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Abstract: In many industrial plants, some key variables cannot always be measured on-line 
and for the purpose of control, a virtual sensing system is often required.  This paper is 
concerned with a development of an alternative intelligent control strategy, which is an 
integration between adaptive-predictive based controller and intelligent virtual sensing 
system. This allows an immeasurable variable to be inferred and used for control. The 
neuro-fuzzy approach is used for modelling the process as it has learning capability from 
the numerical data obtained from the measurements and subsequently used as process 
model in the generalized predictive control scheme. The intelligent virtual sensor is 
composed of the Diagonal Recurrent Neural Network (DRNN) and the Extended Kalman 
Filter (EKF) as the estimator with inputs from DRNN. The integration between virtual 
sensor and the controller enables the development of an on-line control scheme involving 
the immeasurable variable. Experimental results show some potential benefits on applying 
the proposed technique using the real-world process plant. Copyright ©2005 IFAC 
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1.  INTRODUCTION 
 
Generalized Predictive Control (GPC) strategy which 
is considered as a universal method for model-based 
predictive control, is proven to be successful in 
handling various kinds of processes and has also been 
successfully applied in industry. It can be used either 
to control a simple plant with little prior knowledge 
or a complex plant, such as nonminimum-phase, 
open-loop unstable and a process having variable 
dead-time (Clarke, et al., 1987; Garcia, et al., 1989). 
A very critical step towards the success of the 
implementation of GPC is the availability of a 
reliable process model as an accurate plant model is 
necessary to drive a set of future plant outputs close 
to its corresponding reference signal sequence. As 
most processes in industry have nonlinear behaviour, 
then the modelling process is even more difficult.  
 

In recent years, different studies have revealed that 
the integration of the strength of the neural network 
and fuzzy systems methodologies, producing the so-
called neuro-fuzzy systems, could be used as the 
plant model development for control system design 
purposes. The main advantage of the neuro-fuzzy 
methodology is its learning capability from the 
numerical data obtained from the measurements and 
hence no mathematical model of the plant to be 
controlled is required, which is very advantageous for 
nonlinear plants where the mathematical models are 
difficult to derive (Jang, et al., 1997; Nazaruddin and 
Tjandrakusuma 2001; Nazaruddin and Maulana, 
2002). 
 
Moreover, in many industrial control plants, some 
key variables are not always available for control 
purposes. These variables, in general, cannot always 
be measured on-line, while they are difficult to 
measure, the sensing elements are expensive or lack 



of any reliable sensors. Another problem appears if 
the sensors performance decline, undetected 
disturbance comes out or even equipments degradate. 
These will cause the decreasing of the overall system 
performance. In such a case, a virtual sensing system 
is usually required. Virtual sensing system or virtual 
sensor will infer values of complex process variables 
by integrating information from easily made 
measurements using software.   
 
In this paper, an intelligent control scheme which is 
an integration between the Generalized Predictive 
Control (GPC) strategy with neuro-fuzzy based 
modelling and virtual sensing elements is proposed. 
The modelling process will be performed on-line at 
each control action and this will allow the control to 
be done adaptively. The virtual sensor consists of 
Diagonal Recurrent Neural Network (DRNN) for 
modelling the plant as part of the sensing algorithm 
and the Extended Kalman Filter (EKF) as the 
estimator with inputs from DRNN and plant output.  
 
The overall adaptive predictive controller algorithm 
with virtual sensing scheme has been implemented as 
a real-time control software developed using 
graphical-based programming language LabVIEW 
(LabVIEW, 1998) and then it was tested in a real-
time environment to control the water level in tanks 
of a process mini-plant which has strongly inherent 
mechanical nonlinearities. The experiments will show 
the real application of the integration of the strength 
of adaptive-predictive control scheme with virtual 
sensing in real-time environment. 
 
 

2.  PREDICTIVE-ADAPTIVE CONTROL 
STRATEGY 

Generalized predictive control is a control strategy 
that works based on a process model. This model is 
used to calculate a series of output predictions, and 
based on these predictions a series of control signals 
is determined by minimizing a cost function, so that 
the difference between predicted output and set-
point, and also the change of control signal are 
minimum. The cost function to be minimized can be 
written as 
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where )(ˆ jty + , w(t + j) and ∆u(t + j) are predicted 
output, set-point and the change of control signal at t 
+ j, respectively. N1, N2, Nu, and λ(j) are the 
minimum horizon ( 211 NN ≤≤ ), the maximum 
horizon ( 12 ≥N ), the control horizon ( 21 NNu ≤≤ ) 
and the control-weighting sequence ( 0≥λ ) 
respectively.  
In an adaptive control system, changes of the 
controller’s parameters occur as a response of a 
change in process dynamics or process parameters. In 
the proposed control algorithm this adaptive 
characteristics of the controller is realized by 
identifying the process model at each control action. 
Here, the certainty equivalence principle is assumed.  

