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Abstract: The design of a parameter dependent H∞ controller for a parameter
dependent plant is considered. A solution can be proposed as a parameter
dependent LMI optimization problem, that is, an infinite dimensional problem. In
the case of rational dependence, an approach is proposed involving an optimization
problem over parameter independent LMI constraints (which is finite dimensional).
The obtained conditions are less conservative than previous ones. An application
to the trade-off dependent controller design with the control of a DC motor is
developed to emphasize the interest of our approach.
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1. INTRODUCTION

In this paper, we focus on the design of a param-
eter dependent H∞ controller for a parameter de-
pendent plant. This problem can be applied to nu-
merous controller design problems: gain schedul-
ing control (Stilwell and Rugh, 1999), saturated
system control (Megretski, 1996), spatial system
control (de Castro and Paganini, 2002), trade-off
dependent control (Dinh et al., 2003), to cite a
few. It can be naturally cast into optimization
problems involving parameter dependent Linear
Matrix Inequalities, that is, an infinite dimen-
sional optimization problem whose solution can-
not be efficiently computed. The major difficulty
is to replace it by a parameter independent LMI
optimization problem while avoiding the intro-
duction of conservatism. Remember that parame-
ter independent LMI optimization problems are
finite dimensional ones which can be efficiently

solved. Such an approach was considered in nu-
merous problems: robust analysis, LPV control..
The reader is referred to (Dinh et al., accepted in
2005) for the bibliography on these approaches.
For sake of shortness, it is not developed here.
In these approaches, the choice of function sets
for the decision variables of the infinite dimen-
sional optimization problem is the crucial point,
as pointed out in (Dinh et al., 2003). In this last
paper, we investigated the choice of rational func-
tions with fixed denominator, which encompasses
all previous ones.

In this paper, we consider LMI which rationally
depend on a scalar parameter θ. We prove that
when the set of decision variables is the set of
rational functions of a given order N (whose de-
nominator is free), a considered parameter depen-
dent LMI constraint can be equivalently replaced
by parameter independent LMI constraints. This



point is a dramatic improvement with respect to
previous approaches, e.g. (Dinh et al., 2003): we
improve this approach by deriving conditions of
similar complexity. The proposed approach can be
applied to several parameters but by introducing
conservatism. It is based on an extension of the
Kalman Yakubovich Popov lemma. The obtained
result allows to derive a parameter independent
LMI formulation for the parameter dependent
control problem in the next section. In Section 3,
this solution is applied to the trade-off dependent
control with the control of a DC motor as a numer-
ical example. A trade-off dependent controller is a
controller K(s, θ) such that a set of specification
trade-offs parameterized by a scalar θ ∈ [0, 1] is
satisfied for a given LTI plant (Dinh et al., 2003).
A trade-off is, here, formulated as an optimiza-
tion problem involving a weighted H∞ norm. A
motivating application is controller (re)tuning.

Notations In (respectively 0m×p) denotes the
n×n identity matrix (resp. the m×p zero matrix).
The subscribes will be dropped when they are
clear from the context. P > 0 denotes that P
is positive definite. The Redheffer star product
(Skogestad and Postlethwaite, 1996) is denoted by
?. Let us also introduce

RH =
[HN · · · H0

]
, Rd,p =

[
dNIp · · · d1Ip Ip

]
,

Λp =
{RH | Hi = HT

i ∈ Rp×p, i = 0, . . . , N
}

,

Jp =




0 Ip 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 Ip

−cNIp · · · · · · · · · −c1Ip

0
...
...
0
Ip

IN×p

−cNIp · · · · · · · · · −c1Ip

0
Ip




where ci, i = 1, . . . , N , are given real scalars such
that for any θ ∈ [0, 1] 1 +

∑N
i=1 θici 6= 0,

L(A,B, C, D, M,S,G) =
[

CT

DT

]
M

[
C D

]
+ . . .

