
     

 
 
 

EXPERIMENTAL FREQUENCY-DOMAIN METHOD  

FOR CONTROL DESIGN IN HEAVY-DUTY VEHICLES 

 
 

G. van der Zalm**, R. Huisman*, M. Steinbuch** 

 
 

* DAF Trucks NV,  PO Box 90065,  5600 PT Eindhoven, The Netherlands 

** Eindhoven University of Technology, Department of Mechanical Engineering,  

PO Box 513,  5600 MB Eindhoven, The Netherlands 

 
 
 
 

Abstract: The large parameter variations in heavy-duty trucks make it very difficult 
to find appropriate settings for fixed structure speed controllers. Satisfying the design 
specifications with experience-based trial-and-error methods for the control design is 
very time-consuming. This paper discusses the use of experimental frequency 
domain methods for the tuning of speed controllers. The focus is on the cruise 
control, but the method is also applicable to other speed controllers. Experimental 
results are given to validate the approach.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

Heavy-duty vehicles are equipped with many control 
systems, well-known examples being vehicle speed 
and stability control. DAF Trucks NV, a producer of 
trucks in Eindhoven, The Netherlands, equips its 
trucks with more than 50 controllers. Approximately 
ten of these controllers are related to the control of 
vehicle or engine speed, e.g. cruise control or speed 
limiters. They are all of the PID-type, possibly 
extended with filters.  
These controllers have to be tuned to satisfy certain 
driveability performance and stability requirements. 
Currently, the controller tuning is done by experience 
based trial-and-error. This has the disadvantage that 
there is no guarantee for stability or performance 
robustness for other vehicle configurations unless a 
large number of experiments is carried out. Other 
disadvantages are that this method gives no insight in 
possible improvements and that it is very time 
consuming. 
Common tuning techniques for PID-controllers are 
based on the method developed by Ziegler and 
Nichols (Ziegler and Nichols, 1942). These methods 
are widespread in the process industry. Their main 
advantages are that they are simple to use and that no 
explicit model knowledge is required. However, it is 
implicitly assumed in these methods that the 
underlying processes are overcritically damped. 
Therefore they are not suitable for application to 
vehicular drivelines since generally these drivelines 
are weakly damped and, hence, show strong 
mechanical resonances. The frequency and 

magnitude of these resonances vary largely with 
vehicle weight and selected gear ratio. When these 
dynamics are neglected, the performance of the 
closed-loop system can deteriorate and stability can 
be hampered. Finally, using the Ziegler-Nichols 
related methods it is not possible to tune the system 
to satisfy predefined performance specifications. 
The problems related to mechanical resonances are 
also encountered in motion control of mechanical 
systems like robots. In this field, it is common to 
apply frequency domain techniques for controller 
tuning (Steinbuch and Norg, 1998). These techniques 
can only be used if the relevant behavior of the 
system can be described with acceptable accuracy by 
a linear model. For these systems, they offer the 
possibility to tune for performance and stability 
robustness. The required models can be obtained by 
applying first principles of physics, by experimental 
identification or by a combination of these methods. 
This paper discusses the use of these frequency 
domain methods in the tuning of speed controllers. 
The main focus will be on cruise control tuning, but 
the proposed method is also applicable for other 
speed controllers. First, the modelling will be done 
using three methods: physical modelling, step 
response experiments based modelling and frequency 
response function (FRF) measurement. Next, the 
controller structure will be discussed and the tuning 
will be done using loop shaping (Franklin, et al., 
1994). Experimental results will be given to validate 
the approach. Finally, conclusions and 
recommendations will be given. 



     

2. MODELLING AND IDENTIFICATION 

 
2.1 System description 

Figure 1 gives a schematic representation of the 
driveline of a truck. The torque delivered by the 
engine is reduced by the gearbox and transmitted to 
the differential by the propulsion shaft. Two drive 
shafts transmit the torque from the differential to the 
rear wheels. The mass of this truck combined with a 
loaded trailer can vary between 7000 kg and 40,000 
kg. The to-be-controlled quantity is the vehicle speed 
v. Here, the emphasis is on cruise control in 
straightforward driving on horizontal roads, since no 
measurement of the road slope is available. Neither 
engine braking nor braking by the friction brakes 
and/or the retarder are considered. The cruise control 
has to operate for vehicle speeds between 30 and 90 
km/h. 
The available measurement of the vehicle speed is 
delivered by an inductive cog wheel sensor at the 
output shaft of the gearbox. The output of this sensor 
is transmitted to the controller via the CAN-bus of 
the truck. The vehicle speed v is estimated from this 
signal. In the following, this estimation will be 
referred to as the vehicle speed.  
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Fig. 1. Overview of the drive-train 

In all measurements, a truck with a 12 gear 
automated manual transmission is used. This truck is 
equipped with a dSPACE MicroAutoBox, on which a 
MATLAB/Simulink scheme is running that 
communicates with the electronic control unit of the 
engine using the CAN-bus of the truck.    
 