3.  NEURO-FUZZY BASED MODELLING 

Since all calculation is based on the process model, it 
is very important to have a reliable and efficient 
process model.  Ideally, the process model should be 
derived from physical and chemical consideration. 
However, in many cases, this approach of modelling 
is not favorable as the lack of process knowledge 
contributes mostly to the difficulties. Therefore an 
empirical process modelling approach is used in 
many cases in which the plant dynamics can be 
inferred from the measured plant data directly. A 
parametric model of process identification is 
favorable to be used in industrial practice. Since most 
of the process models in industrial control show a 
strongly nonlinear behaviour, a popular Nonlinear 
Auto-Regressive with eXogeneous Variable (NARX) 
parametric model form is widely used to represent 
nonlinear systems. In this model, the output is a 
nonlinear function of previous outputs and inputs of 
the system, or  
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Here y(t) and u(t) are the sampled process output and 
input at time instant t respectively, e(t) is the equation 
error, n denotes the order of the process, d represents 
the process dead time as an integer number of 
samples and F(.) is an unknown nonlinear function to 
be identified. 
 
The modelling of nonlinear process is not a simple 
task. One of the methods that is successfully used is 
neuro-fuzzy (Jang, et al., 1997). An architecture 
called Adaptive Neuro-Fuzzy Inference System 
(ANFIS), which is an integration between neural 
network and fuzzy inference system, will be further 
explored. Here, the mechanism of fuzzy inference is 
described in a neural network architecture. The 
structure of first order TSK (Takagi-Sugeno-Kang) 
fuzzy system with two inputs and one output can be 
seen in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Structure of ANFIS TSK 

 
This architecture consists of five layers with different 
function in each layer. The adaptive network is 
manifestated only in the first and the fourth layer. In 
the first layer, the adaptive parameters are the 
parameters of the membership function of input fuzzy 
set, which are nonlinear function of the system 
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output, also known as premise parameters. The 
parameters in the fourth layer are the linear function 
of the system output assuming that the parameters of 
the membership function are fixed. These parameters 
are determined using hybrid learning, which involves 
backward pass for linear parameters and forward pass 
learning for nonlinear parameters. Due to the linear 
relationship with respect to the output parameters, 
then a least-square estimator can be applied for the 
learning process. Whereas the learning process for 
the nonlinear parameters employs the simple steepest 
descend method. 

 
 

4.  INTELLIGENT VIRTUAL SENSOR 
 

The objective of using virtual sensing system is to 
estimate the input variable which can not be 
measured on-line. In such a case, an artificial neural 
network technique can be applied to model the 
relation which is difficult to derive analyticaly. By 
deriving the inverse model of the process, the 
artificial neural network can be used to model the 
immeasurable variable, which is called the primary 
variable, from a measurable variable, which is called 
secondary variable. The scheme of virtual sensing 
system employs an artificial neural network with 
Diagonal Recurrent Neural Network (DRNN) 
structure as model of the plant and the Extended 
Kalman Filter (EKF) as the estimator (Habtom, 
1999), as shown in Fig. 2. The first step to be done is 
to identify the plant which its immeasurable variable 
will be estimated off-line.  In this process, the 
immeasurable variable should be included in the 
process. After the model is obtained, the next step is 
to design an estimator based-on the Extended Kalman 
Filter (Kalman, 1960) without inserting the 
immeasurable variable in the model input.  
 
In developing the plant model using DRNN, during 
the learning phase, as input variables are the 
measurable input uM (secondary variable) and 
immeasurable input ui (primary variable), and as the 
output variable of the plant is y. The learning phase 
will be performed using the backpropagation method 
with adaptive learning rate. After the modelling 
process and validation, the weighting of DRNN will 
not be changed or in the on-line phase, the weighting 
should not be adaptive. The architecture of the 
DRNN can be seen in Fig. 3 and its mathematical 
representation can be written as     
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where in every discrete-time n, Ik(n) is measureable 
input to kth neuron in input layer, Z(n) is 
immeasureable input to neuron in input layer, Sj(n) is 
input to jth neuron in hidden layer, Xj(n) is jth output 
neuron in hidden layer, Y(n) is network output and  f 
is activation function, with 0 ≤ k ≤ N, N is the 

number of neuron in input layer, and 0 ≤ j ≤ M, M is 
the number of neuron in hidden layer. 