· · ·+
[

AT (S − G) + (S + G)A− 2S (S + G)B
BT (S − G) 0

]
.

2. PARAMETER DEPENDENT
CONTROLLER DESIGN

2.1 Problem formulation

We consider the following generalized plant P (s, θ):




ẋ(t) = A(θ)x(t)+ Bw(θ)w(t)+ Bu(θ)u(t)
z(t) = Cz(θ)x(t)+Dzw(θ)w(t)+Dzu(θ)u(t)
y(t) = Cy(θ)x(t)+Dyw(θ)w(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rny ,
z(t) ∈ Rnz , w(t) ∈ Rnw and where θ is a
constant parameter (conventionally θ ∈ [0, 1]).

The state space matrices of P (s, θ) are assumed
to be rational functions of θ, well-posed on [0, 1].

Problem: Given P (s, θ) as in (1) and γ > 0,
compute, if there exists, a parameter dependent
controller

K(s, θ) =
1
s
In ?

[
AK(θ) BK(θ)
CK(θ) DK(θ)

]
(2)

where AK(θ), BK(θ), CK(θ) and DK(θ) are ra-
tional functions of θ, well-posed on [0, 1], ensuring
for any θ ∈ [0, 1]:
• the asymptotic stability of P (s, θ) ? K(s, θ);
• ‖P (s, θ) ? K(s, θ)‖∞ < γ.

AK(θ), BK(θ), CK(θ) and DK(θ) are required
to be rational in θ in order to obtain a con-
troller implementation of reasonable complexity.
The proposed approach can be readily applied to
other criteria (such as H2 norm, multiobjective..).

2.2 Proposed approach

Note that Problem is in fact an extension of the
H∞ control problem as both the controller and
the generalized plant are, here, dependent on a
parameter θ. Thus a solution to Problem can
be straightforwardly obtained by extending the
LMI solution of (Scherer et al., 1997) (conditions
(41) and (42)) to the H∞ control problem. We
obtain the optimization problem over parameter
dependent LMI constraints presented in (Dinh et
al., 2003). This is an infinite dimensional opti-
mization problem along two aspects:
• as functions of θ, the decision variables are

in an infinite dimensional space;
• as parameterized by θ, there is an infinite

number of constraints.
This infinite nature prevents an efficient compu-
tation of a solution to the optimization problem.

The proposed approach is an interesting way to
compute a solution to this infinite dimensional
optimization problem via a finite dimensional one.
Following (Rossignol et al., 2003), it is obtained
along two steps.
• For the first step, we introduce for a deci-

sion variable, say Υ(θ), the following finite
parameterization

Υ(θ) =
∑N

i=0 θiΥi

1 +
∑N

i=1 θidi

, (3)

parameterized by the N + 1 matrices Υi and
the N scalars di.

• In order to obtain a finite number of con-
straints, the second step is based on the fol-
lowing lemma, which is an extension of the
Kalman Yakubovich Popov lemma.

Lemma 2.1. (Rossignol et al., 2003) Let M be
a symmetric matrix and let Φ(θ) be a rational



matrix function of θ, well-posed on [0, 1], and
define one of its LFT realization by

Φ(θ) = θI ?

[
AΦ BΦ

CΦ DΦ

]
.

Then the following condition holds

∀θ ∈ [0, 1], Φ(θ)T MΦ(θ) < 0

if and only if there exist S = ST > 0 and G = −GT

such that

L(AΦ, BΦ, CΦ, DΦ,M,S,G) < 0.

We can then state the following lemma.

