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Abstract: In this paper, necessary and sufficient conditions for the parameter insensi-
tive disturbance-rejection problem with state feedback for uncertain linear systems to
be solvable which was pointed out as an open problem by Bhattacharyya are proved by
using relationship between generalized invariant subspaces and simultaneously invari-
ant subspaces. Further, the problem with static output feedback is also investigated.
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1. INTRODUCTION

Since the notions of (A, B)-invariant and
(C, A)-invariant subspaces were studied, many
control problems for linear multivariable systems
have been studied in the framework of the so-
called geometric approach (e.g., (Basile, 1991),
(Wonham, 1984), (Schumacher, 1980)).

Further, the notion of generalized (A, B)-
invariant subspace which is an extension of
(A, B)-invariant subspace was studied for un-
certain linear systems from the practical view-
point (Bhattacharyya, 1983). Among this, pa-
rameter insensitive disturbance-rejection problem
with state feedback for uncertain linear systems
whose matrices depend linearly on uncertain pa-
rameters was formulated and sufficient condi-
tions for the problem to be solvable were given
but it’s necessary conditions were pointed out
as an open problem. After that, generalized
(C, A)-invariant subspace which is the dual con-
cept of generalized (A, B)-invariant subspace and
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the generalized (A, B, C)-invariant subspace were
studied, and then parameter-insensitive distur-
bance rejection problems with static output feed-
back and with dynamic compensator were studied
((Otsuka, 1999),(Otsuka, 2000)).

On the other hand, simultaneously (A, B)-
invariant and simultaneously (C, A)-invariant sub-
spaces were studied for a family of linear sys-
tems, and then parameter insensitive disturbance-
rejection problems for systems whose uncertain
matrices are expressed as convex combination of
two given matrices were studied (Ghosh, 1986).

In this paper, necessary and sufficient con-
ditions for parameter insensitive disturbance-
rejection problem with state feedback to be solv-
able which was pointed out as an open problem
by Bhattacharyya are proved. And then, parame-
ter insensitive disturbance-rejection problem with
static output feedback is also investigated. In Sec-
tion 2, simultaneously invariant subspaces for a
family of linear systems and a key lemma to prove
the main result are discussed. In Section 3, rela-
tionship between generalized invariant subspaces
for uncertain linear systems and simultaneously
invariant subspaces for a family of linear systems
are investigated. In Section 4 the problem formu-



lations are given and the main results are proved.
Finally, conclusions are given in Section 5.

2. PRELIMINARIES

At first, some notations used throughout this
investigation are given. For a linear map A from
a vector space X into a vector space ) and a
subspace ¢ of ) the image, the kernel, the dimen-
sion and the inverse image are denoted by Im(A),
Ker(4), dim(p) and A~ p := {z € X | Az € ¢},
respectively.

Next, consider a family of linear systems de-
fined in X := R" :

d .
S;: Eﬂf(t) = A;z(t) + Biu(t), (i=1,---,7)
yt) = Ciz(t), (i=1,-+-,7)
where z(t) € X is the state, u(t) € Y := R™ is
the input and y(t) € Y := R’ is the output. And

coefficient matrices 4; € R™*", B; € R™*™ and
C; e szn.

Definition 1.
X.

(i) Vissaid to be simultaneously {(A;, B;);1 <
i < 1}-invariant if

Let V, 2 and e be subspaces of

A v B,
Elve |V rm|
A, % B,

Vs((4i, Bi);1<i< 7| 2)
= {V |V is simultaneously {(A4;, B;);1 <i < 7}-
invariant and V C 2}.

(if) Vis said to be simultaneously {(C;, A;);1 <
i < 1}-invariant if
1%
1%

[AlAQ-"AT] ﬂKer[Cl 0207—]

)'}
cV

Te(e | (Ci, Ai);1 < i< 7)
= {V |V is simultaneously {(C;, 4;);1 <i < 7}-
invariant and e C V.}

(iii) Vis said to be simultaneously {(A;, B;, C;);
1 < i < 7}-invariant if there exists an H € R™**
such that

(Ai + BlHCZ)V cV

foralle=1,---,7. m

The following two Lemmas follow from Won-
ham(1984) and Ghosh(1986).