 
 
 
 
 
 
 
 
 
 
Fig. 2.  Virtual sensor with EKF as an estimator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Structure of  the Diagonal Recurrent Neural 
Network (DRNN) 
 
To represent the plants with nonlinear behavior, the 
Nonlinear Auto-Regressive with eXogenous Variable 
(NARX) parametric model form is used as well. In 
this model, the output is a nonlinear function of 
previous outputs and inputs of the plant. For this 
case, the NARX model can be represented in the 
form as illustrated in Fig. 4. 
 

 
 
 
 
 
 
 
 
Fig. 4. NARX model 
 
where y(t), I(t) and Z(t) the sampled plant/process 
output,  measureable input and immeasureable input, 
at time instant t, respectively, ŷ(t) is output of DRNN, 
n is the number of input to DRNN coming from 
system output, d is a delay time of input to DRNN 
coming from system input, and m is the number of 
input to DRNN coming from system input.  
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5.    EKF AS AN ESTIMATOR 
 
EKF (Kalman, 1960) will perform an estimator of the 
state variables ))(),(( 21 txtx and the immeasurable 
input. The plant model of eqs. (1-3) can be written in 
discrete-time form as 
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where in every discrete-time t, Ik(t) is measureable 
input to kth neuron in input layer, Z(t) is 
immeasureable input to neuron in input layer, Sj(t) is 
input to jth neuron in hidden layer, Xj(t) is jth output 
neuron in hidden layer, Y(t) is network output and f1 
and f2 is activation function of the hidden and output 
layer, respectively, with 0 ≤ k ≤ N, N is the number 
of neuron in input layer, and 0 ≤ j ≤ M, M is the 
number of neuron in hidden layer. 
 
From the above 3 equations, 1f  and 2f  is function 
of states ( X1,  I, and Z), and the weights ( W10, W11, 
W1Z, W1b, W21 ). Assuming θ represents all 
parameters which can be changed during learning 
(such as weight and bias), then eqs. (4-6) can be 
rewritten in the following form  
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where the weight and bias in the hidden layer and 
output layer is represented as θ1 and θ2. Note that both 
vectors still have constant value during on-line 
process. {ξ1(t)}and {ξ2(t)} is Gaussian white noise 
with zero mean and uncorrelated with {v(t)}, and 
positive definite variance, var[ζ(t)] = S(t). Assuming 

[ ]TtZtxtxtx )()()()( 21=  then the objective of 

learning is to determine [ ]T
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The overall structure of the proposed intelligent 
control strategy using the adaptive GPC as a 
controller and the virtual sensing scheme is illustrated 
in Fig. 5. The result (output) of the virtual sensing 
scheme (the lower part of the overall structure) which 
is the estimated immeasurable variable, is fed back to 
the GPC controller structure with neuro-fuzzy based 
model (the upper part). This controller structure 
follows a technique which was successfully 
introduced for nonlinear plant control based on 
neuro-fuzzy approach (Nazaruddin and 
Tjandrakusuma, 2001). 
 
 

6.   EXPERIMENTAL RESULTS AND 
EVALUATION 

 
The overall  adaptive-predictive  controller algorithm  

with virtual sensing scheme has been implemented as 
a real-time control software developed using 
graphical-based programming language LabVIEW 
and runs on a personal computer. To see the 
capability and performance of the proposed 
intelligent control strategy, the scheme was tested in 
real-time environment to control the level in tanks of 
a process mini-plant which has strongly inherent 
mechanical nonlinearities. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  The overall structure of the control scheme 
 
6.1   Process Mini-plant Description 
 

The process mini-plant basically consists of two 
tanks containing fluid which its level will be 
controlled, and real industrial-scaled components, 
such as differential pressure transmitter, control 
valve, I/P converter, so that it resembles almost real-
plant characteristics. View of the process mini-plant 
is shown in Fig. 6 and the control scheme 
configuration in Fig. 7. The software was connected 
on-line to the process mini-plant through an AD/DA 
card and signal conditioner.  
 

