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Abstract: Communication networks may be abstracted through Stochastic Fluid
Models (SFM) with the node dynamics described by switched flow equations
as various events take place, thus giving rise to hybrid automaton models with
stochastic transitions. The inclusion of feedback mechanisms complicates these
dynamics. In a tandem setting, a typical feedback mechanism is the control of a
node processing rate as a threshold-based function of the downstream node’s buffer
level. The problem considered here is to control the threshold parameters so as to
optimize performance metrics involving average workload and system throughput
and to show how Infinitesimal Perturbation Analysis (IPA) can be used to analyze
congestion propagation through a network and develop gradient estimators of such
metrics.Copyright c©2005 IFAC
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1. INTRODUCTION

Fluid models have been long adopted as a model-
ing technique for communication networks. Intro-
duced in (Anick et al., 1982) and later proposed
in (Kobayashi and Ren, 1992) for the analysis
of multiplexed data streams and in (Cruz, 1991)
for network performance, fluid models have been
shown to be especially useful for simulating var-
ious kinds of high speed networks (Kesidis et
al., 1996),(Kumaran and Mitra, 1998),(Liu et
al., 1999). Stochastic Flow Models (SFM) have
the extra feature that the flow rates are treated
as stochastic processes. Under this modelling tech-
nique, a new approach for sensitivity analysis
has been recently proposed, based on Infinitesi-
mal Perturbation Analysis (IPA) (Liu and Gong,
1999),(Cassandras et al., 2002). The essence of
this approach is the on-line estimation of gradi-
ents (sensitivities) of certain performance mea-
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sures with respect to various controllable para-
meters. These estimates may be incorporated in
standard gradient-based algorithms to optimize
the parameter settings.

An important feature in today’s communication
networks is the presence of feedback mechanisms.
For example, in Random Early Detection (see
(Floyd and Jacobson, 1993)), an IP router may
send congestion signals to TCP flows by drop-
ping packets and a TCP flow should adjust its
window size (and therefore its sending rate) ac-
cording to feedback signals (for example, acknowl-
edgement packets sent back from a destination
node). However, queueing networks have been
studied largely based on the assumption that the
system state, typically queue length information,
has no effect on arrival and service processes,
i.e., in the absence of feedback. Unfortunately,
the presence of feedback significantly complicates
analysis, and makes it extremely difficult to derive
closed-form expressions of performance metrics
such as average queue length or mean waiting time
(unless stringent assumptions are made, e.g., in
(Takacs, 1963) and (Pekoz and Joglekar, 2002)),
let alone developing analytical schemes for perfor-
mance optimization. It is equally difficult to ex-



tend the theory of PA for discrete-event queueing
systems in the presence of feedback.

Motivated by the importance of incorporating
feedback to stochastic DES as well as their SFM
counterparts, and the effectiveness of IPA meth-
ods applied to SFMs to date, we have been ap-
plying IPA to SFMs with various feedback mech-
anisms in (Yu and Cassandras, 2004c) and (Yu
and Cassandras, 2004a). However, the study in
(Yu and Cassandras, 2004c) and (Yu and Cas-
sandras, 2004a) is limited to systems with sin-
gle queues. (Sun et al., 2003) studies IPA in
tandem networks, but no feedback mechanism is
employed. This limitation has restricted the use
of IPA in practical applications such as com-
puter networks, where feedback may span mul-
tiple nodes.

To overcome this restriction, in this paper we
extend our earlier work to study the behavior
of IPA in a feedback-controlled two-node tan-
dem network. We observe that the system may
switch among different modes when certain dis-
crete events occur, and when staying in each
mode the system is driven by a set of differential
equations. This combination of time-driven and
event-driven dynamics is what characterizes hy-
brid systems (see, e.g., (Alur et al., 1996)). Hy-
brid systems have been found very useful in mod-
elling complex communication networks, e.g., in
(Hespanha et al., 2001), where time-driven behav-
iors (e.g., temperature, speed) and event-driven
mechanisms (e.g., human operations) closely in-
teract with each other.