Lemma 2.2. Let H1(θ) and H2(θ) be two matrices
of rational functions of θ, well-posed on [0, 1]. Let
C be a matrix and N be a positive integer.
There exists a (possibly structured) matrix Υ(θ)
as defined in (3), well-posed on [0, 1], such that

∀θ ∈ [0, 1], H1(θ)(C + Υ(θ))H2(θ) + · · ·
· · ·+ (H1(θ)(C + Υ(θ))H2(θ))T < 0

(4)

if and only if there exist N + 1 matrices Υi,
i = 0, . . . , N and N scalars di, i = 1, · · · , N , such
that the two following conditions hold:
(i) there exist Sd =ST

d >0 and Gd =−GT
d such that

L
(
Ad, Bd, Cd, Dd,

[
0 −Rd,1

−RT
d,1 0

]
,Sd,Gd

)
< 0 (5)

where
θI ?

[
Ad Bd

Cd Dd

]
=

[
1

θ ? J1

]

(ii) there exist S=ST>0 and G=−GT such that

L
(
AH, BH, CH, DH,

[
0 U(Υi, di)

U(Υi, di)T 0

]
,S,G

)
<0

(6)
where

θI ?

[
AH BH

CH DH

]
∆=

[
H1(θ)T

H̄(θ)H2(θ)

]

and where U(Υi, di) is an affine function of Υi and
of di such that

U(Υi, di)H̄(θ)=
(Υ0+C)+

∑N
i=1 θi(Υi+diC)

1+
∑N

i=1 θici

. (7)

Note that the infinite dimensional optimization
problem defined by (4) is equivalently replaced by
the finite dimensional optimization problem over
the LMI constraints (5) and (6). Note also that
the factorization (7) is always possible although
not unique.

Proof of Lemma 2.2 The well-posedness of Υ(θ) on
[0, 1] is equivalent to ∀θ ∈ [0, 1], 1+

∑N
i=1 diθ

i 6= 0.
As 1 +

∑N
i=1 diθ

i is a real valued polynomial, it
is sign (positive) definite. The well-posedness of
Υ(θ) on [0, 1] is then further equivalent to

∀θ ∈ [0, 1],
1 +

∑N
i=1 diθ

i

1 +
∑N

i=1 ciθ
i

> 0 (8)

for any polynomial 1 +
∑N

i=1 ciθ
i that does not

vanish on [0, 1]. Since 1 +
∑N

i=1 diθ
i

1 +
∑N

i=1 ciθ
i

= Rd,1 × θ ?

J1, condition (8) is equivalent to condition (5) by
applying Lemma 2.1.

Using (8), condition (4) can be rewritten as:

∀θ ∈ [0, 1], H1(θ)U(Υi, di)H̄(θ)H2(θ) + · · ·
· · ·+ (H1(θ)U(Υi, di)H̄(θ)H2(θ))T < 0.

(9)

with U(Υi, di) and H̄(θ) as defined in (7). Con-
dition (9) is then equivalent to condition (6) by
applying Lemma 2.1. 2

2.3 Finite dimensional solution

From the previous result, we have the following
theorem.

Theorem 2.1. Given N , there exists a controller
(2) solving Problem if there exist
• matrices RX ∈ Λn, RY ∈ Λn, and a matrix
RV ∈ R(n+nu)×(N+1)(n+ny);

• scalars di, i = 1, . . . , N
such that the two following conditions hold:
(i) there exist S0 =ST

0 >0 and G0 =−GT
0 such that

L
(
AΩ0 , BΩ0 , CΩ0 , DΩ0 ,

[
0 W
WT 0

]
,S0,G0

)
< 0 (10)

with W = −
[RX Rd,n

0 RY

]
and with

θI ?

[
AΩ0 BΩ0

CΩ0 DΩ0

]
=




I2n

θI ? Jn 0
0 θI ? Jn


 ;

(ii) there exist S=ST>0 and G=−GT such that

L
(

AΩ, BΩ, CΩ, DΩ,

[
0 Z
ZT 0

]
,S0,G0

)
< 0 (11)

with

Z =




RV 0 0 0 0

0 RX Rd,n 0 0
0 0 RY 0 0

0 Rd,n 0 0 0
0 0 0 Rd,nw 0
0 0 0 γRd,nw 0
0 0 0 0 γRd,nz




and with

θI ?

