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Abstract: In this paper, a simple neural network (NN) control scheme is developed
for a class of discrete-time multi-input multi-output (MIMO) non-affine nonlinear
systems with triangular form inputs and disturbances. The system studied is
described by NARMAX (Nonlinear Auto Regressive Moving Average with eX-
ogenous inputs) model. Firstly, by using implicit function theorem, the existence
of the implicit desired feedback control (IDFC) is proved. Then single layer neural
networks are used as the emulators of the desired controls. The stability of the
closed-loop system is rigorously proved by using Lyapunov method. Because only
input and output sequences are needed to construct the approximation based
controls, the method proposed is very simple to be implemented in practical
applications. Copyright c©2005 IFAC
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1. INTRODUCTION

Neural networks control of nonlinear systems has
been extensively studied in the past decades.
The universal approximation ability of neural net-
works makes it one of the effective tool in non-
linear system identification and control(Cabrera
and Narendra, 1999; Narendra and Parthasarathy,
1990; Polycarpou, 1996). Most often used neural
networks include Radial Basis Function (RBF)
neural networks (Lewis et al., 1999; Ge et al.,
2001), HONNs (Kosmatopoulos et al., 1995) and
Multi-layer Neural Networks (MNNs) (Lewis et
al., 1999; Ge et al., 2001). In this paper, single
layer neural networks (RBF and HONN) are used
to approximate the unknown nonlinear implicit
desired feedback controls, which can drive the
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outputs of the MIMO systems studied to track
the desired trajectories.

Nowadays, because most of the control systems
are implemented in digital computers, the study
on discrete-time systems are attracting more and
more attentions. One of the most popular non-
linear discrete-time systems studied in the liter-
ature is the NARMAX systems (Leontaritis and
Billings, 1985), in which, only input output data
are used in the description of the system model.
Due to most of the discrete time systems in state
space representation can be transformed into the
NARMAX description (Ge et al., 2003d; Zhang et
al., 2003), the study on control and identification
of NARMAX models by output feedback is mean-
ingful. SISO NARMAX systems have been exten-
sively studied in (Billings and Voon, 1986; Chen
and Khalil, 1995; Ge et al., 2003d; Ge et al., May,
2003b). For MIMO NARMAX models, relative
less results have been obtained. Previous works



on MIMO NARMAX systems include (Ge et
al., 2003c; Jagannathan and Lewis, 1996a; Ja-
gannathan and Lewis, 1996b; Sun et al., 1998).
Unfortunately, all of those works deal with affine
systems, i.e., the control inputs appear linearly,
which makes the feedback linearization method
applicable. For MIMO non-affine systems, even
fewer results have been obtained.

In (Ge et al., 2003c), neural network control
scheme was investigated for a class of MIMO
NARMAX discrete time systems. The τ -step
weight update laws was proved to be effective in
handling the τ -step predictor model in the pres-
ence of unknown bounded disturbances. However,
the system studied is in affine form and an orthog-
onal matrix should be found in order to update
the NN weights. In this paper, the system studied
is in non-affine MIMO NARMAX form. For the
n × n MIMO systems, the inputs of the system
are in triangular form. Due to this property and
by implicit function theorem (Ge et al., 2001), we
can firstly define the IDFC controls in a nested
manner, then using neural networks to emulate
those IDFC. The main contributions of this paper
can be summarized as follows: (i) An effective NN
control scheme is developed for a class of non-
affine nonlinear discrete-time MIMO systems with
triangular form inputs; (ii) The proposed method
is very simple for practical implementation; (iii)
The closed loop system is proved to be stable in
the presence of bounded disturbances.

This paper is organized as follows. System dynam-
ics as well as some stability notions are proposed
in Section 2. Controller design and stability analy-
sis are discussed in Section 3. Finally, conclusions
are made in Section 4. Due to space limitation,
simulation results are omitted in this paper.