The hybrid nature of the system adds significant
difficulty to our analysis. In order to carry out
control and optimization tasks, we first construct
a stochastic hybrid automaton based on the SFM
dynamics and then carry out IPA. The main con-
tributions of the paper are the construction of
a stochastic hybrid automaton for control and
optimization purposes, and the derivation of IPA
gradient estimators for performance metrics such
as workload and throughput. Even though the
presence of feedback in the SFM considerably
complicates the task of carrying out IPA, we are
able to obtain such IPA estimators and they de-
pend only on information observable from an ac-
tual sample path, making them readily applicable
in online control and optimization. It is also worth
reiterating that in the SFM we consider in this pa-
per, as well as in (Cassandras et al., 2002) and (Yu
and Cassandras, 2004c), all flow rates are treated
as random processes without distributional as-
sumptions, allows us to capture the randomness
in time-varying behavior of the network traffic.

The paper is organized as follows. First in Section
2, we present the feedback-based buffer control
problem in the SFM setting. In Section 3 we
construct the stochastic hybrid automaton. In
Section 4, we carry out IPA by first deriving
queue content derivatives in our model and then
obtaining the IPA estimators for the gradients of
the average workload and throughput with respect
to feedback control parameters. Finally in Section
5 we outline a number of open problems and
future research directions.

2. STOCHASTIC FLOW MODEL OF A
TWO-NODE SYSTEM WITH FEEDBACK

The SFM of a two-node network is shown in Fig.
1. Each node has infinite capacity and the buffer
content at time t is xn(t). When buffers have finite
capacity, it will become clear that our analysis
proceeds along the same lines with additional
states defined in the hybrid automaton model. For
node n = 1, 2, we denote the incoming flow rate by
αn(t), the service rate by βn(t), and the outgoing
flow rate by δn(t) where δ1(t) = α2(t).

In a network composed of multiple nodes, con-
gestion often arises and the purpose of a feedback
control policy is to alleviate it by appropriately re-
ducing the incoming traffic at the congested node.
The simplest way is to use queue content informa-
tion at nodes. In the system of Fig. 1, a controller
is used to throttle the outflow rate of node 1 as the
buffer level in node 2 increases. However, continu-
ously monitoring buffer levels is impractical, as it
requires that node 2 continuously supplies buffer
level information to node 1, which involves a
large amount of communication overhead coupled
with the issue of delayed information arriving at
node 1. Thus, a more efficient quantized feedback
control policy is chosen as follows: Node 1 can
process the incoming flow in two modes: in the
high mode the service rate is β1 max(t); in the low
mode it is β1 min(t). When x2(t) < φ for some
given parameter φ > 0, node 1 is in the high mode
and β1(t) = β1 max(t); when the buffer content of
node 2 becomes too high, i.e., x2(t) > φ, node 1
switches to the low mode and β1(t) = β1 min(t).
We assume that β1 min(t) and β1 max(t) are both
time-varying functions, and β1 min(t) ≤ β1 max(t)
w.p.1. In this system, the defining processes are
α1(t), β1 min(t), β1 max(t), β2(t), which are all in-
dependent of the system state, system parame-
ters or other defining processes. We make the
following Assumption 1: All defining processes
α1(t), β1 min(t), β1 max(t), β2(t) are bounded w.p.1
and piecewise constant; moreover, at any time t,
any two of them are not equal to each other w.p.1.

Clearly, the service rate (and consequently the
outgoing flow rate) of node 1 is dependent on the
queue content of node 2 as follows:

β1(t) =





β1 max(t) when x2(t) < φ
β2(t) when x2(t) = φ and

β1 min(t) ≤ β2(t) ≤ β1 max(t)
β1 min(t) otherwise

(1)
where the second case is a consequence of feedback
and it captures the chattering behavior of the
actual system when x2(t) = φ and β1 min(t) ≤
β2(t) ≤ β1 max(t). Note that it is impossible for
the state (x1(t), x2(t)) = (0, φ) to exist for any
finite period of time. The reason is that x1(t) = 0
implies α2(t) = δ1(t) = α1(t) and x2(t) = φ

x1(t) x2(t)
α1(t)

x2  > φ ?

β1(t) β2(t)

Fig. 1. SFM of 2-node system with feedback
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Fig. 2. State transition diagram of the two nodes

implies α2(t) = β2(t); however, α1(t) = β2(t) is
excluded by Assumption 1.