 
2.2 Physical modelling 

It is assumed that the clutch is closed whenever the 
cruise controller is active and that all deformations in 
the engine, the clutch, the gearbox and the 
connecting shafts between these parts may be 
neglected. The propulsion shaft between the gearbox 
and the differential and the drive shafts between the 
differential and the wheels are assumed to behave as 
linear, deformable bodies. Because only straight-on 
driving is considered here, the two drive shafts may 
be combined into one equivalent drive shaft. 

The main external forces acting on the vehicle are the 
wheel slip force and the air resistance, defined as: 

2
vcF

R

vR
cF

aair

w

w
slipslip

=

−
=

ω

ω

 (1) 

Where cslip is the wheel slip coefficient,  which 
depends on the normal force on the driven wheels, 
ωw the angular velocity, R the radius of the driven 
wheels, and ca a constant drag factor. Further 
nonlinear forces are due to the energy dissipation in 
the gearbox and the differential. It is assumed that 
these losses are proportional to the angular velocity 
of the corresponding shaft.  
Since the controller has to realize a constant, 
prescribed speed v0, it is obvious to linearise 
nonlinear effects around a stationary operating point. 
This operating point is defined by (i) the vehicle 
weight, (ii) the vehicle speed, and (iii) the selected 
gear. Assuming that Rωw,0=v0, linearization of 
equation (1) results in: 
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Figure 2 shows a simplified linear representation. 
The stiffness and damping of the propulsion and 
drive shafts are lumped into one spring k and damper 
b2, taking into account the ratio of the gearbox and 
differential. The three inertia J1, J2, and J3 represent 
the engine, the wheels and the chassis respectively, 
and ϕ1, ϕ2, and ϕ3 are the corresponding angular 
rotations.  
The wheel slip is modelled by the damper b4 between 
the wheels and the chassis inertia. The three dampers 
b1, b3, and b5 represent the losses due to gear box 
inefficiency, differential inefficiency, and air 
resistance respectively. 
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Fig. 2. Linear representation of the drive-train 

The engine torque is assumed to be proportional to 
the injected fuel: 

inengeng fcT = , (3) 

where ceng is the engine constant. 
The state space representation of this model equals: 
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Fig. 3. Normalised step responses for amplitudes 
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where igb is the gearbox ratio,  idiff is the differential 
ratio, y the vehicle speed in km/h, and u the injected 
fuel in mg/stroke. 
 
 
2.3 Step response based modelling 

Here, the approximate realisation theory (Schutter, 
2000) is utilised to estimate a model from a measured 
step response. It should be noted that a step response 
excites the lower frequencies more than the higher 
frequencies, resulting in a less accurate model for the 
high-frequency dynamics. For a linear system, the 
normalised responses to different input amplitudes 
should be the same. Therefore, each step response y 
is normalised by the step size and shifted in time 
resulting in ynorm: 
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where to is the starting time, and ∆u the amplitude of 
the stepwise fuel injection.  
The models used for the controller tuning should 
cover the complete operating range of interest. To 
this end, step response measurements have been 
performed at various speeds for two gears for which 
the desired cruise speed is attainable. In addition the 
vehicle weight is varied between the two extreme 
lading conditions and different amplitudes of the 
stepwise input are used. 
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Fig. 4.  Experimental setup for closed loop 

sensitivity measurement 

As an example, figure 3 shows the normalised 
responses for a 40 ton truck driving 30 km/h in gear 
8. It can be concluded that the slopes after the 
oscillation in the normalised responses are 
approximately the same. However, the amplitude of 
the oscillation seems to decrease for higher input 
amplitudes, indicating non-linear behaviour. This 
behaviour is neglected, and it is assumed further on 
that the system is linear. A final observation is that a 
time delay of approximately 70 ms is visible in all 
measurements. This time delay is caused by the 
sampling on the CAN-bus, and a delay in the engine 
dynamics.  
Due to the large influence of measurement noise 
(mainly harmonic, due to sensor misalignment) on 
the calculation of the model, it is necessary to filter 
the data. The choice for model order and the used 
time span of the step response have a large influence 
on the resulting model. A longer time span gives a 
better low-frequency estimation at the cost of less 
accurate high-frequency estimation. Here, these 
factors have been compromised in such a way that 
the resulting models are reliable for low frequencies.  
 