[
AΩ BΩ

CΩ DΩ

]
=

[
F1(θ)T

F2(θ)F3(θ)

]

where

F1(θ)=




0 Bu(θ) A(θ) 0 0 0 0 0

In 0 0 A(θ)
T

0 0 0 0

0 0 0 Bw(θ)
T

Bw(θ)
T

0 − 1

2
Inw 0

0 Dzu(θ) Cz(θ) 0 0 Dzw(θ) 0 − 1

2
Inz






F2(θ) =




θI?Jn+ny
0 0 0 0

0 θI?Jn 0 0 0
0 0 θI?Jn 0 0
0 0 0 θI?Jnw

0
0 0 0 0 θI?Jnz




F3(θ) =




In 0 0 0
0 Cy(θ) Dyw(θ) 0

In+n+nw+nz


 .

If a controller exists, its state space matrices are
then obtained with[
AK(θ) BK(θ)
CK(θ) DK(θ)

]
=

[
L(θ) −M(θ) 0

0 0 Inu

]
× ... (12)

...×






In 0
0 Bu(θ)
0 Inu


V(θ)

[
X (θ)−1 0
−Cy(θ) Iny

]
+




0 0
A(θ) 0

0 0







with
[
L(θ) −M(θ)

]
given by

([
In

In

]
X (θ)

[
In Y(θ)

] [
In 0 0
0 −In In

])
? In

and where

X (θ)=
∑N

i=0 θiXi

1+
∑N

i=1 θidi

, Y(θ)=
∑N

i=0 θiYi

1+
∑N

i=1 θidi

,

V(θ)=
∑N

i=0 θiVi

1+
∑N

i=1 θidi

.

(13)

Proof of Theorem 2.1 It is proved by the appli-
cation of Lemma 2.2 to the optimization prob-
lem over parameter dependent LMI constraints
presented in (Dinh et al., 2003), that is, the ex-
tension of conditions (41) and (42) in (Scherer et
al., 1997). 2

Computation: for a given value of γ, the optimiza-
tion problem defined by (10) and (11) is an LMI
feasibility problem. Another interesting problem
is to minimize γ over LMI constraints (10) and
(11). As this minimization is a quasi convex opti-
mization problem 1 , the minimum value of γ can
be found by performing a dichotomy on γ.

2.4 Discussion of our approach

X (θ), Y(θ) and V(θ) are in fact the parameter
dependent decision variables of the infinite dimen-
sional optimization problem presented in (Dinh
et al., 2003). The dependence assumed in (13) is
not restricting with respect to Problem since,
from equation (12), this dependence is enforced
as rational matrices function of θ are wanted for
the state spaces matrices of the controller (2).

N is the trade-off parameter: increasing N allows
to decrease the performance level γ with the draw-
back of increasing the controller complexity, that

1 Quasi convexity can be proved by a simple adaptation of
the proof of the (LMI) Generalized Eignevalue Problems,
see (Boyd et al., 1994).

is its state space matrices are rational functions
of increasing degree. As N is the only trade-
off parameter, a trade-off is easily obtained. The
numerical example of Section 3.2 illustrates that
good performance can be obtained with a small
N .

For a given N , the approach of this paper gives
a better performance level γ than the one of
(Dinh et al., 2003); or equivalently for a given
performance level γ, a lower N is needed, that
is, a controller of lower complexity is obtained.
Furthermore, we consider here a more general
problem.

3. APPLICATION: DESIGN OF A
TRADE-OFF DEPENDENT CONTROLLER

3.1 Problem formulation

In the H∞ control approach (see Figure 1), the

-
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K(s)?