2. MIMO SYSTEM DYNAMICS

Considering the following n × n non-affine non-
linear NARMAX MIMO systems with triangular
form inputs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(k + τ) = f1(Y (k), Uk−1(k), Dk−1(k),
Dk+τ−1(k), u1(k))

...
yj(k + τ) = fj(Y (k), Uk−1(k), Dk−1(k),

Dk+τ−1(k), u1(k), . . . , uj(k))
...

yn(k + τ) = fn(Y (k), Uk−1(k), Dk−1(k),
Dk+τ−1(k), u1(k), . . . , un(k))

(1)

where τ is the system delay; y(k)=[y1(k), . . .,
yn(k)]T ∈ Rn and u(k) = [u1(k), . . . , un(k)]T ∈
Rn are system outputs and inputs, respectively;

Y (k) is a vector containing current and past out-
puts, Uk−1(k) is a vector containing only past in-
puts; Dk−1(k) and Dk+τ−1(k) represent the past
and future (include current disturbance) bounded
disturbances respectively. In particular, they are
defined as

Uk−1(k) = [u1(k − 1), . . . , u1(k − m1),

u2(k − 1), . . . , u2(k − m2),

. . . ,

un(k − 1), . . . , un(k − mn)]T

Y (k) = [y1(k), . . . , y1(k − n1 + 1),

y2(k), . . . , y2(k − n2 + 1),

. . . ,

yn(k), . . . , yn(k − nn + 1)]T

Dk−1(k) = [d(k − 1), . . . , d(k − h)]T

Dk+τ−1(k) = [d(k + τ − 1), d(k + τ − 2), . . . , d(k)]T

with ni denotes the length of the i-th subsys-
tem’s outputs, and mi is the length of the i-th
subsystem’s inputs, which satisfies mi < ni, i =
1, . . . , n; h denotes the length of the past distur-
bances; fj(·) are nonlinear functions; ūj−1(k) =
[u1(k), . . . , uj−1(k))]T . For the ease of analysis,
define (j = 1, . . . , n)

fj(k, u1(k), . . . , uj(k)) �
fj(Y (k), Uk−1(k), Dk−1(k), Dk+τ−1(k),

u1(k), . . . , uj(k))

The control objective is to design control input
u(k) for system (1) to drive the system out-
put y(k) follow a known and bounded trajectory
yd(k) = [yd1(k), yd2(k), . . . , ydn(k)]T ∈ Rn.

Assumption 2.1. The desired trajectory yd(k) ∈
Ωyd ⊂ Rp, ∀k > 0 is smooth and known,
where Ωyd is a small subset of Ωy and Ωy �
{χ(k)|χ(k) = y(k)} ⊂ Rp.

Assumption 2.2. There are positive constants µ
i

and µ̄i (i = 1, . . . , n), such that 0 < µ
i

≤
|∂fi(k,u1(k),...,ui(k))

∂ui
| ≤ µ̄i.

Remark 2.1. The partial derivative ∂fi(·)
∂ui(k) can be

considered as the controller gain of the i-th input
for the i-th subsystem. Assumption 2.2 indicates
that this control gain is either positive or negative,
and is also upper and lower bounded. The sign
does not need to be known a priori.

Assumption 2.3. The function fi(k, u1(k),. . .,ui(k))
is locally Lipschitz in Dk−1(k) and Dk+τ−1(k) at
(0, 0), i.e., there are Lipschitz constants L1 and
L2 such that



‖fi(Y (k), Uk−1(k), Dk−1(k), Dk+τ−1(k),

u1(k), . . . , ui(k))

−fi(Y (k), Uk−1(k), 0, 0, u1(k), . . . , ui(k))‖
≤ L1‖Dk−1(k)‖ + L2‖Dk+τ−1(k)‖

Assumption 2.4. The disturbances vector Dk−1(k)
and Dk+τ−1(k) are bounded, i.e., ‖Dk−1(k)‖ ≤
D1 and ‖Dk+τ−1(k)‖ ≤ D2 with D1 and D2 are
positive constants.