Lemma 2.

(i) V is simultaneously {(4;,B;);1 < i < 7}-
invariant if and only if there exists an F' € R™*"
such that

(A;+ B;F)yCV
foralle=1,--- 7.
(ii) The class Vs((As, Bi);1 <i < 7| £2) has
the unique maximal element VI"**((2) and it can
be computed as the following sequence.

YO .= 0,

A7 /TVvED B
p# = on | A2 V(k.il) +Im | P2 ,
AT V(k:’l) BT
(k=1,2,--)

ymaz () .= V(dim((z))‘ -

Lemma 3.

(i) V is simultaneously {(C;, 4;);1 < i < 7}-
invariant if and only if there exists a G € R™*¢
such that

(A;+GCHy CV
foralli=1,---,7.
(ii) The class Ts(e | (Ci, A;);1 <i < 1) has
the unique minimal element V™™ () and it can
be computed as the following sequence.

V(O) =g,
Yk o Plh1) 4

Pk=1)
Pk=1)
[A1 Ay A, ] . |nKe[CiCy-00 ],
V(k!l)
(k=1,2,--)

V;mn(s) = V(nfdlm(s)) -

Now, the following is a key lemma to prove the
main results.

Lemma 4. Consider a family of systems S; (i =
1,--+,7). And for a given subspace ¢ of X and
a state feedback F' € R™*", define the following
sequences of subspace as

Stepl. V(O :=¢.
Step2. VM = (=1 4 (4, 4+ B F)Yk—1),
Vi = YD 4 (4, + ByF)VD),

VI = V=) 4 (A, + B )V,
(k=1,2,--)



Step3. V() 1= y®) 4 plb) .y )
(k=1,2,-).
Then, V¢~ c V® (k = 1,2,---) and there
exists a p ( < n — dim(e)) such that
Vi = p®) for VE>p

which satisfies V(*) is simultaneously {(4;,B;);1 <
i < 7}-invariant and contains ¢, that is, V(*) €
Ve((Ai, B;);1<i<7|X)and e Cc VW,

Proof. It follows from Steps 1-3 that
A VA R
=V 4 (4 + B F)YEY 4.

+(A, + B,F)y*-1

o pk=1)
De (k=1,2,---). (1)
Since A is finite-dimensional, there exists a p ( <

n — dim(g)) such that

Vi =p®) for V> p.
Then, foralli=1,---,7
(A; + B;F)y®
C (A + B F)VW 4 ... 4 (A, + B,F)Y®
C Vl(“'H) +ot Vﬁ““)
= pu+1)
=P @)

It follows from Lemma 2(i), (1) and (2) that V()
is simultaneously {(4;, B;);1 < i < 7}-invariant
and contains €. m

Lemma 5. Consider sequence of subspaces V()
(k=0,1,---) in Lemma 4 for HC; replaced F in

Vi(k) (¢=1,---,7). Then, there existsa p ( < n—
dim(e)) such that

Vi =v®) - for Wk > p

which satisfies V(*) is simultaneously {(4;, B;, C;);
1 < i < 7}-invariant and contains €.

Proof. The proof follows from the same manner
as the proof of Lemma 4. m

3. GENERALIZED INVARIANT SUBSPACES

In this section some important properties of
generalized invariant subspaces which are used to
prove the main results are investigated.

Consider the following linear systems defined
inX:=R":
©2(t) = Ae)at) + B(B)u(t
—x(t) = Ala)x u(t),
S(e, B,7) : q dt
y(t) = C(y)x(t),
where z(t) € X is the state, u(t) € U := R™ is
the input and y(t) € Y := R’ is the output. And

coefficient matrices A(«a), B(8) and C(v) have un-
certain parameters in the sense that

Ala) = Ao+ a1Ar + -+ oAy = Ag + AA(a),
B(ﬁ) = BO —{-ﬂlBl —+ - +Bqu = BO =+ AB(B),
C(y) =Co+mCi+ -+ 70 = Co+ AC(y),

where « := (ala' : '7ap)7 /8 = (517' t 7/311)7 Y=
(v1,-++,7), and «ay, Bi,vi € R are all arbitrary
real numbers.

