matrix Pu,i can be determined by solving some

LMIs. The subscript “u” is used for unstable open-
loop system.

In the sequel, the subscript i is dropped for
notational simplicity. Using the solutions Ps and
Pu, we define the following piecewise Lyapunov-
like function

V (x(t)) = Vσ(t)(x(t)) = x(t)T Pσ(t)x(t) (6)

for the system. Here Pσ(t) is a two-valued piece-
wise constant matrix function as

Pσ(t) =
{

Ps, if closed − loop,
Pu, if open − loop (7)

and Vσ(t)(x) is defined correspondingly. Then the
following properties of V (x) are obtained:

1) Both Vs(x) = xT Psx and Vu(x) = xT Pux
are continuous and their derivatives along the
solutions of the corresponding system satisfy{

V̇s ≤ −λsVs − zT z + γ2
sdT d

V̇u ≤ λuVu − zT z + γ2
udT d

(8)

2) There exist constant scalars a2 ≥ a1 > 0 such
that a1‖x‖2 ≤ Vs(x) ≤ a2‖x‖2 and a1‖x‖2 ≤
Vu(x) ≤ a2‖x‖2 hold for any x ∈ R

n;

3) There exists a constant scalar µ ≥ 1 such that
Vs(x) ≤ µVu(x) and Vu(x) ≤ µVs(x) hold for any
x ∈ R

n.

The first property is a straightforward conse-
quence of the inequalities (4) and (5), while
the second and third properties hold, for ex-
ample, with a1 = min{λm(Ps), λm(Pu)}, a2 =
max{λM (Ps), λM (Pu)}, and µ = a2

a1
, respec-

tively. Here, λm(·) ( λM (·) ) denotes the smallest
(largest) eigenvalue of a symmetric matrix. Note
that the eigenvalues of a positive symmetric ma-
trix are all positive real numbers. Therefore, a1,
a2, and µ are all positive real numbers.

Without loss of generality, we assume that the
controller works during [t2j , t2j+1), and the plant
is open-loop during [t2j+1, t2j+2), j = 0, 1, · · · ,
where t0 = 0. Then, using the differential inequal-
ity theory, we get for any t > 0 that

V (x(t)) ≤ e−λs(t−t2j)Vs(x(t2j )) −
∫ t

t2j

e−λs(t−τ)Γ(τ)dτ

if t2j ≤ t ≤ t2j+1, and

V (x(t)) ≤ eλu(t−t2j+1)Vu(x(t2j+1)) −
∫ t

t2j+1

eλu(t−τ)Γ(τ)dτ

for t2j+1 ≤ t ≤ t2j+2. Here Γ(τ) = zT (τ)z(τ) −
γ2
0dT (τ)d(τ) and γ0 = max{γs, γu} > 0.

Therefore, for any given time instant t, we get
from (8) by induction that

V (x(t)) +
∫ t

0

µ2N(t)−2N(τ)eδ(t,τ)zT (τ)z(τ)dτ

≤ µ2N(t)eλu(t−α(t))−λsα(t)V (x(0))

+γ2
0

∫ t

0

µ2N(t)−2N(τ)+1eδ(t,τ)dT (τ)d(τ)dτ



where δ(t, τ) = λu(t−τ −α(t)+α(τ))−λs(α(t)−
α(τ)), and N(t) denotes the total number of
switchings from closed-loop to open-loop within
the interval [0, t), i.e., the attention frequency.
Assume αi(0) = 0 for simplicity.