-

¾ yu

p1

pj

P (s)

Fig. 1. General H∞ problem

design of a controller K(s) is recast as an opti-
mization problem on weighted closed-loop trans-
fer functions. The considered closed-loop transfer
functions are defined by Pw(s) (which depends on
the plant):





ẋw(t) = Awxw(t) + Bw
p p(t) + Bw

u u(t)
q(t) = Cw

q xw(t) + Dw
qpp(t) + Dw

zuu(t)
y(t) = Cw

y xw(t) + Dw
ypp(t)

.

The desired performance specifications are intro-
duced through the choice of the weighting func-
tions Wi(s) and Wo(s).

A set of performance trade-offs parameterized by
a scalar θ ∈ [0, 1] is then defined by weighting
functions that are dependent on θ:

Wi(s, θ) =
1
s
I ?

[
AWi(θ) BWi(θ)
CWi(θ) DWi(θ)

]
,

Wo(s, θ) =
1
s
I ?

[
AWo(θ) BWo(θ)
CWo(θ) DWo(θ)

]

where the state space matrices are assumed ra-
tional functions of θ, well-posed on [0, 1]. The
generalized plant is then defined by:

P (s, θ) =
[

Wo(s, θ) 0
0 I

]
Pw(s)

[
Wi(s, θ) 0

0 I

]
.



Given γ > 0, the problem is to compute a
controller K(s, θ) whose state space matrices are
(explicit) rational functions of θ such that

∀θ ∈ [0, 1], ‖P (s, θ) ? K(s, θ)‖∞ < γ (14)

The considered problem is thus a subcase of
Problem. Theorem 2.1 can then be applied.

3.2 Numerical example: DC motor control

A DC motor can be modeled by

G(s) =
235

s( s
66 + 1)

=
1
s
I ?



−66 0 32
32 0 0
0 15 0


 .

The purpose is to design a one degree of freedom
controller ensuring that the closed-loop system
output is able to track, with a small error, step and
low frequency sinusoidal reference signals with a
specified transient time response (from 0.06 s for
θ = 0 down to 0.02 s for θ = 1) and with the most
limited possible control input energy. It should
also be able to reject step and low frequency
sinusoidal input disturbance signals.

Such a problem is addressed by the weighted
H∞ problem depicted in Figure 2 (Skogestad and
Postlethwaite, 1996). A trade-off depends on the

G(s)K(s, θ)?-
u

-

6

6
-

6
+

−
w1

y
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6 6
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Fig. 2. Weighted sensitivity H∞ problem

time response, which is related to the crossover
frequency of W1(s, θ) leading to choose it from
20 rad/s for θ = 0 up to 80 rad/s for θ = 1.
θ is chosen as an affine function of the crossover
frequency of W1(s, θ) for a clear interpretation of
θ. W3(s, θ) is chosen in order to specify the input
disturbance rejection. The crossover frequency of
W2(s, θ) is chosen to limit the most possible the
control input energy leading to set it as follows:
23.33 rad/s for θ = 0, 180 rad/s for θ = 0.5
and 700 rad/s for θ = 1. Using a least square
technique, we obtain it as a function of θ. The
weighting functions Wi(s, θ) can be written as:

1
s

?


−ωci(θ)

√
|G2
∞i − 1|

|G2
0i − 1|

√
|G2
∞i − 1|

|G2
0i − 1|

ωci(θ)(G0i −G∞i) G∞i




where G0i = |Wi(0, θ)|, G∞i = limω→∞ |Wi(jω, θ)|
and ωci(θ) such that |Wi(jωci(θ), θ)| = 1, with:
• 20 log(G01) = −40dB, 20 log(G∞1) = 6dB,

ωc1 = 20 + 60θ;

• 20 log(G02) = 10dB, 20 log(G∞2) = −60dB,
ωc2(θ) = 23.33 + 204θ

1− 0.7θ
;

• for simplicity, W3(s, θ) is set to 0.05.
P (s, θ) is then obtained where the parameter
dependent matrices (A(θ) and Cz(θ)) are rational
functions of θ with the denominator 1−0.7θ+0θ2.