 
2.4 FRF  measurement 

For frequency domain identification, sensitivity 
measurements are performed (Ljung, 1999). During 
the measurements, a PI-controller is used to keep the 
velocity near the desired operating point, as depicted 
in figure 4, where the reference trajectory r is kept 
constant. The input d is the excitation of the plant and 
contains frequencies that are relevant for the 
identification. The transfer function from the 
excitation d to the plant input u is called the 
sensitivity, estimated with: 
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where Pdu is the cross-spectral density between d and 
u, and Pdd is the autospectrum of d. Since the 
controller transfer function is exactly known it is 
possible to reconstruct an estimate for P with: 
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Experiments have been done with low-pass filtered 
white noise inputs containing frequencies up to 40 
Hz in the same operating point as described above. 



     

   

 
Fig. 5.  Models for a 40 ton truck driving 50 km/h in 

gear 9; FRF (-), step (--), and physical (:) 

 
Fig. 6. Bode plots of the models for all operating 

points 

 
2.5 Model comparison 

Figure 5 shows the resulting models for a 40 ton 
truck driving in gear 9 at 50 km/h. Some of the 
parameters of the physical model are estimated by 
using the reconstructed plant FRF. In addition, a low-
pass filter and a delay are added to the physical 
model to fit the measured FRF for high frequencies. 
The need for this low-pass filter can be explained by 
the engine dynamics.  
Based on this figure and the earlier considerations, 
the following observations, valid throughout the 
entire operating range, can be made: 
- The tuned physical model is able to predict the 

behaviour of the truck very well. Hence, the 
model structure seems to be sufficient.  

- The estimated model based on the step response 
is reliable for low frequencies, but the high 
frequency behaviour is not captured properly. 

- The FRF estimates are reliable for high 
frequencies, but not for low frequencies. This is 
indicated by the coherence functions (not shown), 
which show that the FRF estimates are reliable 
for frequencies higher than 0.5 Hz. It should be 
noted that there are just a few data points for low 
frequencies, i.e. at 0.1 Hz and at 0.2 Hz. 

- The time delay is clearly visible in the FRF 
measurements as an increasing phase lag. By 

plotting the phase on a linear scale the time delay 
is estimated equal to 60 [ms], which is 
approximately the same as observed from the step 
responses. 

 
Based on these observations a combination of the 
step response based model and the FRF estimate is 
constructed and used for the tuning of the controller. 
The step response based models are used for the low 
frequency region, whereas the FRF estimates are 
used for the high frequency region. The physical 
model is useful for the evaluation of the influence of 
configuration changes. In figure 6, the Bode plots of 
the combined models for all operating points are 
shown.  
 
 

3. CONTROLLER TUNING 

3.1 Controller structure 

The controller used at DAF for all types of speed 
control is a PI-controller in series with a first order 
filter: 
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where KP is the proportional gain, KI is the integral 
gain, and τ is the time constant of the low-pass first 
order filter. Additional features are an integral anti-
windup, and the possibility to use two sets of PI-
gains, called low gain and high gain. In the 
implemented controller, the value for τ has to be the 
same for low gain and high gain.  
The low gain will be tuned for all operating points, 
and the high gain will be used to increase the 
performance in operating points with a high vehicle 
weight and high vehicle speed. 
 
 
3.2 Performance and stability specifications 

The driveability performance specifications are 
expressed in terms of step response related quantities: 
- The overshoot MP is the maximum amount the 

system overshoots its final value, divided by its 
final value. 

- The rise time tr is the time it takes the system to 
reach its final value for the first time. 

Franklin, et al. (1994) relate these quantities with the 
natural frequency ωo and the specific damping ζ for 
an undercritically damped second order system: 
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These relations for a second order system can be used 
as a rough approximation for other systems.  



     

 
Fig. 7. Nyquist plots for the low gain controller 

setting with all operating points. 

With ωo as an approximation for the desired 
bandwidth1 ωbw,des, equations (10) are used to specify 
the performance criteria for the closed loop system. 
The classical quantities used to assess stability 
robustness are the gain margin GM and the phase 
margin PM. GM is the factor by which the gain can 
be multiplied before the Nyquist curve of the open 
loop intersects the point (-1,0), and PM is the amount 
by which the phase of the open loop can be decreased 
before the open loop intersects (-1,0). For PM≤70

o, 
the relative damping ζ  may be approximated by 
(Franklin, et al, 1994): 

100
PM

≈ζ  (12) 

with PM in degrees. Using equations (11) and (12), it 
is possible to calculate a desired PMdes from the 
specification on the overshoot MP. The value for the 
desired gain margin GMdes is initially set to 2, as 
recommended by Åström and Hägglund (1995). 
 