Assumption 2.5. The nonlinear functions fi(k,
u1(k), . . ., ui(k)) (i = 1, . . . , n) are differentiable.

In the following, Lemma 2.1 (Mean Value The-
orem for multi variables), Lemma 2.2 (Implicit
Function Theorem) and Lemma 2.3 (Bounded
Input Bounded Output) are given, which will be
used later.

Lemma 2.1. Let f : Rn → R be differentiable
at every point in an open set containing the line
segment L joining two vectors ā and b̄ in Rn, then
there is a vector ξ̄ on L such that

f(b̄) − f(ā) = �f(ξ̄) · (b̄ − ā)

with �f(·) denotes the gradient of f(·).

Lemma 2.2. Assume that f(x, y) : Rn × R → R
is continuously differentiable ∀(x, y) ∈ Rn × R,
and there exists a positive constant d such that
∂f(x, y)/∂y(x, y) > d > 0, ∀(x, y) ∈ Rn × R.
Then there exists a continuous (smooth) function
y∗ = g(x) such that f(x, y∗) = 0. For the case
∂f(x, y)/∂y(x, y) < −d < 0, ∀(x, y) ∈ Rn × R.
The result still holds (Ge et al., 2001).

Lemma 2.3. : Consider the linear time varying
discrete-time system given by

x(k + 1) = A(k)x(k) + Bu(k), y(k) = Cx(k)(2)

where A(k), B and C are appropriately dimen-
sional matrices with B and C are constant ma-
trices. Let Φ(k1, k0) be the state-transition ma-
trix corresponding to A(k) for system (2), i.e.
Φ(k1, k0) =

∏k1−1
k=k0

A(k). If ‖Φ(k1, k0)‖ < 1, ∀k1 >
k0 ≥ 0, then system (2) is (i) globally ex-
ponentially stable for the unforced system (i.e.
u(k) = 0); and (ii) bounded-input-bounded-
output (BIBO) stable (Ge et al., 2003d).

Define the tracking error e(k) = y(k) − yd(k) as

e(k) = [e1(k), . . . , en(k)]T

= [y1(k) − yd1(k), . . . , yn(k) − ydn(k)]T (3)

Considering the first equation in (1), subtracting
yd1(k + τ) on both sides, we have

e1(k + τ) = f1(Y (k), Uk−1(k), 0, 0, u1(k))

−yd1(k + τ) + ∆1(k)

with ∆1(k) � f1(k, u1(k)) − f1(Y (k), Uk−1(k), 0,
0, u1(k)).

Noting Assumption 2.2, we can obtain

|∂ [f1(Y (k), Uk−1(k), 0, 0, u1(k)) − yd1(k + τ)]
∂u1

|
> µ

1
> 0

by Lemma 2.2, we know that there is

u∗
1(k) � α′

1(Y (k), Uk−1(k), yd1(k + τ))

� α1(Y (k), Uk−1(k), yd(k + τ)) (4)

such that f1(Y (k), Uk−1(k), 0, 0, u1(k)) − yd1(k+
τ) = 0, therefore we have

e1(k + τ) = f1(Y (k), Uk−1(k), 0, 0, u∗
1(k))

−yd1(k + τ) + ∆1(k)

= ∆1(k)

By assumption 2.3 and 2.4, we know that ∆1(k)
is bounded. That is to say, the tracking error
is bounded. Furthermore, if there are no distur-
bances, we can obtain ∆1(k) = 0, i.e, exact track-
ing can be achieved.

Remark 2.2. It should be noted that though u∗
1(k)

only depends on Y (k), Uk−1(k) and yd1(k+τ), for
the ease of analysis, we regard it as a function of
Y (k), Uk−1(k) and yd(k + τ).