For comparison, several experiments are per-
formed:
• N = 2 and a fixed denominator (the scalars

di are a priori chosen). A natural choice is
1−0.7θ as it is the denominator obtained for
the state space matrices of P (s, θ);

• N = 2 to evaluate the benefit of a free
denominator;

• N = 3 for the benefit of increasing N .
For a given N , the question of performance level
γ loss arises with respect to more general function
sets for the decision variables. A possible evalua-
tion can be obtained by (i) finding the smallest
γ, denoted γr, such that there exists a controller
of the considered structure solving Problem, (ii)
comparing γr with the smallest γ, denoted γbest,
by considering K(s, θ) without any constraint on
its state space matrices (except well-posedness).
Even if the computation of γbest is still open,
a lower bound γl can be easily obtained: γl =
maxθi γθi where γθi is the smallest γ such that
there exists Kθi(s) with ‖P (s, θi) ? Kθi(s)‖∞ < γ.
In the sequel, Kθi(s) is referred to as a “point-
wise” controller. The following criterion is then
evaluated: γr − γl

γl
. For this example, γl = 0.998.

The optimization problems are solved using Matlab
6.5 with the LMI control toolbox (Gahinet et
al., 1995). For an easier numerical resolution, we
choose 1 + c1θ + c2θ

2 = 1 − 0.7θ for N = 2 and
1+c1θ+c2θ

2+c3θ
3 = (1−0.7θ)(1+3θ) for N = 3.

The term 1 − 0.7θ allows to obtain a low order
realization of Ω(θ). The term 1 + 3θ is arbitrary.

Table 1. Results: performance level γ

N =3 N =2 N =2,
fixed denominator

γr 1 1.06 1.105
γr − γl

γl
< 1% ≈ 6% ≈ 11%

The results are presented in Table 1. As planned,
the results are better when optimizing with N = 3
than with N = 2 and when optimizing with N = 2
than with N = 2 and a fixed denominator. Note
that for N = 3, γr is very close to γbest.

To illustrate the difficulty of choosing a priori
the denominator, let us focus on the obtained
one when optimizing on its coefficients. We obtain
1− 1.12θ + 3.37θ2 for N = 2 with complex roots.
It is difficult to a priori select such roots.

Now, let us focus on the case N = 3. Even for this
low value of N , the results are “perfect” in the
sense that the transient responses obtained with



the parameter dependent controller and with the
pointwise controllers are superposed (see Figure
3) 2 . The same statement holds for the magnitude

output control input
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Fig. 3. Transient responses to a unit step reference
signal (top) and to a unit step disturbance
signal (bottom) with N = 3

of the closed-loop transfer functions. The figure
is omitted due to space limitation. Due to the
problem formulation, if it is natural that the
magnitude of the closed-loop transfer functions
and the transient responses can be recovered,
it is interesting to see that the usual pointwise
controllers are also recovered: a PI with a lead
effect and a low pass filter with the variation of
37◦ for the lead effect recovered (see Figure 4).
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Fig. 4. Bode plots of controllers with N = 3

3.3 Interest of our approach

For θ = 0, the lead effect is close to 0: the
structure can be readily reduced to a PI with
a low pass filter. Whereas for θ = 1, the lead
effect is important (25◦) and cannot be neglected.
Thus for this set of specifications the structure of
the parameter dependent controller changes from

2 In Figure 3, the figure at the top right does not have the
same time scale than the others. The figures at the top left
and at the bottom right are the same since the considered
transfer functions are the same (GK(I + GK)−1).

θ = 0 to θ = 1 which corresponds to usual tuning
know-how.

Moreover, using classical rules of automatic con-
trol, know-how... a qualitative link between the
performance specifications and the controller gains
can be established. Our approach allows to ex-
press the controller gains as an explicit function
of the performance specifications. A quantitative
link between performance specifications and the
controller gains is thus obtained.
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