In system S(«, 8,7), (Ao, Bo, Co) and (AA(«),
AB(S8), AC(y)) represent the nominal system
model and a specific uncertain perturbation, re-
spectively. Now, the definitions of generalized in-
variant subspaces are introduced as follows.

Definition 6. Let V, {2 and € be subspaces of X

(i) Vis said to be generalized (A, B)-invariant
if there exists an F' € R™*™ such that
(A(e) + B(B)F)Y CV
for all (a, f) € R? x RY.
Vo((4, B)|2):={V |3F € R™"":(A(e)+B(B)F)
YV CV forall (o,8) € R x R? and V C {2}.
(ii) Vis said to be generalized (C, A)-invariant
if there exists a G € R™* such that
(A(e) + GC(y))y CV
for all (a,v) € R x R".
T, (= [(C, 4) = {V | 3G € R™" : (A(a) + GC(7))
YV CV forall (o,7) € R x R" and e C V}.
(iii) V is said to be generalized (A, B,C)-
invariant if there exists an H € R™** such that
(A(a) + B(B)HC(7))V CV
for all (a,8,7) € R°F X R X R". m

The following result gives the relationship be-
tween simultaneously {(A4;, B;);1 <i <7}- invari-
ant and generalized (A, B)-invariant subspace.

Theorem 7.
and only if

V is generalized (A, B)-invariant if



[ Ag ] R [ By ]
Ao+ Ay % By
Ap + Ap Vcl|lV]|+Im By (3)
Ay 1% By + B
L Ao | LV ] | Bo + By |

which implies V is simultaneously {(4o, Bo),
(AO + Ai;BO)y(A07B0 + BJ)) i = ]-7"'7p7j =
1,---,q}-invariant.  Namely, V4((4,B) | 2) =
vs((Ao,Bo), (Ao + Ai,Bo), (Ao,Bo + Bj); Z =
Leoo,pj=1,---,q| 2).

Proof. Choose a new parameter 7 satisfying

P q
Zai-i—Zﬂj +v=1
i—1 j=1

Then, the following equality holds.
A(a) + B(B)F
P

i=1

+> Bi{Ao+(Bo+B;)F}. (4)

j=1
Then, the following equivalences can be obtained
from Lemma 2(i) and the above equality (4).

(A(a) + B(B)F)V C V for all (a,) € R? x R".
(Ao + BoF)V C V,
< < {(Ag+A4A)+BF)YCVY (i=1,---,p),
(Ag+ (Bo+Bj))F)vCV (j=1,---,q).
<V is simultaneously {(Ao, Bo), (Ao + 4;,Bo),
(Ao,Bo + Bj);i=1,--+,p,j=1,---,q}
-invariant.

< Equation (3). m

Similarly, the following result can be obtained.

Theorem 8. 'V is generalized (C, A)-invariant if
and only if

[AO;AO +A17"'7A0 +Ap7A07"'7A0]X

R

v

V |A Ker[ Co, Co,---,Co,Co + Ci,---,Co + Cy |

cV,

which implies V is simultaneously {(Cy, Ao ),(Co, Ao
+Ai)7 (CO + Ck;AO);i =1--,pk= 17"'7T}'
invariant. Namely, Zy(e | (C,A)) = Zs(e |

(Co, Ao), (Co,Ag + Ai), Co + Cy,40) 5 1 =
17"'7p7 kzla"'aT}' ]

Now, the following two theorems give new compu-
tational algorithms to compute the maximal ele-
ment V;"**(£2) and the minimal element V""" (e),
respectively.

Theorem 9.  The class Vg4((A, B); 2) has the
unique maximal element V;"**(£2) and it can be
computed as the following steps.