Once u1(k) is fixed as u∗
1(k), by following the same

procedure and considering the second equation in
(1), we have

e2(k + τ) = f2(Y (k), Uk−1(k), 0, 0, u∗
1(k), u2(k))

−yd2(k + τ) + ∆2(k)

with ∆2(k) � f2(k, u1(k), u2(k)) − f2(Y (k),
Uk−1(k), 0, 0, u1(k), u2(k)). Choosing u1(k) =
u∗

1(k) = α1(Y (k), Uk−1(k), yd(k + τ)), noting
Assumption 2.5 and by Lemma 2.2, we know that
there is an ideal control

u∗
2(k) � α′

2(Y (k), Uk−1(k), yd1(k + τ), yd2(k + τ))

� α2(Y (k), Uk−1(k), yd(k + τ)) (5)

such that f2(Y (k), Uk−1(k), 0, 0, u∗
1(k), u2(k)) −

yd2(k + τ) = 0, therefore we have

e2(k + τ) = f2(Y (k), Uk−1(k), 0, 0, u∗
1(k), u∗

2(k))

−yd2(k + τ) + ∆2(k)

= ∆2(k)

Similarly, we know that there are ideal controls



u∗
3(k) � α3(Y (k), Uk−1(k), yd(k + τ))

. . .

u∗
j(k) � αj(Y (k), Uk−1(k), yd(k + τ)) (6)

. . .

u∗
n(k) � αn(Y (k), Uk−1(k), yd(k + τ))

such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e3(k + τ) = ∆3(k)
...

ej(k + τ) = ∆j(k)
...

en(k + τ) = ∆n(k)

Defination 2.1. The ideal controls u∗
1(k), u∗

2(k),
. . ., u∗

n(k), which can realize exact tracking in τ
steps and cannot be explicitly spelt out, are called
implicit desired feedback control (IDFC).

Summarizing equations (4), (5) and (6), we can
see that the i-th IDFC, u∗

i (k), can be expressed
as follows

u∗
i (k) = αi(z(k)), i = 1, 2, . . . , n (7)

with z(k) � [Y T (k), UT
k−1(k), yT

d (k + τ)]T ∈
R

∑n

j=1
(mj+nj)+n. Its vector form is as follows

u∗(k) =

⎡
⎢⎢⎢⎣

α1(z(k))
α2(z(k))

...
αn(z(k))

⎤
⎥⎥⎥⎦ ∈ Rn×1 (8)

It can be seen that system (1) is in non-affine form.
For the convenience of analysis, denote system (1)
in the following vector form

y(k + τ) = F (Y (k), Uk−1(k),

Dk−1(k), Dk+τ−1(k), u(k)) (9)

with nonlinear vector function F (·) ∈ Rn×1 is
defined as

F (·) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1(k, u1(k))
...
fj(k, u1(k), . . . , uj(k))
...
fn(k, u1(k), . . . , un(k))

⎤
⎥⎥⎥⎥⎥⎥⎦

Therefore, we have

e(k + τ) = F (Y (k), Uk−1(k), Dk−1(k),

Dk+τ−1(k), u(k)) − yd(k + τ)(10)

Adding and subtracting F (Y (k), Uk−1(k), 0, 0,
u∗(k)) to the right side of equation (10), we have

e(k + τ) =

F (Y (k), Uk−1(k), Dk−1(k), Dk+τ−1(k), u(k))

−F (Y (k), Uk−1(k), 0, 0, u∗(k)) (11)

Considering the i-th 1 ≤ i ≤ n equation in
the error dynamics (11), adding and subtracting
fi(Y (k), Uk−1(k), Dk−1(k), Dk+τ−1(k), u∗

1(k),
. . ., u∗

i (k)) to the right side of the i-th error
equation, we have

ei(k + τ) = fi(k, u1(k), . . . , ui(k)) (12)

−fi(k, u∗
1(k), . . . , u∗

i (k)) + ∆∗
i (k)

with ∆∗
i (k) � fi(Y (k), Uk−1(k), Dk−1(k), Dk+τ−1(k),

u∗
1(k), . . ., u∗

i (k)) − fi(Y (k), Uk−1(k), 0, 0, u∗
1(k),

. . ., u∗
i (k)). By assumption 2.3 and 2.4, we can

obtain that ∆∗
i (k) (i = 1, . . ., n) is bounded.