We are now able to provide the system dynamics
for n = 1, 2:

dxn(t)
dt+

=

{
0 if xn(t) = 0 and

αn(t)− βn(t) ≤ 0
αn (t)− βn(t) otherwise

(2)
The outflow rate is given by

δn(t) =

{
αn(t) if xn(t) = 0 and

αn(t)− βn(t) ≤ 0
βn(t) otherwise

(3)

and note that δn (t) ≤ βn (t). Finally, observe
that, because of the presence of feedback, the
dynamics of x1(t) and x2(t) are strongly coupled.
This is the critical difference between our work
and the work in (Sun et al., 2003).

3. THE STOCHASTIC HYBRID
AUTOMATON MODEL

3.1 Sample Path Decomposition

The SFM dynamics presented in the last section
provide a detailed description of the system. In
this section we establish a stochastic hybrid au-
tomaton model based on an abstraction process.
In particular, we decompose a typical sample path
into different intervals. The state trajectory of
node 1 can be decomposed into the intervals dur-
ing which x1(t) = 0, and the intervals during
which x1(t) > 0. Accordingly, we identify two
aggregate states for node 1, denoted by 0 and
0+ respectively. Each aggregate state, denoted
by s1 (t) ∈ {0, 0+}, corresponds to one class of
intervals and we impose the ordering relationship
0 < 0+. For node 2, there are two critical thresh-
olds, 0 and φ, and the sample path of node 2
can be similarly decomposed into four kinds of
intervals: the intervals during which x2(t) = 0
with an aggregate state s2 (t) = 0, the intervals
during which 0 < x2(t) < φ with s2 (t) = φ−, the
intervals during which x2(t) = φ with s2 (t) = φ,
and the intervals during which x2(t) > φ with
s2 (t) = φ+. The aggregate state ordering we
impose is 0 < φ− < φ < φ+.

Let us use s (t) = (s1 (t) , s2 (t)) to denote the
aggregate state of the system. An aggregate state
transition occurs when the value of s (t) changes,
corresponding to an aggregate state change in one
or more nodes. Fig. 2 shows the state transitions
for each node.

0,φ+

0+,φ−0+,0

0,0 0,φ−

0+,φ+0+,φ

Fig. 3. Hybrid automaton with all possible tran-
sitions

As mentioned earlier, (0, φ) is impossible. Hence,
we get s (t) ∈ {(0, 0), (0, φ−), (0, φ+), (0+, 0),
(0+, φ−), (0+, φ), (0+, φ+)} . Fig. 3 shows the hy-
brid automaton with all possible state transitions
for the system. If s1(t) remains constant, the state
transition is shown as a horizontal edge. If s2 (t)
remains constant, the state transition is shown as
a vertical edge. If both s1 (t) and s2 (t) change,
the transition is shown as a diagonal edge.

We are interested in the underlying events which
cause state transitions to occur. These events can
be classified into two categories: an exogenous
event is defined as a switch in any of the defining
processes; an endogenous event occurs when the
buffer level of either node reaches a critical value,
i.e., 0 for node 1, and 0 or φ for node 2. We
also make the following Assumption 2 : W.p. 1,
no two (endogenous or exogenous) events occur
at the same time. Note that not all transitions
are feasible and the task of the next section is to
discuss their feasibility.

3.2 Identifying Feasible State Transitions

In this section we check for infeasible state tran-
sitions so as to trim the edges of the transition
diagram in Fig. 3. Let us assume a state transition
occurs at time π. We use (s1, s2) to denote the
aggregate state of the system before π and (σ1, σ2)
to denote the aggregate state after π. Any transi-
tion in Fig. 3 falls into one of the following three
categories: (i) s1 = σ1 and s2 6= σ2, (ii) s1 6= σ1
and s2 = σ2, and (iii) s1 6= σ1 and s2 6= σ2. In Fig.
3, the transitions in the above three categories are
shown as vertical, horizontal and diagonal edges
respectively. Regarding their feasibility, first we
point out that every transition in the first two cat-
egories is possible since it corresponds to a state
transition in an isolated node. Second, according
to Assumption 2, no two endogenous events occur
at the same time. Therefore, the diagonal state
transitions (0+, φ−) → (0, 0), (0+, φ+) → (0, φ−),
and (0+, φ−) → (0, φ+) are infeasible. Finally, in
the next lemma, we prove that an additional class
of diagonal transitions is infeasible (all proofs are
omitted but may be found in (Yu and Cassan-
dras, 2004b)).