Stepl. V() := 0.

Step2. V) .=
F oA T -1 Py 1) ] - B,
AO + A1 V(k_l) BO
20| A + A, V=D |y | B,
AO V(k_l) BO —+ Bl
L AO ] L pk=1) ] | Bo + B, |
(k =12, )

Step3. Vmex(Q) = Y(dim(@)),
Proof. The proof follows from Theorem 7 and

Lemma 2(ii). m

Theorem 10. The class Zg(e | (C,A)) has the
unique minimal element V;""(e) and it can be
computed as the following steps.

Stepl. V(O :=¢.

Step2. VK .= pk—1 4

[Ao, Ao + Ay,---, Ao+ Ap, Ao, -+ -, Ap] X
ryk=1) 7
Plk=1)

V=1 \nKer[ Cy, Co - - - Co,Co + Cy - - - Co + C,. ]|
Pk=1)

pl—1)
(k = 17 27 o )

Step3. Vmin(g) := Y(n—dim(e),

Proof. The proof follows from Theorem 8 and
Lemma 3(ii). m

The following lemma is used in the next section.

Lemma 11. (Otsuka, 1999) V is generalized (A,
B, C)-invariant subspace if and only if V is gen-
eralized (A, B)-invariant and generalized (C, A)-
invariant subspace. m



4. NECESSARY AND SUFFICIENT
CONDITIONS

This section gives the results for an open prob-
lem which was pointed out by Bhattacharyya,
that is, necessary and sufficient conditions for the
parameter insensitive disturbance-rejection prob-
lem with state feedback to be solvable by using
useful results in the previous sections are proved.

Consider the following uncertain linear system
S(a, B8,7,0,0) defined in X := R" :

%w(t) = A()z(t) + B(B)u(t) + E(0)€(t),
y(t) = C(=(1),
z(t) = D(0)x(t),

where z(t) € X is the state, u(t) € U := R™ is
the input, y(t) € Y = R’ is the output to be
measured, z(t) € Z := R" is the output to be
controlled and £(t) € R" is the disturbance. And
coefficient matrices have the following uncertain
parameters:

A(Oé) = AO + 041A1 + -4 OépAp = AO —+ AA(a),

B(B)=DBo+ p1B1 + -+ BBy := Bo + AB(f),
C(M)=Co+mnCi+-+7Cr=Co+ AC(y),
D(0)=Do + 61D1 + -+ + 6:Ds := Do + AD(9),
E(o)=FEy+o01E + -+ 0.E; == Ey + AE(0),

where A;, B;, C; are the same as system S(a, 3,7)
in Section 3, D; € R**™ and E; € R™*". Further,
a = (a1, --,ap) € R?, B := (f1,---,8y) € R,
v = (n, %) € R",§ := (61,--+,05) € R®,
o:= (01, -,04) € R".

In SYStem S(Oé, ﬁ:r% 67 0)’ (A07 BO: C07 DO: EO)
and (AA(a), AB(B), AC(y), AD(8), AE(0))
represent the nominal system model and a specific
uncertain perturbation, respectively.

Now, parameter insensitive disturbance-rejection
problems with static feedback are formulated as
follows.

[Parameter Insensitive Disturbance Rejec-
tion Problem with State Feedback] (PIDRP
SF)

Given matrices A;,B;,D;,E; for system S(a,
B, d, o), find if possible a state feedback gain
F € R™”" such that

< A(a) + B(B)F | ImE(0) >
= Z(A(a)w(ﬂ)F)i*l(ImE(a)) C KerD(6)

for all parameters (, 3,6,0) € RP x R x R* x R".
|

[Parameter Insensitive Disturbance Rejec-
tion Problem with Static Output Feedback]
(PIDRPSOF)

Given matrices A;, B;,C;, D;, E; for system
S(a, B,7,90,0), find if possible an output feedback
gain H € R™** such that

< A(a) + B(B)HC(7) | ImE(0) >

= Z(A(a) +B(B)HC(7))'" (ImE(0))

C KerD(9)
for all parameters (a, 8,7,0,0) € R x R x R" X
R°xR'. m

The following theorem is the main result. The
sufficiency was given by Bhattacharyya(1983) but
the necessity has not been solved as an open
problem. Now, necessary and sufficient conditions
for the problem to be solvable are proved for
completeness.