By noting Lemma 2.1, the Mean Value Theorem
for multi variables, equation (12) can be written
as

ei(k + τ) = �fi(k, ūξi) [ūi(k) − ū∗
i (k)]

+∆∗
i (k) (13)

with

ūξi = [uξi1 , uξi2 , . . . , uξii ]
T

�fi(k, uξi) = [
∂fi

∂u1
,
∂fi

∂u2
, . . . ,

∂fi

∂ui
] ∈ R1×i

with ūξi ∈ [ū∗
i (k), ūi(k)].

Then equation (11) can be written as

e(k + τ) = �F (k) · [u(k) − u∗(k)] + ∆∗(k)(14)

with ∆∗(k) � [∆∗
1(k), . . . , ∆∗

n(k)]T and

�F (k) � [�f1(k, uξ1), . . . , �fn(k, uξn)]T

=

⎡
⎢⎢⎢⎢⎣

∂f1

∂u1
|u1(k)=uξ11

0 0

...
. . . 0

∂fn

∂u1
|u1(k)=uξn1

. . .
∂fn

∂un
|un(k)=uξnn

⎤
⎥⎥⎥⎥⎦(15)

For the ease of analysis, define

G(k) � �F (k) (16)

Therefore, we have

e(k + τ) = G(k) [u(k) − u∗(k)] + ∆∗(k) (17)

It can be easily obtained that the matrix G(k)
possess the following properties:

(1) |G(k)| = Πn
i=1

(
∂fi

∂ui
|ui(k)=uξii

)
	= 0;



(2) G(k) is upper and lower bounded, i.e, there
are two constants a = Πn

i=1µi
and b =

Πn
i=1µ̄i, such that aI ≤ G(k) ≤ bI (a, b > 0)

or bI ≤ G(k) ≤ aI (a, b < 0) .

It can be seen that the matrix G(k) is either posi-
tive or negative, which depends on the signs of its
diagonal elements. In the following, without losing
of generality, we assume that G(k) is positive, i.e,
aI ≤ G(k) ≤ bI (a, b > 0). Therefore, we can
obtain

1
b
I ≤ G−1(k) ≤ 1

a
I, a, b > 0 (18)

3. STABILITY ANALYSIS

Considering the IDFCs defined in equation (8),
they are continuous nonlinear functions. There-
fore, there are ideal weights W ∗ such that the
smooth function vector u∗(k) can be approxi-
mated by an ideal NN on a compact set Ωz ⊂ Rq

u∗(k) = W ∗T S(z(k)) + εz (19)

where z(k) has been defined in equation (7) as
follows

z(k) =

⎡
⎣ Y (k)

Uk−1(k)
yd(k + τ)

⎤
⎦ ∈ Ωz ⊂ Rq

q =
n∑

i=1

(ni + mi) + n

εz = [εz1 , . . . , εzn ]T

and εz is the bounded NN approximation error
vector satisfying ‖εz‖ ≤ ε0 (ε0 is a constant vec-
tor) on the compact set, which can be reduced by
increasing the number of the adjustable weights.
The ideal weight matrix W ∗ is required for analyt-
ical purpose only, and is defined as that minimizes
‖εz‖ for all z(k) ∈ Ωz ⊂ Rq in a compact region,
i.e.,

W ∗ � arg min
W∈Ωw

{
sup
z∈Ωz

|u∗(k) − WT S(z(k))|
}

(20)

with Ωz ⊂ Rq and compact set Ωw ⊂ Rl×p.
In general, the ideal NN weight matrix, W ∗,
is unknown though constant, its estimate, Ŵ ,
should be used for controller design which will be
discussed in the following.