Lemma 1. Assume an endogenous transition
(s1, s2) → (σ1, σ2) occurs at time π such that
s1 6= σ1 and s2 6= σ2. The transition is infeasible
if (i) s1 > σ1 and s2 < σ2, or (ii) s1 < σ1 and
s2 > σ2.
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Fig. 4. Hybrid automaton with feasible transitions

The remaining transitions are all feasible and the
resulting hybrid automaton is shown in Fig. 4.
To summarize, we have established a stochastic
hybrid automaton model, where the nodes rep-
resent aggregate states of the SFM, the edges
represent transitions or events, and the continuous
dynamics in each aggregate state are given by
(2) and (1). We will soon realize the importance
of this stochastic hybrid automaton as we carry
out Infinitesimal Perturbation Analysis (IPA) for
control and optimization tasks in the next section.

4. IPA FOR QUEUE CONTENT
DERIVATIVES

In this section we carry out IPA to study the
effect of the controllable parameter φ on the sys-
tem state (x1(t), x2(t)) from which we can deduce
performance sensitivity estimates as discussed in
Section 5. For node n = 1, 2, we will use the
notation x′n (t) ≡ ∂xn(t; φ)/∂φ. Note that x′n (t)
is a piecewise constant function. According to the
system dynamics in (2), between two consecutive
state transitions, the system dynamics for node
n are completely decided by αn (t) and βn (t).
Recall that over such an interval αn (t) is fixed to a
single defining process α1 (t) , β1 max (t) , β1 min (t)
or β2 (t), so it is locally independent of φ. The
same argument applies to βn (t). Therefore, x′n (t)
remains constant between two consecutive tran-
sitions. However, when a state transition occurs,
x′n (t) may jump from one value to another. In
other words, x′n (t) changes only when an event
triggers a state transition in the hybrid automaton
in Fig. 4. This section is devoted to the study of
the evolution of queue content derivatives when
these transitions occur. Let us assume a state
transition takes place at time π. Then, x′1 (π+)
and x′2 (π+) may depend on the value x′2 (π−) and
x′2 (π−). If the value of x′2 (π+) depends on the
value of x′1 (π−), we call this phenomenon down-
stream propagation of a queue content perturba-
tion; if x′1 (π+) depends on the value of x′2 (π−), we
refer to it as upstream propagation. Downstream
propagation was observed in (Sun et al., 2003)
for tandem networks with no feedback; upstream
propagation, however, was not present because of
the absence of feedback.

In the remaining of this section, we are going to
study the dynamics of x′n (t) when an arbitrary
state transition (s1, s2) → (σ1, σ2) occurs.

4.1 State Transitions in Node 1 Only (Vertical
Transitions)

We begin with IPA for vertical state transitions,
i.e., transitions of the form (s1, s2) → (σ1, s2).
It follows that β1 (t) is equal to a fixed defining
process and no upstream propagation may take
place in this case, consistent with the results in
(Sun et al., 2003).

Lemma 2. If a transition (s1, s2) → (σ1, s2) oc-
curs, we get x′1 (π+) = 0 and

x′2
(
π+

)
=

{
x′2

(
π−

)
+ x′1

(
π−

)
if σ1 = 0
and s2 > 0

x′2 (π−) otherwise

4.2 State Transitions in Node 2 Only (Horizontal
Transitions)

Next we consider transitions of the form (s1, s2) →
(s1, σ2). Since β1 (t) depends on x2 (t), upstream
propagation is expected when horizontal transi-
tions take place and certain conditions are met. In
what follows, we classify all horizontal transitions
into three classes and discuss them case by case.

Case 1 : If s1 = 0, no upstream propagation may
take place. This applies to transitions (0, 0) →
(0, φ−), (0, φ−) → (0, 0), (0, φ−) → (0, φ+), and
(0, φ+) → (0, φ−). The complete perturbation
dynamics are given by the following result.

Lemma 3. If a transition (0, s2) → (0, σ2) occurs,
we get x′1(π

+) = 0 and

x′2
(
π+

)
=

{
0
x′2

(
π−

) if x2 (π) = 0
otherwise

Case 2 : If s2 < φ and σ2 < φ, β1 (t) is unaffected
by φ and no feedback occurs which prevents any
perturbation propagation. This applies to transi-
tions (0, 0) → (0, φ−), (0, φ−) → (0, 0), (0+, 0) →
(0+, φ−) and (0+, φ−) → (0+, 0).