Multiply both sides of the above inequality by
µ−2N(t)e−λu(t−α(t))+λsα(t) to obtain

µ−2N(t)e−δ(t,0)V (x(t)) +

∫ t

0

µ−2N(τ)e−δ(τ,0)zT zdτ

≤ V (x(0)) + γ2
0µ

∫ t

0

µ−2N(τ)e−δ(τ,0)dT (τ)d(τ)dτ (9)

If there exists a positive scalar 0 < λ∗ < λs such
that

α(t)
t

≥ λu + λ∗

λu + λs
, ∀t > 0 (10)

which is a condition on the attention rate of the
controller. Furthermore, if there exists a positive
scalar c and a positive scalar λ satisfying λ < λ∗

such that

N(t) ≤ N0 +
t

τ∗
a

, N0 =
ln c

2 lnµ
, τ∗

a =
2 lnµ

λ∗ − λ
(11)

which is exactly an average dwell time scheme
(Hespanha and Morse, 1999). Then, the left hand
side of the inequality (9) is greater than or equal
to

c−1eλtV (x(t)) +
∫ t

0

c−1eλτzT (τ)z(τ)dτ (12)

On the other hand the right hand side of the
inequality (9) is less than or equal to

V (x(0)) + γ2
0µ

∫ t

0

eλsα(τ)dT (τ)d(τ)dτ (13)

since µ−2N(τ) ≤ 1, e−λu(τ−α(τ)) ≤ 1, and α(τ) ≤
τ . Therefore, we obtain

c−1eλtV (x(t)) +
∫ t

0

c−1eλτzT (τ)z(τ)dτ

≤ V (x(0)) + γ2
0µ

∫ t

0

eλsτdT (τ)d(τ)dτ

or equivalently,

c−1V (x(t)) + c−1

∫ t

0

e−λ(t−τ)zT (τ)z(τ)dτ

≤ e−λtV (x(0)) + γ2
0µ

∫ t

0

eλsτ−λtdT (τ)d(τ)dτ (14)

Considering the fact that V (x(t)) ≥ 0, (14) can
be written as

c−1

∫ t

0

e−λ(t−τ)zT (τ)z(τ)dτ ≤ e−λtV (x(0))

+γ2
0µ

∫ t

0

e−λ(t−τ)e(λs−λ)τdT (τ)d(τ)dτ

Integrating both sides of the above inequality from
t = 0 to t = ∞ yields

1
cλ

∫ ∞

0

zT (τ)z(τ)dτ

≤ 1
λ

V (x(0)) +
γ2
0µ

λ

∫ ∞

0

e(λs−λ)τdT (τ)d(τ)dτ

and thus∫ ∞

0

zT (τ)z(τ)dτ

≤ cV (x(0)) + cγ2
0µ

∫ ∞

0

e(λs−λ)τdT (τ)d(τ)dτ(15)

which means that a weighted H∞ disturbance
attenuation level

√
cµγ0 is achieved.

In addition, when d(t) = 0, we get from (14) that

V (x(t)) ≤ ce−λtV (x(0)).

Combining with the second property of the piece-
wise quadratic Lyapunov-like function V (x(t)), we
obtain

a1‖x(t)‖2 ≤ V (x(t)) ≤ ce−λtV (x(0)) ≤ ce−λta2‖x(0)‖2

which implies

‖x(t)‖ ≤
√

ca2

a1
e−

λ
2 t‖x(0)‖,

an thus the exponential stability of the control
loop.

Theorem 1. The system preserves exponential sta-
bility and achieves a weighted H∞ disturbance
attenuation level

√
cµγ0 in the sense of (15), if the

attention rate and the attention frequency N(t)
satisfy the following two conditions for all t > 0

(1) α(t)
t ≥ λu+λ∗

λu+λs
holds for some positive scalar

λ∗, for λ∗ < λs;
(2) N(t) ≤ N0 + t

τ∗
a
, where N0 = ln c

2 lnµ and

τ∗
a = ln µ

λ∗−λ . Here c is an arbitrary positive
scalar, and λ is a positive scalar less than λ∗.