Theorem 12. PIDRPSF is solvable if and only if
t

> ImE; C Ve (),

=0
where V;"%%(£2) is the maximal element of Vg ((4,
B) | ), 2 := (|KerD;.

i=0

Sketch of Proof. (Necessity) Suppose that the

PIDRPSF is solvable. Then, there exists a state
feedback gain F' € R™>"™ such that

< A(a)+B(B)F | ImE(0) >C KerD(4)  (5)
for all parameters (o, 3,6,0) € RP x R'x R°* x R".

It follows from (5) that the following relations
hold.

t t
> ImE; C < A(a)+ B(B)F | ImE; >
i=0 i=0

C (\KerD; = 0. (6)
i=0
for all parameters («, 3). Noticing (6), define the
sequence of subspaces as

t
VO = "ImE;,
=0

VO = Y gy B (k=1,2,-),
where for Kk =1,2,---
V= V=1 (4 + ByF)V(E-D),
(c2)
Vi = V=D 4 (Ao + Ar) + BoF)V(E-D),



(C2)

V& = v
()

VP+2 = Yk-1)

()

+ ((Ao + A,) + BoF)Yh=1),
+ (Ao + (By + By)F)Y=1),
Vi +q+1 = Yy

(C2)

Then, it follows from Lemma 4 that there exists

+ (Ao + (Bo + B,)F)Vk—1),

apu (<n-— dim(ZImEi)) such that

=0

V) =pk) forall k> p
and VW is simultaneously {(Ao,Bo), (Ao +
AinO)a(A07BO +Bj)a 1= 17"'7p7j = 17"'7(1}'

invariant. Since V# is contained in 2, it fol-
lows from Theorem 7 that V(*) is an element of
V,((4, B) | 2). Further, from definition of V()
the following relations hold.

t
> ImE; c V¥ c V().
=0
This completes the proof of necessity.

t
(Sufficiency) Suppose that ZImEi ) ()
i=0
Since V;**(£2) is a generalized invariant sub-
space, there exists an F' € R™*" such that

(A(a) + B(B)F)Vg e (£2) C Ve (2)

for all (o, ) € R? x R.
Then, the following relations hold.

< A(a) + B(B)F | ImE(0) >

C < A(e) + B(B)F | Y ImE; >

=0
C < A(a) +
=Ver(82)
c 2
C KerD(9)

BBE | Vg (2) >

for all parameters (, 3,6,0) € RP x R x R* x R',
which imply PIDRPSF is solvable. This completes
the proof of theorem. m

The following theorem follows from Lemmas 5
and 11 and the same manner as the proof of
Theorem12.

Theorem 13. PIDRPSOF is solvable if and only
if there exists a generalized (A, B)-invariant and
generalized (C, A)-invariant subspace V such that

t s
ZImEi cVcC ﬂKerDi. n

i=0 =0

Corollary 14. Suppose that V" (¢) is the min-
imal element of Zy(e | (C,A)) and V;***(£2) is
the max1ma1 element of Vg((A,B) | (2) where

ZImEl, Q = ﬂKerD

Vg ((A B)|()) or Vm”( ) € Ty(e]| (C, A)), then
the PIDRPSOF is solvable. m

If Vin(e) €

5. CONCLUSIONS

In this paper, the relationships between gen-
eralized invariant subspaces and simultaneously
invariant subspaces were firstly investigated. And
then, necessary and sufficient conditions for the
parameter insensitive disturbance-rejection prob-
lem with state feedback for uncertain linear sys-
tems to be solvable which was pointed out as
an open problem by Bhattacharyya were proved.
Further, the problem with static output feedback
was also investigated.
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