Lemma 4. If a transition (s1, s2) → (s1, σ2) oc-
curs such that s2 = 0 or σ2 = 0, we get x1 (π+) =
x1 (π−) and x2 (π+) = 0

Case 3 : If x1 (π) > 0 (thus its outflow rate is
β1 (t)) and x2 (π) = φ, β1 (t) switches from one
defining process to another. In this case, upstream
propagation is expected to take place. Note
that for the two-node system, d

dt [x1 (t) + x2 (t)] =
[α1 (t)− β1 (t)] + [β1 (t)− β2 (t)] = α1(t) − β2 (t)
as long as x2 (t) > 0. It follows that x′1 (t) + x′2 (t)
remains constant. Specifically, during the state
transition we have the following useful relation-
ship

x′1
(
π+

)
+ x′2

(
π+

)
= x′1

(
π−

)
+ x′2

(
π−

)
(4)

The perturbation dynamics in Case 3 are de-
scribed in the following two lemmas.

Lemma 5. If a transition (0+, s2) → (0+, σ2)
occurs such that s2 = φ or σ2 = φ, we get
x′1 (π+) = x′1 (π−) + x′2 (π−)− 1 and x′2 (π+) = 1.



This result applies to transitions (0+, φ−) →
(0+, φ), (0+, φ) → (0+, φ−), (0+, φ) → (0+, φ+)
and (0+, φ+) → (0+, φ). In this case, we can
see that upstream propagation exists. Moreover,
x′2 (π+) = 1 implies a perturbation of magnitude
1 (but with opposite sign) is generated at both
nodes.

Lemma 6. If a transition (0+, s2) → (0+, σ2)
occurs such that (i) s2 = φ− and σ2 = φ+ or
(ii) s2 = φ+ and σ2 = φ−, we get

x′1
(
π+

)
= x′1

(
π−

)
+

β1 (π−)− β1 (π+)
β1 (π−)− β2

x′2
(
π−

)

+
β1 (π+)− β1 (π−)

β1 (π−)− β2

x′2(π
+) =

β1 (π+)− β2

β1 (π−)− β2
x′2

(
π−

)

+
β1 (π−)− β1 (π+)

β1 (π−)− β2

where

β1

(
π−

)
=

{
β1 max

(
π−

)
β1 min

(
π−

) if x2

(
π−

)
< φ

if x2

(
π−

)
> φ

β1

(
π+

)
=

{
β1 min

(
π−

)
β1 max

(
π−

) if x2

(
π−

)
< φ

if x2

(
π−

)
> φ

This result applies to transitions (0+, φ−) →
(0+, φ+) and (0+, φ+) → (0+, φ−). Similar to
the previous case, upstream propagation exists

and a perturbation of magnitude
β1(π+)−β1(π−)

β1(π−)−β2

is generated at both nodes.

4.3 Simultaneous State Transitions in Both Nodes
(Diagonal Transitions)

Finally, let us focus on the four remaining diagonal
transitions.

1. Transition (0, 0) → (0+, φ−). This is an exoge-
nous event, i.e., ∂π/∂φ = 0. Therefore x′1(π

−) =
x′1(π

+) = x′2(π
−) = x′2(π

+) = 0. Thus, perturba-
tions in both nodes remain constant and there is
no upstream or downstream propagation.

2. Transition (0, φ−) → (0+, φ). This is an endoge-
nous event. Since σ2 = φ, we have x′2 (π+) = 1.
Moreover, since s2 = φ− and σ2 = φ, x2 (π) > 0.
Therefore (4) holds. It follows that

x′1(π
+) = x′1(π

−) + x′2(π
−)− x′2

(
π+

)

= x′2(π
−)− 1

In this case, we observe upstream propagation and
perturbation generation in both nodes.

3. Transition (0+, φ) → (0, φ−). Since x1 (π+) =
0, we get x′1(π

+) = 0. Recalling (4), we also get

x′2(π
+) = x′1(π

−) + x′2(π
−)− x′1(π

+)
= x′1

(
π−

)
+ 1

Thus, both downstream propagation and pertur-
bation generation at node 2 take place.