Choosing the practical neural network controls
and corresponding weight update laws as follows

u(k) = ŴT (k)S(z(k)) (21)

Ŵ (k + 1) = Ŵ (k − τ + 1)

−Γ
[
S(z(k − τ + 1))eT (k + 1)

+σŴ (k − τ + 1)
]

(22)

where Γ = γI with γ > 0, σ is a positive constant
number and assume 0 < 1−σγ < 1, Ŵ (k) ∈ Rp×l

and S(z(k)) ∈ Rl. For the ease of analysis, we
rewrite equation (22) as follows

Ŵ (k + τ) =

Ŵ (k) − Γ
[
S(z(k))eT (k + τ) + σŴ (k)

]
(23)

Noting equation (17), we can obtain that

e(k + τ) = G(k)[ŴT (k)S(z(k)) − W ∗T

(k)S(z(k))

−εz] + ∆∗(k)

Thus, we can obtain

W̃T (k)S(z(k)) = G−1(k)e(k + τ) + εd (24)

with εd = εz − G−1(k)∆∗(k) is bounded.

Theorem 3.1. Consider the closed-loop system
consisting of system (1), controller (21) and adap-
tation law (22). There exist compact sets Ωy0 ⊂
Ωy, Ωw0 ⊂ Ωw and positive constants l∗, γ∗ and
σ∗ such that if

(1) All the assumptions being satisfied, the con-
dition at time instant k0 is initialized as

y(k0 − j) ∈ Ωy0 ,
j = 0, . . . , max{n1, . . . , nn} − 1

u(k0 − j) ∈ Ωu,
j = 1, . . . , τ + max{m1, . . . , mn}

W̃ (k0 − j) ∈ Ωw0 ,
j = 0, . . . , τ − 1

(2) the semi determined future outputs at time
instant k0, y(k0 +1), . . . , y(k0 + τ − 1) are all
in compact set Ωy, and

(3) the design parameters are suitably chosen
such that l > l∗, σ < σ∗ and γ < γ∗ with
γ being the eigenvalue of Γ,

then, the closed-loop system is SGUUB.

Proof: Choose Lyapunov function candidate as

J(k) =
1
b

τ−1∑
j=0

tr{e(k + j)eT (k + j)}

+
τ−1∑
j=0

tr{W̃T (k + j)Γ−1W̃ (k + j)}(25)

where b is the positive constant, which denotes the
upper bound of the matrix G(k). Detailed proof
procedure can be done by following the proof
procedure in (Ge et al., 9-12 Dec. 2003a), due to
space limitation, it is omitted here.

We have

∆J(k)≤−1
b
eT (k + τ){1 − 2σγ



−γb(1 + σ + l)}e(k + τ) − beT (k)e(k)

+C0

with C0 = σ‖W ∗‖2
F + σγαT

0 α0 + 1
γ εT

d εd being a
positive constant. If we choose the design param-
eters as follows

1
γ

> 2σ + b(1 + σ + l) (26)

then we can obtain

∆J(k) ≤ −beT (k)e(k) + C0

then ∆J(k) ≤ 0 once any of the tracking errors

|ei(k)|, i = 1, . . . , p is larger than
√

C0
b . Further-

more, the tracking error e(k) will converge to the
compact set denoted by

Ωe0 � {e(k)
∣∣∣ |ei(k)| ≤

√
C0

b
, i = 1, . . . , p} (27)

Due to negativeness of ∆J(k), we conclude that
e(k + τ) must converges to the compact set Ωe0 if
e(k) outside of Ωe0 and all other conditions hold.
Thus y(k + τ) ∈ Ωy will still hold if Ωe0 ⊂ Ωe. �

4. CONCLUSION

In this paper, a simple NN control scheme was
developed for a class of discrete time nonlinear
non-affine MIMO systems with disturbances. The
inputs of the MIMO system are in triangular form.
By using implicit function theorem, firstly, the ex-
istence of the IDFCs was shown. Then single layer
neural networks were used as the emulators of
the IDFCs. Only input and output sequences were
used to construct the effective neural network con-
trol, which is simple for practical implementation.
Finally, the closed-loop system was proved to be
SGUUB based on Lyapunov analysis.