Similar results were previously derived in the
switched systems and fault tolerance literature
(Zhai, 2002). However, the introduction of the
constant N0 in the second condition of Theorem 1
makes it easier to be satisfied, since N0 = ln c

2 ln µ

could be very large (but finite) by picking a large
constant c. This advantage makes the design of
a scheduling policy that satisfies the attention
frequency condition possible as described in the
next section. For example, by picking a larger
c, we obtain a larger class of switching signals
that satisfying the above dwell time condition.
However, this may be at the cost of sacrificing the
performance. The flexibility of choosing constant c
also reflects the tradeoff between the performance
of the entire system and restrictiveness of the
switching signals.

Note that the attention rate and frequency condi-
tions in the above theorem depend not only on the
system dependent constants (λs, λu and µ), but



also on some flexible constants, say c, λ∗ and λ. In
the next section, we will show that the existence
of a feasible scheduling policy only depends on
the system constants, λs and λu, which can be
determined by solving some LMIs.

3. STABILITY AND PERFORMANCE
PRESERVING SCHEDULING

The question studied here is under what condi-
tions there exists a scheduling policy such that
all the control loops preserve exponential stability
and attain certain weighted H∞ disturbance at-
tenuation level. If such policy exists, then design
the stability and performance preserving schedul-
ing policy for the given NCSs. The main result of
the paper is stated in the following theorem.

Theorem 2. For a collection of networked control
systems with a common shared network, if

N∑
i=1

λu,i

λu,i + λs,i
< 1, (16)

then there exists a scheduling policy to guarantee
the exponential stability and a weighted H∞ dis-
turbance attenuation level in the sense of (15) for
all the control loops.

Proof : Because
∑N

i=1
λu,i

λu,i+λs,i
< 1, there exists a

positive scalar ε̄, for all 0 < ε ≤ ε̄, the inequality
N∑

i=1

λu,i

λu,i + λs,i
+ ε ≤ 1 (17)

holds. Then
N∑

i=1

λu,i

λu,i + λs,i
+ (

N∑
i=1

λu,i

λu,i + λs,i
)ε < 1

since
∑N

i=1
λu,i

λu,i+λs,i
< 1. Therefore,

N∑
i=1

λu,i + ελu,i

λu,i + λs,i
< 1,

holds for all 0 < ε ≤ ε̄. Let λ∗
i = ελu,i, and set

λi = ε
2λu,i. It is easy to verify that λi < λ∗

i < λs,i

for i = 1, · · · , N . Denote βi = λu,i+λ∗
i

λu,i+λs,i
for i =

1, · · · , N .

Next, we propose a periodic scheduling policy for
the NCSs.

First, choose T = maxi{Ti}, where Ti is a positive
time unit sufficiently large to satisfy the average
dwell time condition for the i-th plant, for exam-
ple set Ti to be the average dwell time τ∗

a of the
i-th control system, where τ∗

a = ln µi

λ∗
i
−λi

.

Attend each plant in order, and activate the i-
th plant’s controller for a time interval of length

βi∑
N

j=1
βj

T . Let us denote βi∑
N

j=1
βj

as γi. Note that

0 < γi < 1,
∑N

i=1 γi = 1, and γi > βi for all
1 ≤ i ≤ N , since

∑N
j=1 βj < 1.

In the following, we show that under the above
scheduling policy all the plants are exponential
stable and achieve weighted L2 gains.

First, consider the case of i = 1. For any t > 0,
it can be written as t = n × T + ∆, where n
is a nonnegative integer and 0 ≤ ∆ < T is a
real number. There are two different cases to be
considered.

• If ∆ < γ1T , then α1(t) = nγ1T + ∆ and
N(t) = n. Therefore,

α1(t)
t

=
nγ1T + ∆
nT + ∆

≥ nγ1T + γ1∆
nT + ∆

=
γ1(nT + ∆)

nT + ∆
= γ1 > β1 =

λu,1 + λ∗
1

λu,1 + λs,1

And t
τ∗

a
≥ t

T ≥ n, so N(t) ≤ N0 + t
τ∗

a
.