 
3.3 Tuning  approach 

The specifications derived above have to be achieved 
for all operating points. This is done by tuning the 
low gain of the controller, such that it satisfies the 
specifications for all operating points. The high gain 
of the controller is tuned for a smaller set of 
operating points, namely for vehicle speeds above 70 
km/h and gears higher than 10. 
The approach taken here is to identify a worst-case 
operating point in the set of operating points, and 
then use loop shaping on this worst-case model to 
find the controller parameters KP and τ such that the 
specifications are satisfied. The value for KI is 
maximised, since this leads to better load disturbance 
attenuation (Åström and Hägglund, 1995). This 
maximisation is done using all operating points, since 
using the worst-case only gives no guarantee that the  

                                                 

1 The bandwidth of the system is defined here as the 0 dB 
crossover frequency of the magnitude of P(s)C(s). 

 
Fig. 8. Vehicle speed (upper) and fuel injection 

response (lower) to a stepwise disturbance in 
the fuel input for GM = 2 (solid line) and  
increased GM (dashed line) 

desired PM is achieved for all models.  
An analysis with the physical model shows that the 
worst-case operating point is the truck with the 
highest vehicle weight, driving with the lowest 
vehicle speed in the lowest gear. In the case of tuning 
the low gain of the cruise control, this means that the 
the worst case model is a 40 ton truck driving 30 
km/h in gear 7.  
The value for the proportional action KP is chosen 
such that the desired bandwidth is reached for the 
worst-case, according to: 
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Next, the value for τ is chosen such that the desired 
value for GMdes is achieved for the worst-case model. 
This guarantees stability for all operating points. 
Finally, KI is maximised under the constraint that the 
desired PM is satisfied for all operating points. 
The same stepwise procedure is taken for the high 
gain set of the cruise control, but with the model of 
the truck driving 70 km/h in gear 10 as the worst-
case. 
 
 
3.4 Tuning results 

Figure 7 shows the resulting Nyquist plots for the 
low gain of the controller for the relevant operating 
points. All open loop transfers satisfy the specified 
GM and PM. It can be concluded that the outlined 
approach results in controller settings that achieve the 
specifications for all operating points. 
 
 

4. EXPERIMENTAL VALIDATION 

First, the stability of the worst-case operating point 
for low gain is assessed. Figure 8 shows the response 
to a tip-in disturbance, i.e. the driver pressing the 
accelerator pedal for approximately 0.6 seconds. The 
response shows a weakly damped oscillation. A 



     

cause for this oscillation can be the neglected 
nonlinearity of the resonance amplitude, or the 
driveline backlash or friction, which is not taken into 
account in the control design. The latter nonlinear 
effects are known to cause limit cycles (Hensen, 
2002), and several solutions to this problem have 
been proposed, involving nonlinear control laws or 
adding a load observer (Lagerberg and Egardt, 2002; 
Nordin and Gutman, 2002). 
However, since the controller structure is fixed, the 
approach taken here to solve this problem is to 
reduce the high-frequency control action by 
increasing GM. To achieve this, the value for τ has to 
be increased. Experimentally, it turned out that an 
increased GM gave subjectively good results. This is 
shown in figure 8 as the dashed line.  
The consequence of a higher GM is that the 
bandwidth has to be lowered to allow integral action. 
In a test in which the setpoint is changed from 30 to 
40 km/h, the overshoot is within the specifications 
for all operating points. An example is shown in 
figure 9. However, due to the large operating range 
of the low gain the value for the integral gain is 
rather low, which results in sluggish settling 
behaviour. For the driver of the truck, this effect is 
barely noticeable, so this behaviour is judged 
acceptable. 
 
 
5. CONCLUSIONS & RECOMMENDATIONS 

The three presented modelling methods are 
complementary in the sense that the step response 
based method results in reliable low-frequent models, 
the FRF measurements give a reliable model for high 
frequencies, and the physical model is useful for 
interpretation of experimental results and evaluating 
configuration changes.  
The presented frequency domain tuning method 
offers the possibility to tune the speed controllers in 
heavy-duty trucks in a structured way. The use of 
stability and performance criteria as tuning 
parameters is faster and more robust than trial-and-
error or Ziegler-Nichols related methods. 
Experimental results show that the controllers 
resulting from the tuning method meet the 
specifications. 
It is recommended to implement a controller 
structure which is able to use a vehicle weight 
estimate to change its parameters. This gives the 
possibility to use an increased integral gain, which 
improves the disturbance attenuation. 
In future work an effort will be made to automate the 
tuning process by means of an optimisation 
algorithm. This eliminates the loop shaping by hand. 
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Fig. 9. Vehicle speed response for a 40 ton truck 

driving 32 km/h in gear 7 
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