REFERENCES

Billings, S. A. and W. S. F. Voon (1986). A
prediction-error and stepwise regression al-
gorithm for nonlinear systems. Internatonal
Journal of Control 44, 803–822.

Cabrera, João. B. D. and Kumpati. S. Naren-
dra (1999). Issues in the application of neural
networks for tracking based on inverse con-
trol. IEEE Transaction on Automatic Control
44(11), 2007–2027.

Chen, F. C. and H. K. Khalil (1995). Adaptive
control of a class of nonlinear discrete-time
systems using neural networks. IEEE Trans-
actions on Automatic Control 72(7), 791–
807.

Ge, S. S., C. C. Hang, T. H. Lee and T. Zhang
(2001). Stable Adaptive Neural Network Con-
trol. Kluwer Academic. Boston, MA.

Ge, S. S., G. Y. Li and N. Xi (9-12 Dec. 2003a).
Direct adaptive control for a class of multi-
input and multi-output nonlinear systems us-
ing neural networks. Proceedings of the 42nd
IEEE Conference on Decision and Control.

Ge, S. S., G. Y. Li and T. H. Lee (May, 2003b).
Adaptive NN control for a class of strict-
feedback discrete-time nonlinear systems. Au-
tomatica 39(5), 807–819.

Ge, S. S., G. Y. Li, J. Zhang and T. H. Lee
(2003c). Direct adaptive control for a class
of MIMO nonlinear systems using neural net-
works. accepted by IEEE Transactions on Au-
tomatic Control.

Ge, S. S., T. H. Lee, G. Y. Li and J. Zhang
(2003d). Adaptive NN control for a class
of discrete-time nonlinear systems. Interna-
tional Journal of Control 76(4), 334–354.

Jagannathan, S. and F. L. Lewis (1996a).
Discrete-time neural net controller for a class
of nonlinear dynamical systems. IEEE Trans-
action on Automatic Control 41(11), 1693–
1699.

Jagannathan, S. and F. L. Lewis (1996b). Multi-
layer discrete-time neural-net controller with
guaranteed performance. IEEE Trans. Neural
Network 7(1), 107–130.

Kosmatopoulos, E. B., M. M. Polycarpou, M. A.
Christodoulou and P. A. Ioannou (1995).
High-order neural network structures for
identification of dynamical systems. IEEE
Trans. Neural Networks 6(2), 422–431.

Leontaritis, I. J. and S. A. Billings (1985).
Input-output parametric models for nonlin-
ear systems. International Journal of Control
41(2), 303–344.

Lewis, F. L., S. Jagannathan and A. Yesildirek
(1999). Neural Network Control of Robot Ma-
nipulators and Nonlinear Systems. London :
Taylor & Francis.

Narendra, K. S. and K. Parthasarathy (1990).
Identification and control of dynamic systems
using neural networks. IEEE Transactions on
Neural Networks 1(1), 4–27.

Polycarpou, M. M. (1996). Stable adaptive neu-
ral control scheme for nonlinear systems.
IEEE Transactions on Automatic Control
41(3), 447–451.

Sun, F., Z. Sun and P. Y. Woo (1998). Sta-
ble neural-network-based adaptive control
for sampled-data nonlinear systems. IEEE
Trans. Neural networks 9(5), 956–968.

Zhang, J., S. S. Ge and T. H. Lee (2003). Out-
put feedback control of a class of discrete
mimo nonlinear systems with triangular form
inputs. submitted to IEEE Transactions on
Neural Networks.