 
Fig. 6. View of the process mini-plant 
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In this investigation, y1(t) was assumed as 
immeasurable variable, which could be measured off-
line and affected to the controlled variable y2(t). 
Virtual sensor was used to predict y1(t) based on 
variables which presumably affected it. Further, the 
output of virtual sensor was used as input to the GPC 
controller with on-line learning, as illustrated in Fig. 
5. The control variable u(t) (output of the GPC) is the 
manipulated variable (MV), or the percentage 
opening of the valve LCV1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Fig. 7.  Control scheme configuration 
 
6.2   Results of Modelling and On-line Control 
 
The control scheme will perform the predictive 
control mode using the model obtained from the 
neuro-fuzzy structure. The modelling is performed at 
each control steps so that the adaptive scheme is 
executed. In the overall control structure, the 
variables w(t), u(t), y2(t), ŷ2(t) and  y1(t) were the set-
point, control signal, the level of tank 2 at time t, the 
prediction of the level of tank 2 at time t and the level 
of tank 1 at time 1, respectively.  
 
In the first step, modelling of the process of the tank 
2 was conducted using the neuro-fuzzy method from 
the pairs of input-output data of the process mini-
plant. The objective of modelling was to predict the 
level of tank 2 using the level of tank at t-1 and the 
level of tank 1 at time t. The parameters of the neuro-
fuzzy methods were as follows : 
• Number of training data = 3300 
• Number of epoch : 3 
• The forgetting factor γ = 1 
• Input 1 = the level of tank 2 at (t-1) : y2(t-1) 
• Input 2 = the level of tank 1 at (t) : y1(t) 
• Input reference : the level of tank 2 at t : y2(t) 
 
Note that as performance measure, the root means 
square of the error (RMSE), defined as  
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where e(.) denotes the error at time k and N is the 
number of data, was used for all experimental studies. 
Fig. 8 shows the comparation between the measured 

(actual) and predicted values (based on the model) of 
the water level in the tank, and the error (different 
between measured and predicted values) for 1200 
seconds of observation time.  Based on the visual 
observation as well as from of the error (with RMSE 
value of 0.26), it can be seen that the process 
dynamics in the tank 2 is represented almost 
accurately by the neuro-fuzzy model 
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Fig. 8.  The results of modelling using ANFIS  
(a). measured (actual) and predicted value of the level 

in tank 2  (b). error 
 

Fig. 9 shows the results of on-line control of the 
process mini-plant using the proposed intelligent 
control scheme with virtual sensing. The objective of 
the control is to obtain a set-point tracking. During all 
experiments, the set-point (level in the tank 2) was 
varied from 30 to 70 cm. 
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Fig. 9. Response of the level in tank 2 using the 
proposed intelligent control scheme with virtual 
sensing scheme 
 
For the generalized predictive control scheme, the 
following setting of the horizon and weighting was 
used. These values were chosen based on the trial and 
error approach during the experimental studies. 
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• Minimum horizon = N1 = 1 
• Maximum horison = N2 = 10 
• Control horizon = Nu = 1 
• Weighting of control signal = λ = 0.0003 

 
It can be seen that satisfactory performance is 
obtained although the set-point was changed 
frequently. Acceptable results were also shown from 
the response of virtual sensing scheme, as 
demonstrated in Fig. 10.a. The immeasurable 
variable, y1(t), could be predicted sufficiently well by 
the  proposed virtual sensing scheme, where it was 
then used for input to the adaptive predictive 
controller scheme. A RMSE value of 0.86 was 
obtained from the resulting error, as shown in Fig. 
10.b.  
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Fig. 10.  Results of virtual sensing scheme (a). 
response of the virtual sensor scheme  (b). error 
between the measured (actual) and the predicted 
values of the sensor 

 

6.  CONCLUSIONS 
 

An alternative intelligent control strategy, which is an 
integration between the Generalized Predictive 
Control (GPC) strategy with neuro-fuzzy based 
modelling and an intelligent virtual sensing elements 
is proposed. The virtual sensor consists of Diagonal 
Recurrent Neural Network (DRNN) for modelling 
the plant as part of the sensing algorithm and the 
Extended Kalman Filter (EKF) as the estimator with 
inputs from DRNN. The proposed strategy has been 
tested on a real-time environment for on-line control 
of a process mini-plant.  In the control scheme, the 
modelling process will be done on-line at each 

control action and this will allow the control to be 
done adaptively.  
 
The experimental results showed the effectiveness 
and the performance of the method in controlling 
nonlinear systems. The virtual sensing scheme 
predicts the immeasurable variable satisfactorily 
based on the information from measurable or 
secondary variable. 
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