4. Transition (0, φ−) → (0+, φ+). For t < π at
node 2, we have

x2 (π) = φ = x2 (t) +
∫ π

t

[α1 (τ)− β2 (τ)] dτ

It follows that

1 = x′2(π
−) + [α1 − β2]

∂π

∂φ

which gives

∂π

∂φ
=

1− x′2(π
−)

α1 − β2

Moreover, for t0 < π < t1,

x2 (t1) = x2 (t0) +
∫ π

t0

[α1 (τ)− β2(τ)] dτ

+
∫ t1

π

[β1 min (τ)− β2(τ)] dτ

It follows that

x′2(π
+) = x′2(π

−) + [α1 − β1 min]
1− x′2(π

−)
α1 − β2

=
β1 min − β2

α1 − β2
x′2(π

−) +
α1 − β1 min

α1 − β2

Recalling (4), we also get

x′1(π
+) = x′1(π

−) + x′2(π
−)− x′2(π

+)

=
α1 − β1 min

α1 − β2
x′2(π

−) +
β1 min − α1

α1 − β2

Hence, only upstream propagation occurs and
there is perturbation generation at both nodes.

5. IPA FOR PERFORMANCE METRICS

So far we have carried out IPA for the queue
content derivatives. In this section we present
IPA estimators for certain performance metrics.
In particular, we define the Average Workload for
each node n = 1, 2 as

Qn
T =

1
T

∫ T

0

xn(t)dt,

and the System Throughput as

HT =
1
T

∫ T

0

δ2(t)dt.

Let us use πi, i = 0, ..., I to denote the ith
state transition event in the time interval [0, T ],
where I is the number of events. For notational
consistency we also define π0 = 0 and πI = T .

For the workload we get:

Qn
T =

1
T

I−1∑

i=0

∫ πi+1

πi

xn(t)dt

After some technical details (see (Yu and Cassan-
dras, 2004b)) it follows that

dQn
T

dφ
=

∫ T

0

x′n(t)dt

In other words, the IPA estimator for the average
workload is the integral of the queue content



derivative. Note that, the result in Section 3 shows
that x′n(t) is piecewise constant. Therefore we get

dQn
T

dφ
=

I−1∑

i=0

(πi+1 − πi)x′n(π+
i ). (5)

In summary, the IPA estimator for the average
workload requires only (i) the update of queue
content sample derivative, which has been dis-
cussed in detail in Section 3, and (ii) a timer to
record the length of the time interval between two
consecutive state transition events.

Similarly the IPA estimator for throughput can be
established. Again the derivation is omitted and
can be found in (Yu and Cassandras, 2004b).

dHT

dφ
=

I−1∑

i=0

[
δ2(π−i )− δ2(π+

i )
] ∂πi

∂φ
(6)

where

∂πi

∂φ
=





0 if event at πi is exogenous
∂xn(πi)

∂φ −x′n(π−
i )

αn(π−
i )−βn(π−

i ) otherwise

and n ∈ {1, 2} is the node whose buffer level
reaches the critical value at time πi when the event
is endogenous, and

∂xn (πi)
∂φ

=
{

1
0

if n = 2 and x2 (πi) = φ
otherwise

6. CONCLUSIONS AND FUTURE WORK

SFMs have recently been used to capture the
dynamics of complex stochastic discrete event
systems in order to implement control and opti-
mization methods based on IPA-based gradient
estimates. In this paper, we have extended our
earlier work in (Yu and Cassandras, 2004c) and
(Yu and Cassandras, 2004a) and further explored
the effect of feedback by considering a two-node
SFM with some inter-node feedback mechanism.
The presence of feedback greatly complicated the
analysis by strongly coupling the dynamics of
the two nodes. To overcome this difficulty, we
have established a hybrid stochastic automaton
model for the SFM and achieved IPA estimators
for workload and throughput related performance
metrics.

The work in this paper opens up a variety of
possible extensions. First, it is interesting to study
unbiasedness of IPA estimators (5) and (6) in
the presence of inter-node feedback. Next, the
strong coupling nature of this SFM forces the
dimensionality of the stochastic hybrid automaton
diagram to become very large as the number of
nodes increases. However, our results do date show
that an automated construction of the stochastic
hybrid automaton is still possible. Finally, the
assumption of infinite buffer capacity was made
mainly for analytical simplicity. We believe that
removing this assumption will add no conceptual
obstacles to the analysis.
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