• If ∆ ≥ γ1T , then α1(t) = nγ1T + γ1T and
N(t) = n + 1. Therefore,

α1(t)
t

=
nγ1T + γ1T

nT + ∆
≥ nγ1T + γ1T

nT + T

=
(n + 1)γ1T
(n + 1)T = γ1 > β1 =

λu,1 + λ∗
1

λu,1 + λs,1

If we set N0 ≥ 1, or equivalently c ≥ µ2, then
N(t) = n + 1 ≤ N0 + t

τ∗
a
.

Therefore, the two conditions in Theorem 1 are
both satisfied for the first control loop. By The-
orem 1, the first control loop preserves the expo-
nential stability and a weighted H∞ disturbance
attenuation level in the sense of (15) under this
scheduling policy.

For i > 1, we may simply shift the initial time zero
to t0 =

∑i
j=1 γjT and adjust the initial state x0

according to its open-loop dynamics correspond-
ingly. Then it reduces to the case i = 1, and the
two conditions in Theorem 1 are both satisfied for
this shifted i-th subsystem. It is straightforward
to show that the exponential stability and the H∞
disturbance attenuation performance is equivalent
between the time-shifted (by a finite constant)
control system and the original system. Therefore,
all the control loops in the NCSs preserve the
exponential stability and achieve weighted H∞
disturbance attenuation levels under this schedul-
ing policy. 2

It is worth pointing out that all the above results
and scheduling policy can be easily adapted to the
case that more than one plant can be attended
at the same time. For example, if M , 1 ≤ M <
N , control loops can share the network link at
the same time, then the NCSs may preserve the
exponential stability and exhibit reasonable H∞
performance if



N∑
i=1

λu,i

λu,i + λs,i
< M.

The proof is similar, and is omitted here.

Similar results for stability were obtained in
(Hristu, 2001) by using a common quadratic
Lyapunov-like function. However, the method de-
veloped here is based on piecewise quadratic
Lyapunov-like functions and is less conservative
than (Hristu, 2001). This is verified by the fol-
lowing example, which originally appeared in
(Hristu, 2001).

Example 1. Assume all the plants are of the same
dynamics:

ẋ = Ax + Bu, u = Kx,

with

A =
[

0 1
1.5 −0.1

]
, B =

[
0
1

]
, K = [−35,−29].

Assume that only one plant can be attended at
a time through the network link, i.e., M = 1.
Using the presented method, we find λs = 2.4014,
λu = 2.3515. And

λu

λs + λu
= 0.4947.

Note that for N = 2, 2 × 0.4947 = 0.9894 <
1 = M . Based on Theorem 2, we may conclude
that two (N = 2) of such control loops can
share a common network link, which only takes
care of one control loop at a time. However, if
the common quadratic Lyapunov-like function in
(Hristu, 2001) is used, we find λs = 2.00, λu =
2.35. Because

λu

λs + λu
= 0.542,

and 2 × 0.542 = 1.084 > 1. It indicates that two
of such control loops may fail to share a common
network link, which is a more conservative conclu-
sion than the one given by this paper.

The constructive proof of Theorem 2 also gives
a systematic way to design such stability and
performance preserving scheduling policy. The
scheduling policy is given as a static time-division
based scheduling policy, which is quite simple and
can be easily implemented in a token-type field
bus.

4. CONCLUDING REMARKS

In this paper, the H∞ disturbance attenuation
performance is investigated for a collection of
plants whose feedback control loops are closed
via a shared network link. Due to limited com-
munication capacity, it is necessary to carefully
allocate the communication resources in order to
preserve stability and desirable H∞ disturbance
attenuation levels for the whole NCSs. In this

paper, we first derived a schedulibility condition,
which only depends on the eigenvalues of the
Lyapunov matrices for each control loop. Then,
a time-division based scheduling policy was pro-
posed to guarantee the stability and weighted H∞
performance of the whole NCSs, which can be eas-
ily implemented as a token-type protocol network
layer. The techniques used in this paper are based
on the average dwell time approach incorporated
with piecewise quadratic Lyapunov-like functions.
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